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Groundwater Use in Asymmetric Aquifer under Incomplete Information  
 

 

Abstract 

This paper analyzes a game theoretic model of groundwater extraction in an asymmetric two-

cell aquifer under incomplete information about the extent to which the local stock of 

groundwater depends on the extraction histories at nearby wells.  A novel assumption is that 

the elevation of the bottom of the aquifer differs across, otherwise identical, cells. Asymmetry 

creates a strategic advantage (disadvantage) for the user in the deep (shallow) cell in 

“stealing” neighbor’s water.  The user with a larger initial stock actually benefits from the 

commonality of groundwater provided that the asymmetry is not too small or too great.  

Assuming that the asymmetry between users is sufficiently large, better informed, non-

cooperative users attain a higher joint welfare when the prior belief about the rate of 

transmission is sufficiently dispersed.  Moreover, better hydrologic information may allow 

non-cooperative users to achieve maximum social welfare even in the absence of 

groundwater use regulations.  Yet, in an asymmetric aquifer there may be both winners and 

losers from better public information.  
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Groundwater Use in Asymmetric Aquifer under Incomplete Information 

1. Introduction 

Groundwater use has traditionally been analyzed under the assumptions of complete 

information about the hydrologic properties of an aquifer.  This assumption is rarely 

questioned since most models of exploitation of groundwater as a common property resource 

rely on a rather stylized representation of groundwater hydrology.  As is exemplified in 

Gisser and Sanchez (1980), it has become standard to (a) assume that the changes in the 

groundwater level are transmitted instantaneously to all users, and (b) describe an aquifer as a 

“bathtub”, i.e. a basin with parallel sides and a flat bottom.  Under these assumptions, the 

location of users in the area overlying the aquifer where the groundwater is mined is 

immaterial, and a representative user exists.  However, the lateral movement of groundwater 

is, typically, not instantaneous and may be quite slow depending on the geologic conditions, 

and water level (the saturated thickness) varies across wells and users.1,2

 We continue the line of inquiry initiated in Saak and Peterson (2007) (henceforth, SP) 

who relaxed assumption (a) that the rate of transmission is instantaneous, and studied 

groundwater use under incomplete information about its magnitude.3  As SP pointed out, due 

to the complexity of natural hydrologic systems and the geologic variability, users are likely 

to have incomplete knowledge of the velocity of lateral flows in the aquifer.  Typically, each 

user is aware that his neighbor’s water use has some influence on his future water stock, but 

may be uncertain about the degree of this impact.  SP analyzed a simple two-period, restricted 

access setting with a symmetric two-cell aquifer, and found that the lack of information in an 

unregulated (non-cooperative) equilibrium may either increase or decrease the average rate of 

water use and welfare depending on the curvature of the intertemporal marginal rate of 

substitution for water.4    

                                                 
1Groundwater flows much faster in gravels and sands than in clay or in rock fractures.  For example, typical 
groundwater velocity in a sandy or gravelly aquifer may range from 0.5 to 50 feet per day (Harter 2003). 
2 For example, in the High Plains aquifer the water-level changes from the time prior to substantial groundwater 
irrigation development (circa 1950) to 2005 range between a rise of 84 feet and a decline of 277 feet (McGuire 
2007). 
3 A brief review of the previous literature on groundwater exploitation as a common property resource can be 
found in SP.  Negri (1989), Dixon (1989), and Provencher and Burt (1993) developed dynamic game-theoretic 
models of groundwater use in a restricted access setting.  Brozovic (2003) studied the social efficient allocation 
in a “non-bathtub” aquifer with spatially disbursed users and finite transmissivity.   
4 There is a large literature on the effects of information on equilibrium outcomes (e.g. Boyer and Kirhlstrom 
1984).  While more information enables decision-makers to better tailor their actions to circumstances, it may 
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This paper departs from the existing literature by relaxing both assumptions (a) and 

(b).  Generalizing SP’s setting, we analyze a model of groundwater use in an asymmetric 

two-cell aquifer (“shallow-cell-deep-cell”), where the elevation of the bottom (bedrock) 

differs across, otherwise identical, cells.  The focus of this paper is on four questions: (1) 

whether in an asymmetric aquifer all users are made worse off by the exploitation of 

groundwater as a common property resource, (2) how better public information about the 

speed of lateral flows affects the average rates of pumping of individual users, (3) when better 

information raises overall welfare, and (4) whether better information makes some users 

better off and others worse off.   

Following the SP’s approach, we characterize non-cooperative equilibrium outcomes 

in complete and incomplete information regimes, and then compare ex ante welfare of 

individual users in each regime.  The asymmetry in the initial stocks of groundwater 

(saturated thickness), combined with the possibility of lateral flows, introduces non-concavity 

into the profit function of the user in the shallow cell.  It is a novel feature that cannot arise in 

a symmetric aquifer under the standard assumptions about the technology.  Notably, in an 

asymmetric aquifer, the commonality of groundwater may be a source of not only 

intertemporal but also distributional inefficiencies.  The user in the cell with a larger initial 

stock has a strategic advantage in appropriating her (smaller) neighbor’s stock, and in fact, 

benefits (at the expense of her neighbor) from the lack of “full” ownership rights to 

groundwater as long as the extent of asymmetry is not too small or too great.5

We find that the asymmetry among users is an important determinant of the effect of 

public information on the equilibrium outcomes and profits of individual users.  Consider an 
                                                                                                                                                        
also constrain the set of feasible choices (Eckwert and Zilcha 2000).  For example, Hirschleifer (1971) 
demonstrated that in an exchange economy the value of information may be negative because better information 
decreases the scope of ex ante risk-sharing opportunities among the agents.  Our line of inquiry is also related to 
the literature on experimentation and learning in the multi-agent setting.  For example, Harrington (1995) 
investigates a duopoly in which firms are uncertain about the degree of product differentiation but can learn 
from experimentation with prices.  He finds that firms’ incentive to acquire more information about the extent of 
product differentiation (i.e. a potential externality imposed by the firms on each other) depends on their prior 
beliefs.  Although in our setting users do not experiment to learn more about the extent to which the resource is 
shared (since information has no value in the second period), the externality is dynamic and the willingness to 
pay for public information (and hence, an incentive to experiment) differs across agents.   
5 While groundwater users typically need to own or rent the overlying land as well as a water right, neighboring 
users usually do not compensate each other for the gain/loss of one’s water stock stemming from lateral 
groundwater movements (Kaiser and Skiller 2001).  Due to space constraints, a characterization of the socially 
efficient allocation as well as an examination of how the gains from optimal groundwater management are 
distributed across users under different information regimes are not reported here.  It can be shown that the 
“tragedy of the commons effect” may be reduced or enhanced by the asymmetry among users. 
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aquifer with (i) a sufficiently large variation in the initial stocks (bottom elevation) across 

cells, and (ii) a sufficiently diffuse prior probability distribution of the transmissivity 

parameter.  Our main result is that in such an aquifer non-cooperative users achieve a higher 

expected joint welfare under better public information for any concave production 

technology.  But this gain is not equally distributed among users. In fact, while the user in the 

shallow cell is made better off, the user in the deep cell is made worse off by better public 

information. 

Our model can be adapted to study the exploitation of other common property 

resources (such as fish, wildlife, or oil) by spatially distributed and heterogeneous users who 

are uncertain about the degree to which the resource is non-exclusive.  For example, in 

fisheries exclusivity is determined by the rates of biomass dispersal across space, while 

asymmetry among users may arise due to the initial distribution of the stock and the 

asymmetric density-dependent migration (Sanchirico and Wilen 2005).  In such settings, 

public information about the properties of the resource and environment may either enhance 

or reduce the overall welfare when the use of the resource is not regulated.  Perhaps more 

importantly, it may hurt some users but benefit others if asymmetry among them is 

significant.  

The rest of the paper is organized as follows.  In Section 2, we extend the SP’s model 

to the case of an asymmetric aquifer.  In Section 3, we characterize equilibrium under 

incomplete information about the lateral flow velocity, of which equilibrium under complete 

information is a special case.  In Section 4, we compare the equilibrium pumping rates and 

expected profits of individual users in the two information regimes.  In Section 5, we offer 

some concluding remarks and policy implications. 
  
2. Model 

We follow SP’s notation.  There are two periods, 2,1=t , and two identical users (farmers), 

.  The model of the “shallow-cell-deep-cell” aquifer is depicted in Figure 1.  In the 

beginning of period 1, the stocks of groundwater on farm i  is , 

2,1=i

1,ix 2,1=i , where 1,21,1 xx ≤ .6  

                                                 
6

ii ASdx =1, , where  is cell land area times storativity (which is homogeneous throughout the aquifer), and 
 is the average vertical distance from the water table to the base of the saturated zone (the saturated thickness) 

in cell i , .  For example, in the parts of the High Plains aquifer the estimated predevelopment (between 

AS

id

21 dd ≤
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We normalize the average initial stock of groundwater to unity, so that , and 

, where  is the extent of asymmetry between the initial stocks.  And so, 

SP’s model is a special case of the present setting with 

sx −= 11,1

sx += 11,2 )1,0[∈s

0=s .  In what follows, the first 

symbol, i, in double subscripts on variables identifies the farm and the second, t, identifies the 

period; single subscripts of functions denote first derivatives.  Let  denote the amount of 

groundwater pumped on farm  in period  (in the case of mixed strategies, the notation is 

easily adapted).  The amount that can be used for irrigation on each farm cannot exceed that 

farm’s groundwater stock: 

tiu ,

i t

(1)  for  and .   titi xu ,, ≤ 2,1=t 2,1=i

According to condition (1), the individual groundwater stock is a private resource during each 

irrigation season, i.e. there is no intra-seasonal well interference, a reasonable assumption for 

most aquifers and typical spatial separation of wells.7

  

pump pump 

Farm 2 Farm 1 

Bedrock 

Lateral flows 

Unsaturated zone 

Saturated zone 

 
Figure 1.  Hydrology of groundwater in a “shallow-cell-deep-cell” aquifer 
  
2.1. Lateral groundwater flows 

Between periods 1 and 2, groundwater will flow toward the well with the greater extraction in 

period 1. In particular, the inter-period flow of groundwater from farm 1 to farm 2 is given by 

                                                                                                                                                        
1940 and 1950) saturated thickness varied from less than 50 to over 300 feet (Schloss et al 2000).  The initial 
spatial distribution of groundwater resources is determined by bedrock elevation along with land surface 
elevation (topography) and patterns of recharge and discharge.  
7 SP justify condition (1) by observing that, typically, groundwater flows too slowly for the extractions to 
interact during an irrigation season.  Because the length of irrigation seasons is typically short, the “cones of 
depression” in the groundwater surface created by pumping at neighboring wells are not likely to intersect.  
Most lateral flows occur during a longer period of time that elapses between irrigation seasons.  The extent to 
which the groundwater is an inter-seasonal common property depends on the velocity of lateral flows across 
farms.  
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Darcy’s law: 

  
⎪
⎩

⎪
⎨

⎧

−<−−−

−≤−≤−−

−<−−

=

),-()( if ),(
;)()(- if ),(

);( if  ,
),(

1,21,21,11,21,21,2

1,11,11,11,21,21,21,11,2

1,11,21,11,11,11,1

1,21,1

uxuuux
uxuuuxuu

uuuxux
uuQ

α
αα

α

where α ]5.0,0[∈  summarizes the hydrologic properties of the region,  is the 

hydraulic gradient (the difference in hydraulic head between wells) in the end of period 1.

1,11,2 uu −

8  

The flow of groundwater from farm 2 to farm 1 is Q− .  The flow of groundwater between 

farms is bounded by the stocks left in each cell in the end of the irrigation season, )(- 1,21,2 ux −  

.  Because cell 1 is more shallow, 1,11,1 uxQ −≤≤ )1,0[∈s , and the amount that can be used 

for irrigation on each farm in each period cannot exceed that farm’s groundwater stock (see 

(1)), it must be that 1,21,21,21,1 )( uxuu −≤−α , so that 

 )](,min[),( 1,11,21,11,11,21,1 uuuxuuQ −−= α . 

The stocks of groundwater available in period 2 are9

(2) ]0,)1(max[),,( 1,21,11,11,11,11,21,12,1 uuxQuxuux ααα −−−=−−= , and  

],)1(min[),,( 1,11,11,21,21,11,21,21,21,21,21,12,2 uxuxuuxQuxuux −+−−−−=+−= ααα . 

While groundwater is always an intra-seasonally private property resource, 5.0=α  

corresponds to the inter-seasonally common property resource because it implies that 

groundwater levels are equalized across farms in 2=t , 2,22,1 xx = , for any pumping in 1=t , 

provided that , while )(5.0 1,21,11,1 uux +> 0=α  corresponds to the purely private resource. 

  
2.2 Benefits of groundwater use 

The net benefits of water use on each farm is given by  

(3) , ( )( , ) ( ) ( , )= −g u x v py u c u x k−

where p  is the per unit price of the crop, y  is yield, c  is the cost of pumping groundwater, 

 is the cost of other farming inputs, and v is a utility-of-income function. An empirically k

                                                 
8 LkZ /=α , where k is hydraulic conductivity, Z is the cross-sectional area of flow, L is the distance between 
wells on each farm (Freeze and Cherry 1979).  We treat α  and s as independent parameters.  This can be 
justified by, for example, the distribution of the bedrock elevation within and across cells. 
9 For simplicity, we assume no aquifer recharge, although recharge could easily be incorporated in the analysis 
and would not change the qualitative nature of our results. 
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estimated specification of (3) is provided in Peterson and Ding (2005).  Throughout, we 

assume that g is twice differentiable, strictly increasing, concave, and supermodular (i.e. 

) over the relevant domain, 0≥uxg (0, ) 0g ⋅ = , (0, )ug ⋅ = ∞ , and .0),(lim =∞→ xuguu
10   

  
2.3 Information about the hydrology of the region 

Following SP, we distinguish between two information regimes.  Under complete 

information, in period 1 farmers know with certainty the “speed” of lateral groundwater flow, 

α .  Under incomplete information, in period 1 farmers view α~  as a random variable and 

only know its probability distribution, )()~Pr( ααα H=≤ , where H represents the variation in 

geologic conditions throughout the aquifer.11  In the latter case, information is assumed to be 

symmetric across farmers, so that their subjective probabilities, H, are identical.  

Farmers maximize the sum of discounted per period profits: 

(4) )),,(,(),( 1,21,12,2,1,1, uuxugxug iiii αβ+  subject to (1) and (2), 

where β  is the discount factor, and 2,1=i .  Let  and  denote the maximum 

expected profits attained ex ante by the non-cooperating farmers, 

)(απ c
i

n
iπ

2,1=i , respectively under 

complete and incomplete information about the hydrology of the region.  Here superscripts 

“c” and “n” stand for, respectively, “complete” and “no information”. 
  
3. Equilibrium 

We proceed by first characterizing equilibrium allocation under incomplete information.  The 

equilibrium under complete information is then obtained as a special case of the incomplete 

information regime.  
  
3.1. Incomplete information 

In this section, we determine equilibrium pumping by both farmers when they know the 

probability distribution of the lateral flow speed but not the local realization of ]5.0,0[~∈α .  

For simplicity, we assume that α~  has a two-point probability distribution with )~Pr( Lαα =  

                                                 
10 The assumption that  is strictly increasing in u  for all  ),( xug ],0[ xu∈  reflects a situation of absolute water 
scarcity; all of the water remaining in period 2 will be consumed. If water is not scarce in this sense, so that 

 is decreasing in  for , the analysis needs some modifications (e.g., a longer time horizon). ),( xug u ],ˆ[ xuu∈
11 There is a large variation in local hydrologic properties such as the aquifer’s storativity and transmissivity 
values as well as well-spacing requirements that vary from 4 miles in parts of Kansas to less than 300 feet in 
Texas (Brozovic 2003, Kaiser and Skiller 2001).   For example, the hydraulic conductivity typically ranges from 
100 to 10,000 gallons per day (gpd) per square foot in sandy or gravelly aquifers (Harter 2003). 
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q= , qH −== 1)~Pr( αα , , and )1,0(∈q 5.00 ≤<≤ HL αα .12   

In period 2, both farmers optimally exhaust the available stocks of underground water 

because g is increasing—i.e., 2,2, i
n
i xu = ),,~( 1,21,1

nn uuα  for 2,1=i .  Farmer i’s net benefits in t=2 

depend on decisions made in t=1 by virtue of the binding (hydrologic) constraint (2), and as 

usual, we solve the game backwards.  In t=1, farmer i  chooses  to maximize n
iu 1,

(5) ))],,~(([),(max 1,21,12,1,1,
1,

nn
iiiu

n
i uuxbExugn

i
αβπ +=  subject to (1) and (2), 

where  is the periodic profit for a farmer who consumes his entire stock ),()( xxgxb = x .  

The cell asymmetry reveals itself in the pumping decision calculus of farmer 1 and 2.  Farmer 

1’s optimal response to a higher pumping rate by his neighbor is, in general, non-monotone 

(with discontinuous jumps).  However, farmer 2’s optimal response to a higher pumping rate 

by her neighbor is invariably to lower her own pumping rate.   
 
Best response by farmer 1 

Next we characterize the best response by farmer 1 when his neighbor pumps .  Let 1,2u

(6)   )( 1,21 unKπ
⎪
⎩

⎪
⎨

⎧

≥

<≤≤−−−+
= ≤

K

K
KKxu

xu

x
uuuxbExug

α

α
ααααααβ

/ if ,0

; if )},~Pr(]~|)~)~1(([),({  max

1,11,2

1,1
1,21,21,11,1

1,1   

denote the maximum expected profits achieved by farmer 1 when cell 1 has water in 2=t  for 

Kαα ≤~ , .  Here the superscripts “H” and “L” stand for “high” and “low” speed of 

lateral flow.

LHK ,=

13  Let  for )( 1,21,1 uu nK
Kxu α/1,11,2 ≤ , LHK ,= , denote the maximizer of (6), 

which is the (unique) solution to the FOC: 

(7)  0)~Pr(]~|)~)~1(()~1[(),( 1,21,11,11,11,1 ≥≤≤−−−′−− KK
nKnK

u uuxbExug αααααααβ , (=0 if ). 1,11,1 xu nK <

                                                 
12 A generalization where α~  has a finite support, 5.0...0 1 ≤<<≤ nαα  and 0)~Pr( >= iαα  for , is 
straightforward, but will complicate the notation.   

ni ,...1=

13 If in t=2 the stock in cell 1 is positive when the speed is high, Hαα =~ , it must also be positive when the 
lateral flow is slower, Lαα =~ , i.e. 0)1( 1,21,11,1 ≥−−− uux HH αα  implies that  

since  and .  Superscript “H” symbolizes that even when the lateral outflow from cell 1 is 

fast, 

0)1( 1,21,11,1 >−−− uux LL αα

1,1, ii xu ≤ 1,21,1 xx <

Hαα =~ , there is groundwater left in cell 1 in t=2.  Superscript “L” symbolizes that only when the lateral 
flow is slow, Lαα =~ , there is groundwater left in cell 1 in t=2, but cell 1 is empty if the outflow is fast, Hαα =~ . 
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Differentiating (7) yields , )0,1(/)( 1,21,21,1 −∈duudu nK LHK ,= , because  is concave and g

]5.0,0[∈Kα .  Also, let )( 1,21 unDπ ])]0,max[~([)( 1,21,11,1 uxbExb −+= αβ  denote the profits 

achieved by farmer 1 when he consumes his entire stock in period 1.  Here superscript “D” 

stands for “dry well”.   

In addition, we define the following three threshold levels of pumping by farmer 2 

that leave farmer 1 indifferent between pumping , , or .  Let  be 

(uniquely) determined by the equation 

)( 1,21,1 uu nH )( 1,21,1 uu nL
1,1x nKMu 1,2ˆ

(8)  for )ˆ()ˆ( 1,211,21
nKMnMnKMnK uu ππ = LHK ,= , DLM ,= , MK ≠ . 

  
Lemma 1. (Best response by farmer 1)  Under incomplete information, the best response by 

farmer 1 is an upper hemicontinuous correspondence, and it is given by 

(9)  

⎪
⎪
⎩

⎪⎪
⎨

⎧

≥

≤≤

≤

=

].ˆ,ˆmax[  if  ,

;ˆˆ  if ),(

 ];ˆ,ˆmin[  if ),(

)(

1,21,21,21,1

1,21,21,21,21,1

1,21,21,21,21,1

1,21,1

nHDnLD

nLDnHLnL

nHDnHLnH

nBR

uuux

uuuuu

uuuuu

uu

 
Lemma 1 shows that farmer 1 may increase or decrease his pumping in response to an 

increase in pumping by his neighbor.  To illustrate, suppose that either farmer 2’s pumping 

rate,  is sufficiently small (e.g. 1,2u 1,11,2 xu ≤ ) and/or groundwater never flows laterally too 

fast (i.e., Hα  is small).  Then the (private) considerations of intertemporal efficiency 

prescribe that farmer 1 save enough of his stock in t=1 to have a positive stock in t=2 even 

when Hαα =~ .  For a slightly higher neighbor’s pumping, again based on the considerations 

of intertemporal efficiency, farmer 1’s optimal response is to pump less since water becomes, 

on average, more scarce in t=2 due to a greater expected outflow.  On the other hand, as his 

neighbor’s pumping continues to increase, farmer 1 will eventually find it optimal to switch 

to a higher pumping rate, and let his well go dry in t=2 whenever the actual speed of lateral 

flow is high.  If farmer 2’s pumping continues to increase, farmer 1 will eventually find it 

optimal to consume his entire stock in t=1, and let his well go dry in t=2 no matter what the 

actual speed of lateral flow happens to be. 

Note that , , and  depend on the probability distribution of nHLu 1,2ˆ nLDu 1,2ˆ nHDu 1,2ˆ α~  and the 

extent of asymmetry in initial stocks, .  Farmer 1 never depletes his stock in t=1 if s 0=Lα  
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and  because, by (8), .  If there is a strictly positive probability that 

his stock is, in fact, fully private, farmer 1 always saves some groundwater for future use.  On 

the other hand, suppose that 

0>q ∞=→
nLDu

L 1,20 ˆlimα

0>Lα , but  and q LH αα −  are small.  Then, as his neighbor’s 

pumping increases, farmer 1, who previously pumped  and saved enough stock to 

withstand any outflow, may start pumping  and let his well go dry in t=2 with certainty.   

)( 1,21,1 uu nH

1,1x

  
Best response by farmer 2 

Next we consider farmer 2’s best response.   Let ααα /))1((),( 1,1 uxud −−=  for 0>α , 

denote the minimum pumping by farmer 2 that leaves his neighbor, who pumps u , with no 

groundwater in t=2.  Let  denote the optimal pumping by farmer 2, when farmer 1 

has a positive stock in t=2 for any 

)( 1,11,2 uu nH

α~ .  By (5), it is (uniquely) determined by the FOC 

(10)      (=0, if ). 0)]~)~1(()~1[(),( 1,21,11,21,21,2 ≥−−−′−+ nHnH
u uuxbExug αααβ ]),,(min[ 1,21,11,2 xudu Hα≤

For , let  denote the optimal pumping by 

farmer 2 when cell 1 has water in t=2 only if 

1.21,1 ),( xud H ≤α )],(),,([)( 1,11,11,11,2 LH
nL ududuu αα∈

Lαα =~ .  By (5), it is (uniquely) determined by 

the FOC  

(11)  ))1(()1({),( 1,11,21,21,21,2 uuxbqxug L
nL

LL
nL

u αααβ −−−′−+

⎪
⎪
⎩

⎪⎪
⎨

⎧

=

=>

=<

−+−′−+

otherwise. if,0
],),,(min[ if ,0

),,( if ,0

)}()1( 1,21,11,2

1,11,2

1,21,21,11,1 xudu

udu

uxuxbq L
nL

H
nL

nL α

α
 

Finally, for , let  denote the optimal pumping by farmer 2 when cell 

1 is always empty in t=2.  By (5), it is (uniquely) determined by the FOC  

1.21,1 ),( xud L ≤α )( 1,11,2 uu nD

 (12)  

⎪
⎪
⎩

⎪⎪
⎨

⎧

=

=>

=<

−+−′+

otherwise. if,0
 if ,0

),,( if ,0

)(),( 1,21,2

1,11,2

1,21,11,11,2 xu

udu

uxuxbxug nD

L
nD

dd
u

α

β

Differentiation of the FOCs in (10)-(12) establishes that  for 

. The next lemma shows that, provided that the asymmetry is sufficiently large, 

the best responses by farmer 1 and 2 are very different. 

]0,1(/)( 1,11,11,2 −∈duudu nK

DLHk ,,=

Lemma 2. (Best response by farmer 2)  The best response by farmer 2 is a continuous non-

increasing single-valued function, and it is given by 
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 (13)  

⎪
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⎪
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⎪
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≥<<

′−≥
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=

)).,(()1{(                                                
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)));,(,,(()1()),,((  and          
  ),,( (b)or  ),,(),( (a)either  and          
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Unlike farmer 1, farmer 2 never pumps more in response to an increase in her neighbor’s 

pumping.  The best response by farmer 2 is a continuous non-increasing function that may 

exhibit flat sections where her pumping remains unchanged for different rates of extraction 

by her neighbor.   
 
3.1.1 Characterization of non-cooperative equilibrium  

First, we establish the existence and a basic property of equilibrium under incomplete 

information. 
 
Lemma 3. (Existence) Under incomplete information, the Nash equilibrium (possibly in 

mixed strategies) exists, and farmer 1 pumps less than farmer 2 in period 1, i.e. 

 (with strict inequality for all1)~Pr( 1,21,1 =≤ nn uu )1,0(∈s ), where either  or 

 (or both). 

1)1~Pr( 1,1 =−< su n

su n +< 11,2

  

Also note that in equilibrium farmer 2 earns higher profits than farmer 1, i.e.  since 

asymmetry in bottom elevation bestows a “double” benefit (loss) on farmer 2 (1): a direct 

benefit (loss) due to a larger (smaller) initial stock, and an indirect benefit (loss) due to the 

strategic advantage (disadvantage) in “stealing” water from cell 1 (2) or preserving her (his) 

initial stock for her (his) own use in period 2.   

nn
1,21,1 ππ <

Next we show that equilibrium under incomplete information is essentially always 

unique and offer a characterization.  The equilibrium is described by a partitioning of the 

interval of asymmetry levels, , into at most five sub-intervals.  Within each sub-interval 

farmer 1 saves enough water to prevent the total loss of his stock in t=2 due to an outflow of 

any speed, or just of slow speed, or consumes his entire stock in t=1, or randomizes if his 

optimal response is non-unique. 

)1,0[
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Proposition 1. (Uniqueness and characterization) Under incomplete information, equilibrium 

is unique except on a set of parameters of zero measure.  Suppose that  

 for all .

),(),( xugxug uxuu +

0≤ 1≤≤ xu 14 There exists ),0(0 Hαα ∈  such that for any ],0[ 0αα ∈L , there are at 

most four threshold levels of asymmetry, , and the equilibrium 

pumping rates are given by 

10 ≤≤<≤< nLDnLnHLnH ssss

-  and , if ; suuu nnHn −<= 1)( 1,21,11,1 ]1),1(5.0[)( 1,11,21,2 ssuuu nnHn ++∈= ],0[ nHss∈

- , , , if ; nHLnHLnHn puuu == ))ˆ(~Pr( 1,21,11,1
nHLnHLnLn puuu −== 1))ˆ(~Pr( 1,21,11,1

nHLn uu 1,21,2 ˆ= ),( nHLnH sss∈

-  and , if ; suuu nnLn −<= 1)( 1,21,11,1 )1),1(5.0[)( 1,11,21,2 ssuuu nnLn ++∈= ],[ nLnHL sss∈

- ,  , and , if ; nLDnLDnLn puuu == ))ˆ(~Pr( 1,21,11,1
nLDn psu −=−= 1)1~Pr( 1,1

nLDn uu 1,21,2 ˆ= ),( nLDnL sss∈

-  and , if . su n −=11,1 )1(1,21,2 suu nDn −= ]1,[ nLDss∈

 

For , the strategic advantage of farmer 2 enables her to, at least 

sometimes, “steal” her neighbor’s water, i.e.  

, or forces farmer 1 to consume his entire stock in t=1, , for 

.  Also, we remark that in equilibrium farmer 2’s pumping rate is the same when 

either (a) groundwater is a fully private resource, i.e. 

),0( nLDss∈

1,11,21,12,11,1 )],~,~(~[ xuuxuE nnn <+ α << 1,2x nu 1,2

)],~,~([ 1,21,12,2
nn uuxE α+ 1,11,1 xu n =

]1,[ nLDss∈

1)0~Pr( ==α , or (b) the differential in 

bottom elevation is large, i.e. .  Under either of these two circumstances, 

groundwater becomes a private resource from the point of view of farmer 2, albeit for distinct 

reasons.  While lateral flows could occur in case (b), farmer 2 would incur a prohibitively 

high loss in the intertemporal efficiency of allocation of her own stock if she lowered her 

pumping enough to induce farmer 1 to pump less thus generating an inflow into cell 2. 

nLDss ≥

Keeping everything else equal, as the extent of asymmetry increases, farmer 1 is more 

likely to take on the risk of letting his well run out of water in t=2 (see Table 1).  For any 

 (respectively, , , , or ), 

farmer 1 saves enough water in t = 1 to guarantee access to groundwater in  for any 

speed of lateral flow 

],0[ nHss∈ ),( nHLnH sss∈ ],[ nLnHL sss∈ ),( nLDnL sss∈ )1,[ nLDss∈

2=t

α~  (respectively, he sometimes (always) takes on the risk of having an 
                                                 
14 That is, in the zero probability events that either ,  or , there 
exist multiple probabilities with which farmer 1 randomizes between the profit-maximizing pumping rates in a 
mixed strategy equilibrium. 

1ˆ 1,2 −=== nHLnHLnH usss 1ˆ 1,2 −=== nLDnLDnL usss
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empty cell in  when 2=t Hαα =~ , Lαα =~ ).  As is demonstrated in the following example, 

the equilibrium pumping rates vary with the extent of asymmetry in a non-monotone manner. 
 

Table 1. Water availability in t=2 and asymmetry under incomplete information 

Asymmetry ],0[ nHs  ),( nHLnH ss  ],[ nLnHL ss  ),( nLDnL ss  ]1,[ nLDs  

)0),~,(Pr( 1,21,12,1 >nn
L uux α  1 1 1 nLDp  0 

)0),~,(Pr( 1,21,12,1 >nn
H uux α  1 nHLp  0 0 0 
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Figure 2. Pumping under incomplete and complete information in asymmetric aquifer 
 

Example 1. (Pumping under incomplete information) Let uug =)( , 0=Lα , 5.0=Hα , 

, and 5.0=q 1=β .  Applying Proposition 1, we find that , , 

, , and .  The expected equilibrium pumping rates under 

incomplete information for different levels of asymmetry are shown in Figure 2. 

∞=nLDu 1,2ˆ nHDnHL uu 1,21,2 ˆˆ <

38.0=nHs 5.0=nHLs 1== nLDnL ss

For , as the asymmetry increases, farmer 2 capitalizes on her strategic 

advantage of having a larger initial stock, and aggressively raises her pumping rate.  Farmer 1 

]38.0,0[∈s
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is in the “accommodating mode” in which his consumption in 1=t  declines with the 

asymmetry from 64% to 36% of his stock as a precaution against possible outflow in case 

Hαα =~ .  However, when the asymmetry reaches the threshold level, , farmer 1 is 

indifferent between the “accommodating mode” and the “cut-water-loss mode” in which he 

consumes 80% of his stock in .  As  increases in the interval , farmer 2’s 

pumping drops from 67% to 52% of her stock, since her gains from a more efficient 

intertemporal allocation begin to dominate the gains from appropriating her neighbor’s water 

(recall that the initial stock in cell 1 is shrinking).  At , farmer 1 consumes 30%  

(= 80% - 50%) more of his stock than he would were the two cells hydrologically 

disconnected, while the analogous figure for farmer 2 is just 1.6% (= 51.6% - 50%).  For 

, as  increases, farmer 2’s pumping approaches 50% of her initial stock, while 

farmer 1’s pumping remains unchanged at 80%.  Because there is a positive probability that 

groundwater is fully private, i.e. 

38.0=nHLs

1=t s ]5.0,38.0[

5.0== nLss

)1,5.0[∈s s

0)0~Pr( >=α , neither farmer consumes his or her entire 

stock in period 1 for any degree of asymmetry (this will not be the case in Example 2 in the 

next subsection). 
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Figure 3.  Profits under incomplete information and when it is known that 0~ =α  

Additionally, let us examine how non-cooperative farmers 1 and 2 fare under 

uncertainty about α~  relative to the situation in which groundwater is a fully private resource 
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(see Figure 3).  When asymmetry is small, ]05.0,0[∈s , both farmers suffer from the common 

pool nature of groundwater, i.e. their expected profits are smaller than the profits they would 

achieve were the hydrologic link between cells severed ( 0~ =α ).  However, for  

the strategic advantage of farmer 2 allows her to appropriate, on average, enough of farmer 

1’s stock to compensate for inefficiency in the intertemporal allocation of her own stock due 

to uncertain inflow.  Thus only farmer 1 always loses from the lack of “full” ownership rights 

to groundwater. ■ 

)1,05.0[∈s

 
Next we consider the equilibrium under complete information. 

  
3. 2. Complete information 

Equilibrium pumping under complete information about the speed of lateral flow, )~Pr( αα =  

 for some 1= ]5.0,0[∈α , can be obtained as a special case of equilibrium characterized 

above by setting αα =H  and .0=q 15  Then, by Lemma 1,  ,  

, which, by (8), is (uniquely) determined by 

su nL −=1(.)1,1
nHDnHL uu 1,21,2 ˆˆ =

)(ˆ 1,2 αcu≡

(14) , )()ˆ)ˆ()1(()),ˆ(( 1,11,21,21,11,11,11,21,1 xbuuuxbxuug cccNccN =−−−+ ααβ

where , and “N” stands for “not a dry well”.  From (14) 

it follows that  is decreasing in 

)0,;(),( 1,21,11,21,1 === quuuu H
nHcN ααα

cu 1,2ˆ α .  The best response by farmer 1, (9), becomes 

(15)  
⎪⎩

⎪
⎨
⎧

≥

≤
=

).(ˆ if , 

);(ˆ  if ),,(
),(

1,21,21,1

1,21,21,21,1
1,21,1 α

αα
α

c

ccN
ccBR

uux

uuuu
uu

Turning to farmer 2’s best response, by Lemma 2, we have  when (.)(.) 1,21,2
nDnL uu =

αα =H  and , so that under complete information (13) becomes 0=q

(16)    
⎪⎩

⎪
⎨
⎧ −−′≥<

=
otherwise, if ),(

));,(2()),,(( and ),( if ),(
);(

1,11,2

1.11,11,21,11,21,11,11,2
1,11,2 uu

udubxudgxuduu
uu

cN

u
cD

cBR
αβαα

α

where  and .   )0,;();( 1,11,21,11,2 === quuuu H
nDcD ααα )0,;();( 1,11,21,11,2 === quuuu H

nHcN ααα

By Lemma 3, the ordering of the pumping rates in t=1 and profits is preserved under 

complete information, i.e.  and  for )()( 1,21,1 αα cc uu < )()( 21 απαπ cc < )1,0(∈s .  The 

                                                 
15 Of course, we can also obtain equilibrium under complete information by setting 1=q  or 

HL αα = . 
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characterization of non-cooperative equilibrium under complete information is also obtained 

as a special case of Proposition 1. 
  
Proposition 2. (Pumping under complete information)  Under complete information, 

equilibrium exists and it is unique. Suppose that 0),(),( ≤+ xugxug uxuu  for all 1≤≤ xu .  

There exist at most two threshold levels of asymmetry, , such that the 

pumping rates are given by ,  if ; 

, , and  if ; 

1)()(0 ≤≤< αα cDcN ss

)( 1,21,11,1
ccNc uuu = )( 1,11,21,2

ccNc uuu = )](,0[ αcNss∈

cccNc puuu == )))(ˆ(~Pr( 1,21,11,1 α cc psu −=−= 1)1~Pr( 1,1
cc uu 1,21,2 ˆ= ))(),(( αα cDcN sss∈

suc −=11,1 ,  if , where   )1(1,21,2 auu cDn −= ]1),([ αcDss∈ ,1ˆ:]1,0[inf{ 1,2 −≥∈= ccN usss

)1,ˆ( 1,2 sug c
u + β≥ ))]}ˆ(ˆ)1(1()1( 1,21,11,2

ccNc uuusb ααα −−−+′− , and   

. 

:]1,0[inf{ ∈= sscD

≥+ )1,ˆ( 1,2 sug c
u )}ˆ1( 1,2

cusb −+′β

   
The following example illustrates. 

  
Example 2. (Pumping under complete information)  Consider the environment from Example 

1, except now we assume that both farmers know the precise value of α .  First, let Hαα =  

.  Applying Proposition 2, we find that  and .  

When the extent of asymmetry is small, 

5.0= 14.01ˆ)( 1,2 ≈−= c
H

cN us α 46.0)( ≈H
cDs α

]07.0,0[∈s , the strategic advantage of farmer 2 is 

not a dominant factor, and both farmers save some water in 1=t ,  

 and  .  

When the extent of asymmetry is greater, 

)( 1,21,11,1
ccNc uuu =

3/)2)1(4( 1,2
cus −−= )51(8.0 s−= 3/)2)1(4()( 1,11,11,21,2

cccNc usuuu −+== )1(8.0 s+=

]14.0,07.0[∈s , farmer 2 fully capitalizes on her 

strategic advantage of having a larger initial stock as she consumes all of it in ,  

, and .

1=t

3/)62()( 1,21,11,1 suuu ccNc −== su c += 11,2
16  At s=0.14, the total consumption of farmer 2 

                                                 
16 Note that the equilibrium outcome in which farmer 2 consumes her entire stock in t=1, and farmer 1 
effectively saves a portion of his stock for both users, is not specific to this example.  Applying Proposition 2, 
and using the best responses in (15) and (16), it follows that , and  is 

the unique equilibrium, if  and 
1,11,211,1 )( xxuu cNc <= 1,21,11,21,2 )( xuuu ccNc ==

cux 1,21,2 ˆ< )1(),( 1,21,2 αβ −≥xxgu )))((( 1,211,2 xuxb cN−′ α .  This is a noteworthy 
difference between the present setting and SP’s model.  As explained in footnote 9 in SP, in a symmetric 
aquifer, complete rent dissipation never arises in non-cooperative equilibrium due to restricted access.  As long 
as the asymmetry across cells is small, movement of groundwater between cells is limited even when the 
velocity of lateral flow is (inter-seasonally) instantaneous.  As a result, because each user benefits from a more 
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reaches 133% of her initial stock, while the total consumption of farmer 1 declines to just 

56% of his initial stock.  At this level of asymmetry, the strategic advantage of farmer 2 

plateaus because the lateral flow cannot exceed the quantity of water that remains in cell 1 in 

the end of period 1.  For , farmer 1 randomizes between pumping 

 with probability  

, and  with probability  

and .  Finally, for , the considerations of intertemporal efficiency 

dominate farmer 2’s pumping decision, which, given her large stock, implies that farmer 1 is 

not able to save any water for period 2 due to outflow,  and .   

)46.0,14.0(∈s

3/))(ˆ24()ˆ( 1,21,21,11,1 suuuu cccNc −== ]))(ˆ())(ˆ1[()( 5.0
1,2

5.0
1,2

−− −−+= susussp ccc

5.0
1,2 ))(ˆ1/[( −−+ sus c ])6/)(ˆ3/)51((5.0 5.0

1,2
−−+− sus c suc −=11,1

cp−1 ,

)(ˆ 1,21,2 suu cc = )1,46.0[∈s

suc −=11,1 )1(5.01,2 suc +=
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Figure 4.  Equilibrium pumping under complete information 

                                                                                                                                                        
balanced usage of water across time, depletion in the first period cannot arise in either non-cooperative 
equilibrium or the socially efficient solution in a symmetric (or slightly asymmetric) aquifer. 
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If the cells are hydrologically isolated, i.e. 0== Lαα , both farmers split their stocks 

equally between periods 1 and 2,  and . The (expected) 

equilibrium pumping rates for 

)1(5.01,1 suc −= )1(5.01,2 suc +=

0=α  and 5.0=α  are depicted as solid lines in Figure 4. ■ 
 
 Next we investigate the effect of public information about the speed of lateral flows 

on the expected pumping rates and producer welfare in non-cooperative equilibrium.  
  
4. Complete versus incomplete information 

To an observer who knows only the probability distribution of α~  over the aquifer, the 

expected water pumped in period 1 by farmer  is , and expected profits attained 

by non-cooperative farmers with complete hydrologic information are 

i )]~([ 1, αc
iuE

)]~([ απ c
iE , .  In 

the next section, we compare the ex ante equilibrium pumping rates in the two information 

regimes. 

2,1=i

  
4.1. Pumping under complete and incomplete information 

In the case of a symmetric aquifer, SP showed that the average equilibrium pumping rates 

may either increase or decrease under better public information depending on the curvature of 

the ratio of the marginal benefits of water in periods 1 and 2 , )]1(/[)1,()( ubuguf u −′= β .17  

This result continues to hold in the case of an asymmetric aquifer provided that the 

asymmetry is sufficiently small. 
  
Proposition 3. (Information and pumping in a slightly asymmetric aquifer)  Suppose that 

 .  Then there exists an  such that each non-cooperative 

farmer pumps, on average, more (less) groundwater in period 1 under complete information 

about the speed of lateral flows, i.e. 

0)()( <>′′ uf )1,5.0[∈∀u 00 >s

≥)]~([ 1, αc
iuE )(≤ n

iu 1, , i=1,2, for all . ],0[ 0ss∈

  
To ascertain the effect of information on the pumping rates when the asymmetry is 

larger, we first establish the following. 
  

Lemma 5. For 0>Lα , (i) , and (ii) . )()( L
cD

H
cD ss αα < )(],max[ L

cDnHDnLD sss α<

  

                                                 
17 See SP for a discussion of the properties of , intuition, and examples. f
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Suppose that in equilibrium farmer 1 depletes his stock in 1=t , , when it is 

(publicly) known that 

su L
c −=1)(1,1 α

0~ >= Lαα .  Then he also does so if either (i) it becomes (publicly) 

known that the actual speed of lateral flows is higher, or (ii) complete public information is 

no longer available, and both farmers only know the probability distribution of α~ .   

Using Lemma 5, and Propositions 1 and 2, we obtain 
  
Proposition 4. (Irrelevant information)  Suppose that the asymmetry is sufficiently large and 

the lateral flow speed is always sufficiently close to instantaneous, i.e. .  Then 

in either information regime in period 1 farmer 1 always consumes his entire stock, i.e. 

, and farmer 2 treats her stock as fully private, i.e. 

  .   

)1),([ L
cDss α∈

)()]~([ 1,11,1 L
cc uuE αα = suu n

H
c −=== 1)( 1,11,1 α

)]~([ 1,2 αcuE )(1,2 L
cu α= )1()( 1,21,21,2 suuu nDn

H
c −=== α

  

Whenever the lateral flow velocity is always sufficiently high ( , which implies 

that 

1)( <L
cDs α

0>Lα ), and the asymmetry is sufficiently large ( ), the precise information 

about 

)( L
cDss α≥

α~  is irrelevant for non-cooperative farmers, and the equilibrium pumping rates (as well 

as profits) are the same under both complete and incomplete information.18   

For the rest of the analysis, we assume that the prior probability distribution of α~  is 

sufficiently dispersed.  The following preliminary result will play a key role in ascertaining 

the demand for public information by individual users in the next subsection. 
  

Lemma 6.  For any  there exists an )1,0[∈s 00 >α  such that  for all n
L

c uu 1,21,2 )( ≤α

],0[ 0αα ∈L . 

  

In any aquifer, if Lα  is sufficiently small, in equilibrium farmer 2 always pumps less when it 

is publicly known that Lαα =~  than under incomplete information.19  This is because the lack 

of information about α~  fosters farmer 2’s strategic advantage in “stealing” her neighbor’s 

water.  Lemma 6 is trivially true for 0=s  (see SP).  In a symmetric aquifer, the equilibrium 

pumping rates (which are equal across farmers) in t=1 increase when it is publicly known that 

                                                 
18 Nonetheless, it can be shown that information about α~  may have a strictly positive value for the social 
planner even when the equilibrium outcomes are exactly the same under complete and incomplete information.  
19 Note that, by Propositions 1 and 2, . 1)()(lim 0 ==→ L

cD
L

nLD ss
L

ααα
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the speed of lateral flow is higher, i.e. , i=1,2.  However, as shown in 

Section 3.2, in an asymmetric aquifer farmer 1’s pumping rate in t=1 may be greater when it 

is known that 

)()( 1,1, H
c
iL

c
i uu αα ≤

Lαα =~  than when it is known that Hαα =~ .  This happens when farmer 1 is 

more concerned with preserving some of his stock for future use than avoiding the loss due to 

outflow.  For instance, in Examples 1 and 2,  for 

, and  for 

)1(5.0)(1,1 su L
c −=α )](~[ 1,1 H

cuE α≥

]2.0,12.0[∈s ]~[)( 1,11,1
n

L
c uEu ≥α ]42.0,3.0[∈s .  Using Lemma 6, Propositions 1 and 

2, we establish 
  

Corollary 1. Suppose that .  There exists such a )1),([ H
cDss α∈ ),0(0 Hαα ∈  such that in 

equilibrium farmer 2 (ex post) pumps less under complete information for any realization of 

α~ , i.e.  for all n
L

cc
H

c uuuEu 1,21,21,21,2 )()]~([)( ≤≤≤ ααα ],0[ 0αα ∈L . 

  
Suppose that the asymmetry is sufficiently large and the range of the possible speeds 

of lateral flows is sufficiently wide, e.g.  and )1),([ H
cDss α∈ 0=Lα  (note that, by Lemma 

5(i),  is non-increasing in )(αcDs α ).  Then farmer 2 (ex post) pumps less in t=1 under 

complete information.  To intuitively see why, note that when it is known that groundwater 

does not flow across cells, both farmers treat their stocks as fully private.  If the speed of 

lateral flow is known to be high, by assumption, farmer 1 consumes his entire stock in t=1, 

but farmer 2 still treats her stock as fully private since there is no possibility of stealing any 

water from farmer 1, who has already exhausted his resource.  On the other hand, under 

incomplete information, farmer 1 always leaves some stock unused in t=1 to take advantage 

of the possible gains in intertemporal efficiency from a more even distribution of his stock 

across time.  This strategy involves his taking on the risk that the unused portion of his stock 

will flow into cell 2.  The possibility of “stealing” some of the resource from farmer 1 creates 

an incentive for farmer 2 to pump more than is called for by the (private) considerations of 

intertemporal efficiency alone.  As a result, farmer 2 pumps more under incomplete 

information.  The following example illustrates. 
  
Example 3. (Information and pumping)  Consider the same environment as in Example 1.  

The average (ex ante) pumping rates under complete (dotted lines) and incomplete 
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information (solid lines) are shown in Figure 2.  The effects of better information on the 

equilibrium pumping rates are summarized in Table 1.  As shown in SP, if , 0=s 0=Lα , 

5.0=Hα , , and 5.0=q uxug =),( , better public information has a positive effect on the 

average pumping rate.  This result continues to hold if the asymmetry is sufficiently small, 

, or if it falls in some intermediate range, ]12.0,0[∈s ]4.0,38.0[∈s .  However, the effect of 

better public information on the average pumping rate is reversed if the asymmetry is larger, 

for  .  For ]38.0,12.0[∈s )1,4.0[∪ ]48.0,26.0[]23.0,01.0[ ∪∈s , public information has the 

opposite effects on the pumping rates of farmers 1 and 2.  Farmer 1 (2) pumps more under 

better information for  (respectively,]01.0,0[∈s ]48.0,26.0[∪ ]23.0,0[∈s ).  ■ 
  
Table 1.  The effect of better public information on equilibrium pumping 

Asymmetry Farmer 1 pumping Farmer 2 pumping Average pumping 

]01.0,0[∈s  + + +
]12.0,01.0[∈s  − + + 
]23.0,12.0[∈s  − + − 
]26.0,23.0[∈s  − − − 
]38.0,26.0[∈s  + − − 

]4.0,38.0[∈s  + − + 
]48.0,4.0[∈s  + − − 

)1,48.0[∈s  − − − 
  

Next we analyze the effect of better public information about the speed of lateral 

flows on the expected producer profits. 
  
4.2. The effect of public information on profits 

Keeping the neighbor’s pumping rate unchanged, each farmer benefits from more information 

as it allows him or her to better predict the lateral flow and future stocks, and choose a more 

appropriate pumping rate.  However, typically, both farmers adjust their pumping rates upon 

the public announcement.  As a result, the expected profits may increase or decrease, as better 

information about the environment may, on average, exacerbate or alleviate the “mixed” 

tragedy of the commons effect. 

In the case of a symmetric aquifer, SP identified the necessary and sufficient condition 

on the production technology under which welfare is reduced or enhanced by better 

information.  The same condition (only slightly stronger) also determines the value of public 

information for non-cooperative farmers when the extent of asymmetry is sufficiently small.  
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Let )(uπ )1()1,( ubug −+= β  denote the discounted profits attained by allocating water 

equally across farmers in a symmetric aquifer (with 0=s ). 
  
Proposition 5. (Information and welfare in a slightly asymmetric aquifer)  Suppose that 

)(
)()(

)(
)(

u
u

uf
uf

π
π
′
′′

><
′
′′  .)]5.0(),1([ 11 −−∈∀ ffu 20  Then there exists an  such that each non-

cooperative farmer attains, on average, lower (higher) expected welfare under complete 

information about the speed of lateral flows, i.e., 

00 >s

)()()],~([ ssE n
i

c
i παπ ≥≤  i=1,2, for all 

. ],0[ 0ss∈

  
SP provide examples and explain how the curvature conditions in Proposition 3 and 5 

can be related to more basic properties of .  We are now ready to state our main results 

that ascertain the effect of information on (joint and individual) welfare when the asymmetry 

is larger.  First, we show that, provided that (i) the extent of asymmetry is sufficiently large, 

and (ii) the prior probability distribution on the hydrologic properties is sufficiently diffuse, 

non-cooperative farmers attain a higher expected aggregate welfare under better information 

about the lateral flow velocity.  

),( xug

 

Proposition 6.  (Information and joint welfare in a sufficiently asymmetric aquifer)  There 

exist  and )1),([0 H
cDss α∈ ),0(0 Hαα ∈  such that non-cooperative farmers attain, on 

average, higher (possibly maximum) expected joint welfare under complete information 

about the speed of lateral flows, i.e. ∑∑ ==
≥

2,12,1
)]~([

i
n
ii

c
iE παπ  for )1,[ 0ss∈ , ],0[ 0αα ∈L . 

  
The intuition is as follows.  Under conditions (i) and (ii), the joint welfare in the non-

cooperative equilibrium equals (or is close to) the maximum joint welfare attainable under 

complete information.  In other words, in an asymmetric aquifer, distortions due to the 

exploitation of groundwater as a common property resource may be eliminated by better 

public information.  If Lαα =~  is common knowledge, and Lα  is close to 0, the stocks of each 

farmer are (approximately) fully private, and hence, are, by default, efficiently allocated from 

the societal point of view.  If Hαα =~  is common knowledge, and the asymmetry is 

                                                 
20  denotes the inverse of . 1( )f − ⋅ f
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sufficiently large, farmer 1 consumes his entire stock in 1=t  even under the socially efficient 

allocation.  This is because any water that he saves in 1=t  will be lost due to outflow, but his 

marginal benefit of water in  exceeds his neighbor’s discounted marginal benefit of 

water in .  Thus, the privately optimal pumping rates of non-cooperative, informed users 

also maximize the joint welfare.

1=t

2=t
21  But the maximum attainable aggregate welfare cannot 

increase due to either the lack of information about the environment or non-cooperative 

behavior.  This result has an important policy implication: better hydrologic information may 

allow non-cooperative users to achieve maximum social welfare even in the absence of 

groundwater use regulations.  

 Our next result states that under similar conditions (possibly, under weaker conditions 

since  in Proposition 6) farmer 1 (respectively, 2) attains higher (respectively, 

lower) expected profits under better public information. 

0)( ss H
cD ≤α

  
Proposition 7. (Information and individual welfare in a sufficiently asymmetric aquifer) 

Suppose that . There exists an )1),([ H
cDss α∈ ),0(0 Hαα ∈  such that farmer 1 (2) achieves 

higher (lower) expected profits under complete information about the speed of lateral flows 

for any ],0[ 0αα ∈L , i.e. ncE 11 )]~([ παπ ≥  and ncE 22 )]~([ παπ ≤ . 

  

To see intuitively why this is true, let 0=Lα  (the speed of lateral flow is sometimes 

negligible).  Also, we suppose that  (the aquifer is sufficiently asymmetric).  

Consider farmer 1’s equilibrium pumping for different announcements about 

)1),([ H
cDss α∈

α~ .  If 0~ =α  

(respectively, Hαα =~ ), farmer 1 consumes a portion of his stock (respectively, his entire 

stock) in period 1.  In either outcome farmer 1 loses none of his water due to outflow.  And 

so, farmer 1’s ability to save some of his stock for future use while avoiding outflows is 

undermined by the lack of public information, and his expected profits decrease.  Moreover, 

when the value of α~  is unknown, farmer 2 anticipates the possibility of an inflow, and raises 

her pumping rate in t=1 since her water supply becomes, on average, less scarce in t=2 (see 

                                                 
21 Note that cell 1 will not be empty in  for 2=t Hαα =~ , only if farmer 2 consumes a small share of his 
(relatively large) stock in t = 1 in order to reduce the inter-period outflow from cell 1.  But such an allocation of 
water brings about too onerous a loss in the intertemproal efficiency of allocation of farmer 2’s stock compared 
with the gain in the intertemporal efficiency of allocation of farmer 1’s stock. 
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Corollary 1).  These effects are also at work for 0>Lα , provided that farmer 2’s (ex post) 

pumping rates decrease under better information.  Therefore, farmer 1 is “hit twice” by the 

lack of information: (a) keeping his neighbor’s pumping unchanged, his expected profits 

decrease because he cannot match a low (high) pumping rate with the low (high) lateral flow 

speed; and (b) farmer 1’s profits is further reduced by a (weakly) greater outflow due to a 

greater drawdown in cell 2.  

The lack of public information has the opposite (i.e. a positive) effect on the expected 

profits of farmer 2.  When the value of α~  is unknown, farmer 2 sometimes appropriates a 

portion of her neighbor’s stock, which she cannot do under complete information (if 0=Lα ).  

Furthermore, unlike farmer 1 whose pumping rate is very sensitive to the news about α~ , 

farmer 2’s pumping rate is invariant to the content of a public announcement since the best 

farmer 2 can do is treat her stock as fully private when farmer 1 knows whether 0~ =α  or 

Hαα =~ .  And so, better public information does not enhance farmer 2’s ability to improve 

her own intertemporal efficiency given her neighbor’s pumping flexibility in , while it 

inhibits her ability to “steal” water from cell 1.  When 

1=t

Lα  is strictly positive but sufficiently 

close to 0, the negative effect of public information on farmer 2’s profits from a smaller 

expected inflow dominates the positive effect due to an improved ability to allocate her stock 

more efficiently across time.  Example 4 illustrates. 
  
Example 4.  (Information and welfare)  The joint and individual producer profits under 

incomplete and complete information are shown, respectively, as “thick” and “thin” lines in 

Figure 5.  The effect of incomplete information on profits is summarized in Table 2.  As 

shown in SP, if  and 0=s uxug =),( , the average welfare decreases under better public 

information about the lateral flow speed.  This result continues to hold if the asymmetry is not 

too great,  (see Proposition 5).  But, for ]38.0,0[∈s )1,38.0[∈s , the joint welfare is higher 

under complete information (see Proposition 6).  When 5.0~ =α , better public information 

assuages both the distributional and temporal inefficiencies:  Farmer 1 is better able to avoid 

water loss, and farmer 2 is more concerned with achieving an intertemporally efficient 

allocation of her initial stock rather than with “stealing” her neighbor’s water.  Of course, 

both farmers achieve maximum efficiency when it is common knowledge that 0~ =α .  Next 

we examine the effect of information on individual producer profits. 
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1.02 

1.22 

1.42 

1.62 

1.82 

0 0.1 0.2 0.3 0.4 0.5 0.6

                               Table 2. The effect of better public  
                                information on producer profits 

Asymmetry Farmer 1’s 
profit 

Farmer 2’s 
profit 

Total 
profit 

]03.0.0[∈s - - -
]26.0,03.0[∈s - + -

]32.0,26.0[∈s - - -
]38.0,32.0[∈s + - -

)1,38.0[∈s + - +
2/)( 21

nn ππ +

2/)]~()~([ 21 απαπ ccE +

)]~([ 1 απ cE

n
1π

n
2π

)]~([ 2 απ cE

s
 

Figure 5. Profits under incomplete and complete information 
  

For , both farmers are worse off.  As explained in SP, complete 

information, on average, aggravates the “tragedy of the commons effect” and the joint 

welfare falls because the average pumping rate is higher (see Example 3).  However, for 

, the effect of information differs across farmers: farmer 2 (1) is better off 

(worse off).  Better information enables farmer 2 to better exercise her strategic advantage at 

the expense of farmer 1 who is in the “accommodating mode” and, on average, loses more of 

his stock due to the outflows.  Better information exacerbates the distributional distortion 

stemming from the commonality of groundwater whereas farmer 1’s (2’s) total consumption, 

on average, decreases (increases).  For 

]03.0.0[∈s

]26.0,03.0[∈s

]32.0,26.0[∈s , both farmers are made worse off by 

information: farmer 1 is more often in the “cut water loss mode” in which he minimizes the 

outflow rather than strives to achieve a greater (expected) intertemporal efficiency.  Here 

information exacerbates the temporal inefficiency associated with the unregulated water use 

whereas both farmers consume, on average, more water in period 1.   

For  and , farmer 2’s strategic advantage is further eroded 

by better public information.  Only farmer 1 is better off since he frequently (in fact, always 

for ) consumes his entire stock in 

]38.0,32.0[∈s )1,38.0[∈s

)1,46.0[∈s 1=t  when it is known that the inter-period 
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lateral flow is instantaneous, 5.0~ =α , while he consumes only a portion of his stock under 

uncertainty about α~  (see Proposition 7).  ■ 
 
5. Conclusions and Implications 

This paper analyzes a simple two-period model of groundwater exploitation in a two-cell 

aquifer under a novel assumption that the bottom elevation differs across cells.  This 

asymmetry creates a strategic advantage (disadvantage) for the user in the deep (shallow) cell 

in “stealing” the groundwater lying beneath the neighboring farm at the end of the irrigation 

season.  Asymmetry in bottom elevation, combined with the lack of “full” ownership rights to 

groundwater, aggravates the intrinsic inequality in income distribution caused by the 

difference in the initial water endowments.  The user with a larger initial stock actually 

benefits from the exploitation of groundwater as a common property resource when the 

asymmetry is not too small or too great. 

Because in reality producers do not have perfect knowledge of the local hydrologic 

properties, it is of interest to identify conditions under which incomplete information has an 

unambiguous effect on the equilibrium pumping rates and producer welfare in an asymmetric 

aquifer.  Consistent with SP’s conclusions, as long as asymmetry in bottom elevation is 

sufficiently small, production technology is the main determinant of the value of public 

information for non-cooperative users in the presence of distortions caused by the 

commonality of the resource.   

However, this is not the case when the asymmetry in initial stocks is sufficiently large.  

Then, if the externality is always significant, information about its precise value is irrelevant 

for equilibrium outcomes.  But, whenever the prior beliefs are sufficiently dispersed, better 

informed users achieve a higher joint welfare.  Moreover, the welfare losses from unregulated 

resource use may stem solely from the lack of information.  That is, in an asymmetric aquifer, 

non-cooperative equilibrium and socially efficient allocations may coincide under complete 

information but differ under uncertainty about the lateral flow velocity.  In such cases, 

educating and informing users about the true resource dynamics is all that is needed to 

achieve maximum social welfare.  Yet, even when the overall welfare increases, some users 

may be worse off under better public information.22 

                                                 
22 As shown in SP, in the symmetric aquifer users always agree on the welfare ranking of equilibrium outcomes 
for different levels of precision of public information. 
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Appendix 
Proof of Lemma 1:  To determine the best response correspondence by farmer 1, it is 
convenient to solve (5) for  as a two-step optimization problem 1=i
(A1) . )](),(),(max[)( 1,211,211,211,21 uuuu nDnLnHn ππππ =

Note that farmer 1 never lets his well go dry in t=2 when , since  1,11,2 xu ≤

(A2)  for , )()()( 1,211,211,21 uuu nHnLnD πππ << 1,11,2 xu ≤

where the strict inequalities follow because  implies that 1,11,2 xu ≤ ),,( 1,21,12,1 uxx Lα 0≥  and 

, so that  and  are feasible but 
are not profit-maximizing.  On the other hand, by (6)-(8), and because  and 

, we have 

0)),(,( 1,21,21,12,1 >uuux L
Hα )()( 1,21,11,21,1 uuuu nLnH = =)( 1,21,1 uu nH

1,1̀x
(0, )ug ⋅ = ∞

0,.)0( =g
(A3) , and  <=↑ ))/,0,(()(lim 1,12,11,21/1,11,2 HL

nH
xu xxqbu

H
ααβπα )(lim 1,21/1,11,2

unL
xu H

πα↑

(A4) . )(lim0)(lim 1,21/1,21/ 1,11,21,11,2
uu nD

xu
nL

xu LL
ππ αα ↑↑ <=

For )/,( 1,11,11,2 Lxxu α∈ , by the envelope theorem, we have 

))}),(,(()1())),(,(({
)(

1,21,21,12,11,21,21,12,1
1,2

1,21 uuuxbquuuxbq
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α
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−<
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1,21 )(
du

ud Lπ
= , 

where the first inequality follows because LLHH αααα /)1(1 −<− , and the second inequality 
follows from the FOCs in (7) because  and  for )()( 1,21,11,21,1 uuuu nLnH < 1,11,21,1 )( xuu nH <

)/,( 1,11,11,2 Lxxu α∈ .  Therefore, by (A2)-(A4), and, because the profit functions are 

continuous in , (note that  is independent of ) there exist threshold values , 

, and  such that  for all  (resp., ), 

 for all , and  for all . 

1,2u )( 1,1xb 1,2u nHLu 1,2ˆ
nLDu 1,2ˆ nHDu 1,2ˆ )()()( 11 uu nLnH ππ <≥ nHLuu 1,2ˆ≤ )/,ˆ( 1,11,2 L

nHL xuu α∈

)()()( 11 uu nDnL ππ <≥ nLDuu 1,2ˆ)(>≤ )()()( 11 uu nDnH ππ <≥ nHDuu 1,2ˆ)(>≤

There are two cases to consider: (a) , and (b) . nHLu 1,2ˆ nLDnHD uu 1,21,2 ˆˆ ≤≤ nHLnHDnLD uuu 1,21,21,2 ˆˆˆ <<
In case (a), by (A1), the best response for farmer 1 is given by 

 (A5)  

⎪
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In case (b), by (A1), the best response for farmer 1 is given by 
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(A6)  
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Note that (A5) and (A6) are upper hemicontinuous correspondences since in case (a) 
 and , where 

, , , 

, and  is single-valued for .  Case (b) is 

analogous (just set  in case (a)). ■ 
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Proof of Lemma 2:  Consider (5) for 2=i  as a two-step optimization problem  
(A7)   , )](),(),(max[)( 1,121,121,121,12 uuuu nDnLnHn ππππ =
where   
(A8) )( 1,12 unHπ ))],,~(([),(max 1,21,12,21,21,2

1,21,2

uuxbExug
xu

αβ+=
≤

 subject to ,  ),( 1,11,2 Hudu α≤
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xu

αβ+=
≤

 subject to  
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(A10)  )( 1,12 uDπ ))],,~(([),(max 1,21,12,21,21,2
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xu

αβ+=
≤

 subject to . ),( 1,11,2 Ludu α≥

In each problem (A8)-(A10), the objective function is differentiable (and concave) on 
the constraint set :{ 1,2u ]}),,(min[ 1,21,11,2 xudu Hα≤  (respectively, ∈1,21,2 :{ uu ),,([ 1,1 Hud α  

]}),,(min[ 1,21,1 xud Lα , and ∈1,21,2 :{ uu ]}),,([ 1,21,1 xud Lα ), and the maximizer for each 

problem  (respectively, , and ) is a continuous function, which is 
given by equations (10) (respectively, (11) and (12)) in the text.  

)( 1,11,2 uu nH )( 1,11,2 uu nL )( 1,11,2 uu nD

If , the constraint sets in (A9) and (A10) are empty, and 

.  If  and 

),( 1,11,2 Hudx α<

)()( 1,121,12 uu nHn ππ = ),( 1,11,2 Hudx α≥ )),,(( 21 xudg Hu α )~1[( αβ −≤ E  

)))],(,,~(( 1,11,12,2 Huduxb αα′ , none of the constraints in (A8) bind, and therefore,  is 
the unique global maximizer (note that the objective function in (5) is strictly concave).  Now 
suppose that 

)( 1,11,2 uu nH

)))],(,,~(()~1[()),,(( 1,11,12,221 HHu uduxfExudg αααβα −> .  Then  )( 1,12 unHπ

)))],(,,~(([)),,(( 1,11,12,21,21,1 HH uduxgExudg ααβα += ≤ )( 1,12 unLπ ,  where the inequality 

follows because  satisfies the constraints in (A9), and re-optimization cannot 
decrease profits.  There are two cases to consider.  If 

),( 1,11,2 Hudu α=

),(),( 11,21 LH udxud αα << , the 

constraint set in (A10) is empty, and  must be the global maximizer.  If  )( 1,11,2 uu nL
1,2x

),( 1,1 Lud α≥  and ))),(,,(()1()),,(( 1,11,11,221,1 LLLLu uduxbqxudg αααβα ′−≤ , we have 

, )( 1,12 uDπ βα += )),,(( 1,21,1 xudg L )),(( 1,11,21,11,1 Ludxuxb α−+− )( 1,12 uLπ≤

where the inequality follows because  satisfies the constraints in (A9), and 

re-optimization cannot decrease profits.  And so, under any of these conditions,   is 

),( 1,11,2 Ludu α=

)( 1,11,2 uu nL
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the (unique) global maximizer.  Finally, if ),( 1,11,2 Ludx α≥  and )),,(( 1,21,1 xudg Lu α  

)1( Lqαβ −≥ ))),(,,(( 1,11,11,2 LL uduxb αα′ , we have  

, where the inequality follows because  
satisfies the constraints in (A10), and re-optimization cannot decrease profits.  The proof that 
the best response for farmer 2 is given by (13), is completed by noting that  is a 

continuous single-valued function since  =  if 

 and 

)( 1,12 unLπ βα += )),,(( 1,21,1 xudg L

)),(2( 1,11,1 Ludub α−− ≤ )( 1,12 unDπ ),( 1,11,2 Ludu α=
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)),,(( 1,21,1 xudg Lu α≤ β≤ ))),(,,(( 1,11,12,2 LL uduxb αα′ . ■ 

 
Proof of Lemma 3: The existence of equilibrium in mixed strategies follows by Theorem 3 
in Dasgupta and Maskin (1986) (or by Lemmas 1, 2, and Kakutani fixed point theorem).  
Because  (and restricted access), farmers never simultaneously deplete their 
stocks in period 1 in equilibrium.  By Lemma 2, farmer 2 cannot randomize.  To show that 

, suppose to the contrary that .  Then it must be that 

 for any 

(0, )ug ⋅ = ∞

1)~Pr( 1,21,1 =< nn uu 0)~Pr( 1,21,1 >≥ nn uu

0~)1(1 1,21,1 ≥−−−− nn uus αα α  since  for some , i.e. 

 and  in any equilibrium with .  
Hence, by Lemmas 1 and 2, we have 
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which yields a contradiction because  is concave and .  ■ g 0≥uxg
 
Proof of Proposition 1: First, we state the necessary and sufficient conditions for different 
types of the best responses to be played in equilibrium, and prove the (a.e.) uniqueness of 
equilibrium.  Then we show the existence of the threshold levels of asymmetry that partition 

 into sub-intervals where the type of equilibrium is the same. )1,0[∈s
The following lemma will be used to characterize equilibrium under incomplete 

information. 
 
Lemma 4.  (Asymmetry and threshold pumping rates) Suppose that 0),(),( ≤+ xugxug uxuu  
for all .  Then , and there exists such a 1≤≤ xu 1/ˆ 1,2 −<dsud nLD ),0(0 Hαα ∈  such that for any 

],0[ 0αα ∈L , . 1/ˆ 1,2 −<dsud nHL
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Proof of Lemma 4: Using the envelope theorem to differentiate (8) for  yields 
 , where  

, and   

DMLK == ,
dsud nLD /ˆ 1,2 1]ˆ/)(/[]/)([ 1,21111 −<∂−∂∂−∂−= nLDnDnLnDnL us ππππ nLDnDnL u 1,211 ˆ/)( ∂−∂ ππ

0)ˆ)1(1( 1,21,1 <−−−−′−= nLD
L

nL
LL uusbq ααβα snDnL ∂−∂ /)( 11 ππ

)1()1,( 1,1 sbsug nL
x −′+−−= )ˆ)1(1( 1,21,1

nLD
L

nL
L uusbq ααβ −−−−′− )1( sb −′=

+−+−− ))1,()1,(( 1,11,1 sugsug nL
x

nL
u 0ˆ/)( 1,211 <∂−∂ nLDnDnL uππ .  The last equality follows by the 

FOC in (7) for LK = .  The inequality follows because  and 
.  

suu nL −<1)( 1,21,1

0),(),( ≤+ xugxug uxuu

Using the envelope theorem to differentiate (8) for LMHK == ,  yields  

, where  

dsud nHL /ˆ 1,2

1]ˆ/)(/[]/)([ 1,21111 −<∂−∂∂−∂−= nHLnLnHnLnH us ππππ nHLnLnH u 1,211 ˆ/)( ∂−∂ ππ

)ˆ)1(1()1( 1,21,1
nHL

H
nH

HH uusbq αααβ −−−−′−−= )ˆ)1(1(( 1,21,1
nHL

L
nL

LL uuabq αααβ −−−−′+  

 when 0))ˆ)1(1( 1,21,1 <−−−−′− nHL
L

nH
L uuab αα Lα  is close to 0, because 

 is bounded away from zero as 0)ˆ)1(1()1( 1,21,1 >−−−−′− nHL
H

nH
HH uusbq αααβ 0→Lα , and 

snLnH ∂−∂ /)( 11 ππ )ˆ)1(1()1()1,()1,( 1,21,11,11,1
nHL

H
nH

H
nL

x
nH

x uusbqsugsug ααβ −−−−′−−−+−−=  

)ˆ)1(1()ˆ)1(1( 1,21,11,21,1
nHL

L
nL

L
nHL

L
nH

L uusbquusbq ααβααβ −−−−′+−−−−′−  

))1,()1,(()1,()1,( 1,11,11,11,1 sugsugsugsug nH
x

nH
u

nL
x

nL
u −+−−−+−= 0ˆ/)( 1,211 <∂−∂+ nHLnLnH uππ .  

The last equality follows by the FOCs in (7).  The inequality follows because  

 and 

)( 1,21,1 uunH

)( 1,21,1 uu nL< 0),(),( ≤+ xugxug uxuu . ■ 
 
Step 1. Suppose that .  Then farmer 1 may find it optimal to risk saving some of 
his stock for later use even though the fast outflow will leave his well dry.  For example, this 
must be the case whenever 

nLDnHL uu 1,21,2 ˆˆ <

Lα  is sufficiently small since, by (8), . There are 
five cases that need to be considered as possible equilibrium outcomes.   

∞=→
nLDu

L 1,20 ˆlimα

Case 1. Suppose that in equilibrium .  Then , and by 

Lemmas 1 and 2, the necessary and sufficient conditions for , 
, 

0),,( 1,21,12,1 >nn
H uux α )( 1,1,1,

n
j

nH
i

n
i uuu =

)()( 1,1,
n
j

nH
i

n
j

nBR
i uuuu =

}2,1{, ∈ji ji ≠  are  
(A13)  , and  and 

.   

nHLn uu 1,21,2 ˆ< ),(1 (b)or  ),,(1  (a)either  11
n

H
n

H udsuds αα ≥+<+

)~-),()~1(1()~1[()1,),(( 1,11,11,1
nn

H
n

Hu uudsbEsudg ααααβα −−+′−≤+
Note that (A13) is implied by 
(A14)  either (a) , or (b)  and  su nHL +≥1ˆ 1,2 su nHL +≤1ˆ 1,2

β≤+ )1,ˆ( 1,2 sug nHL
u ))]ˆ(~ˆ)~1(1()~1[( 1,21,11,2

nHLnHnHL uuusbE ααα −−−+′− . 

First, note that (A14) implies that .  To see why, suppose that 

 and (A14) holds.  Then, by (A14b), we have 

nHLnnHn uuuu 1,21,11,21,2 ˆ)( ≤=
nHLnnHn uuuu 1,21,121,2 ˆ)( >=

  <+ )1,( 1,2 sug n
u β≤+ )1,ˆ( 1,2 sug nHL

u ))]ˆ(~ˆ)~1(1()~1[( 21,11,2
HLnHHL uuusbE ααα −−−+′−
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))](~)~1(1()~1[( 1,21,11,2
nnHn uuusbE ααα −−−+′−< )1,( 1,2 sug n

u += , 

where the inequality follows because (the best responses are piece-wise 

differentiable).  Hence, we obtained a contradiction.  Second, since , it must 

be that either (A13a) or (A13b) holds because  

)0,1(/)(1, −∈duudu nH
i

),( 1,11,2
n

H
n udu α<

)1,()1,),(( 1,21,1 sugsudg n
u

n
Hu +<+α

)~)~1(1()~1[( 1,11,2
nn uusbE αααβ −−−+′−= )~1[( αβ −≤ E )~),()~1(1( 1.11,1

nn
H uudsb ααα −−−+′ . 

Also, it must be that .  If , then cell 1 must be empty in  

because, by Lemma 3, in equilibrium , which contradicts the assumption that 

.   Furthermore, this equilibrium is locally unique in the sense that there 

is no other equilibrium , 

1,11,1 xu n < 1,11,1 xu n = 2=t
nn uu 1,21,1 <

),,( 1,21,12,1
nn

H uux α 0>
n
ii uu 1,1, ≠′ 2,1=i  with .  This is because the 

mapping  has a unique fixed point on 

)()( 1,1, j
nH
ij

nBR
i uuuu ′=′

))(( 1,21,1 uuu nHnH )1,0( s−  since . )0,1(/)( −∈duudu nH
i

Case 2.  Suppose that in equilibrium farmer 1 randomizes:  and 

, and farmer 2 pumps .  By Lemmas 1 and 2, the necessary 
and sufficient conditions are 

nHLnHLnHn puuu == ))ˆ(~Pr( 1,21,11,1

nHLnHLnLn puuu −== 1))ˆ(~Pr( 1,21,11,1
nHLu 1,2ˆ

(A15) , and su nHL +≤1ˆ 1,2 β ))]ˆ(~ˆ)~1(1()~1[( 1,21,11,2
nHLnHnHL uuusbE ααα −−−+′−  

{)1,ˆ( 2 β<+< sug nHL
u ))ˆ(ˆ)1(1()1( 1,21,11,2

nHLnL
L

nHL
LL uuusbq ααα −−−+′−  

)}ˆ)ˆ(2()1( 1,21,21,1
nHLnHLnL

u uuugq −−−+ . 

To see why, observe that  must be the unique maximizer of nHLu 1,2ˆ

(A16) . )1,(max
1

sug
su

+
+≤

))),ˆ(,~(([ 1,21,12,2 uuuxbpE nHLnHnHL αβ+ ))]),ˆ(,~(()1( 1,21,12,2 uuuxbp nHLnLnHL α−+

Because , it must be that farmer 1 always has a positive stock in t=2 if he pumps  

, i.e. .  Also, because , it must be that 

farmer 1 has no water in t=2 for 

0>nHLp nu 1,1
~

)ˆ( 1,21,1
nHLnH uu= 0)ˆ),ˆ(,( 1,21,21,12,1 >nHLnHLnH

H uuux α 1<nHLp

Lαα =~ , when he pumps .  And so, the FOC 
for (A16) is 

)ˆ( 1,21,11,1
nHLnLn uuu =

(A17)  ))ˆ(ˆ)1(1()1({)1,ˆ( 1,21,11,21,2
nHLnH

L
nHL

LL
nHLnHL

u uuusbqpsug αααβ −−−+′−−+

))ˆ(ˆ)1(1()1()1( 1,21,11,2
nHLnH

H
nHL

HH
nHL uuusbpq ααα −−−+′−−+  

))ˆ(ˆ)1(1()1)(1( 1,21,11.2
nHLnL

L
nHL

LL
nHL uuusbpq ααα −−−+′−−+  

0)}ˆ)ˆ(2()1)(1( 1,21,21,1 ≥−−′−−+ nHLnHLnLnHL uuubpq  (=0, if ). 1,21,2ˆ xu nHL <

Hence, the probability that farmer 1 pumps  is  (with equality if 

), where  

)ˆ( 1,21,1
nHLnH uu μλ /≥nHLp

1,21,2ˆ xu nHL < {)1,ˆ( 1,2 βλ −+≡ sug nHL
u )ˆ),ˆ(,(()1( 1,21,21,12,2

nHLnHLnL
LL uuuxbq αα ′−

)}ˆ)ˆ(2()1( ,
2

,
2

,
1

HLnHLnLn
u uuugq −−−+ , and ≡μ ))ˆ),ˆ(,(()[1({ 1,21,21,12,2

nHLnHLnH
LL uuuxbq ααβ ′−  

))]ˆ),ˆ(,(( 1,21,21,12,2
nHLnHLnL

L uuuxb α′− ))ˆ),ˆ(,(()1)[(1( 1,21,21,12,2
nLnHLnH

HH uuuxbq αα ′−−+  

0)]}ˆ)ˆ(2( 1,21,21,1 <−−′− nHLnHLnL uuub .  The inequality follows because  and 

, and  b  is 

)ˆ()ˆ( 1,21,11,21,1
nHLnLnHLnH uuuu <

)ˆ),ˆ(,( 1,21,21,12,2
nHLnHLnH

H uuux α )ˆ),ˆ(,( 1.21,21,12,2
nHLnHLnL

H uuux α≥ nHLnHLnL uuu 1,21,21,1 ˆ)ˆ(2 −−≥ ′
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positive and decreasing.  Therefore, (A15) guarantees that )1,0(/ ∈μλ .  Note that, by (A17), 
this equilibrium is locally unique (i.e.,  is unique) if . nHLp su nHL +<1ˆ 1,2

Case 3. Suppose that cell 1 is (resp., not) empty in t=1 when Hαα =  (resp., Lαα = ).  Then 
)( 1,1,1,

n
j

nL
i

n
i uuu = , and by Lemmas 1 and 2, the necessary and sufficient conditions for 

, , )()( 1,1,1,1,
n
j

nL
i

n
j

nBR
i uuuu = }2,1{, ∈ji ji ≠  are  

(A18) and ,  ˆˆ 1,21,21,2
nLDnnHL uuu ≤≤ ))),(,,~(()~1[( )1),,(( 1,11,12,21,1 H

nn
H

n
u uduxbEsudg αααβα ′−≥+

(A19) and either (a) , or (b)  and ),(1),( 1,11,1 L
n

H
n udsud αα <+< ),(1 1,1 L

nuds α≥+

 . )),()1(1()1()1),,(( 1,11,11,1
n

LL
n

LLL
n

u uudsbqsudg ααααβα −−−+′−≤+
Note that (A18) and (A19) are implied by  
(A20)   (a) , (b)  su nLD +≤1ˆ 1,2 {)1,ˆ( 1,2 β≥+ sug nHL

u ))ˆ(ˆ)1(1()1( 1,21,11,2
nHLnL

L
nHL

LL uuusbq ααα −−−+′−

)}ˆ)ˆ(2()1( 1.21.21,1
nHLnHLnL uuubq −−′−+ , and (c)  )1,ˆ( 1,2 sug nLD

u +

{β≤ ))ˆ(ˆ)1(1()1( 1,21,11,2
nLDnL

L
nLD

LL uuusbq ααα −−−+′− )}ˆ)ˆ(2()1( 1,21,21,1
nLDnLDnL uuubq −−′−+

. 
To see why, note that since , (A20b) and (A20c) imply that  

.  Since , by (11) in the text, we have 

)0,1(/)(1,1 −∈duudu nL nnHL uu 1,21,2ˆ ≤
nLDu 1,2ˆ ≤ ),()( 1,11,11,21,2 H

nnnLn uduuu α>=

)]~),()~1(1()~1[( 1,11,1
n

H
n uudsbE ααααβ −−−+′− ))1(1()1({ 1,11,2

n
L

n
LL uusbq αααβ −−−+′−<  

)}2()1( 1,21,1
nn uubq −−′−+ )1,( 1,2 sug n

u +≤ )1),,(( 1,1 sudg H
n

u +≤ α . 
This verifies that (A20) implies (A18).  To verify that (A20) also implies (A19), suppose that 

 and note that since , by (11), we have ),(1 1,1 L
nuds α≥+ suduuu L

nnnLn +≤<= 1),()( 1,11,11,21,2 α

<+ )1),,(( 1,1 sudg L
n

u α )1,( 1,2 sug n
u + ))1(1()1({ 1,11,2
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)}2()1( 1,21,1
nn uubq −−′−+ )),()1(1()1( 1,11,1

n
LL

n
LL uudsbq ααααβ −−−+′−≤ . 

Furthermore, this equilibrium is locally unique by the same argument that is used to show 
local uniqueness in Case 1. 
Case 4. Suppose that in equilibrium farmer 1 randomizes:  and 

, and farmer 2 pumps .  By Lemmas 1 and 2, the necessary and 
sufficient conditions are 

nLDnLDnLn puuu == ))ˆ(~Pr( 1,21,11,1

nLDn pxu −== 1)~Pr( 1,11,1
nLDu 1,2ˆ

(A21) , su nLD +≤1ˆ 1,2 {β ))ˆ(ˆ)1(1()1( 1,21,11,2
nLDnL

L
nLD

LL uuusbq ααα −−−+′−  

)}ˆ)ˆ(2()1( 1,21,21,1
nLDnLDnL uuubq −−′−+ β<+< )1,ˆ( 1,2 sug nLD

u )ˆ1( 1,2
nLDusb −+′ . 

To see why, observe that  must be the unique maximizer of nLDu 1,2ˆ

(A22) . )1,(max 1 sugsu ++≤ ))),ˆ(,~(([ 1,21,12,2 uuuxbpE nLDnLnLD αβ+ )))],1,~(()1( 2,2 usxbpnLD −−+ α

Because , it must be that cell 1 is not empty in t=2 if 0>nLDp Lαα =~ , when farmer 1 pumps 
.  Also, because , it must be that cell 1 is always empty in t=2, when 

.  Hence, because 

)ˆ( 1,21,11,1
nLDnLn uuu = 1<nLDp

su n −=11,1 (0, )ug ⋅ = ∞ , it must be that , and the FOC becomes su nLD +<1ˆ 1,2

))ˆ(ˆ)1(1()1({)1,ˆ( 1,21,11,21,2
nLDnL

L
nLD

LL
nLDnLD

u uuusbqpsug αααβ −−−+′−−+  
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)ˆ)ˆ(2()1( 1,21,21,1
nLDnLDnLnLD uuubpq −−′−+ 0)}ˆ1()1( 1,2 =−+′−+ nLDnLD usbp . 

By using the same arguments as in Case 2, it follows that (A21) guarantees that .  
Furthermore, this equilibrium is also locally unique (i.e.,  is unique). 

)1,0(∈nLDp
nLDp

Case 5. Suppose that in equilibrium , .  Then, by Lemmas 1 and 2, 

the necessary and sufficient conditions for  and ,  are  

su n −=11,1 )( 1,11,21,2 xuu nDn =

suu nnBR −=1)( 1,21,1 )1()1( 1,21,2 susu nDnBR −=−

(A23)  and nnLD uu 1,21,2ˆ ≤ )2()1()1,1( sbqssg Lu ′−≥+− αβ . 
Note that (A23) is implied by 
(A24)  and . su nLD +<1ˆ 1,2 β≥+ )1,ˆ( 1,2 sug nLD

u )ˆ1( 1,2
nLDusb −+′

To see why, observe that (A24) implies that , and susuu nLDnDn −≥≥−= 1ˆ)1( 1,21,21,2

≥+>+− )1,ˆ()1,1( 1,2 sugssg nLD
uu )ˆ1( 1,2

nLDusb −+′β )2()1()2( sbqsb L ′−>′≥ αββ . 
Clearly, this equilibrium is locally unique.  
 Because the necessary and sufficient conditions in Cases 1-5 are mutually exclusive, 
equilibrium is (a.e.) globally unique.  The analysis in the case with  is similar, 
except that in equilibrium cell 1 is either always empty or never empty in period 2, i.e. farmer 
1 avoids any gamble whose worst outcome is zero stock in period 2.

nHDnHL uu 1,21,2 ˆˆ ≥

23

 
Step 2. Let ,1ˆ:]1,0[inf{ 1,2 −≥∈= nHLnH usss β≥+ )1,ˆ( 1,2 sug nHL

u )~1[( α−E  
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. Note that ,  

, because, by Lemma 4,  and .  Also, 
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23 In the zero probability event that , the equilibrium may not be unique in the sense that farmer 

1 may randomize between  and either  or , if 

0
1,21,21,2 ˆˆˆ uuu nHDnHL ≡=
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0/)]ˆ)ˆ(2()1()))ˆ( 1,21,21,11,21,1 <−−′−+− dsuuubquu nLDnLDnLnLDnL
Lα , and  

.   

dsusbd nLD /)ˆ1( 1,2−+′

0)/ˆ1)(ˆ1( 1,21,2 <−−+′′= dsudusb nLDnLD

Therefore, because  , nLDnHD uu 1,21,2 ˆˆ < 0<′′b and uxuu gg ≤< 0 , from the definitions of 

 and , , , nKs nKMs LHK ,= DLM ,= MK ≠ , it follows that .  
By Step 1, conditions that are necessary and sufficient for Case 1 (respectively, Case 2, 3 4, 
and 5) are satisfied for any , (respectively, , , 

, and ). ■ 

nLDnLnHLnH ssss ≤<≤<0

],0[ nHss∈ ),( nHLnH sss∈ ],[ nLnHL sss∈
),( nLDnL sss∈ ]1,[ nLDss∈

 
Proof of Lemma 5: Because, by (8)  is increasing in  and , it 

follows that .  Because, by (14),  is decreasing in 

)(ˆ 1,2 qu nLD q )(ˆ)1(ˆ 1,21,2 L
cnLD uqu α==

nLDu 1,2ˆ )(ˆ 1,2 L
cu α< )(ˆ 1,2 αcu α , it follows that 

, which implies, by (8), that .  The result 
follows by observing that  that is defined by the equation, 

)(ˆ)(ˆ 1,21,2 L
c

H
c uu αα < ≤)(ˆ 1,2 H

cu α )(ˆ 1,2 qu nHD )(ˆ 1,2 L
cu α≤

)(us ))(1,( usugu +  
0))(1( =−+′− uusbβ , is increasing in u  since  and  is concave, and, by Step 2 in 

Proposition 1, we have , , and .  ■ 
0≥uxg g

)ˆ( 1,2
nLDnLD uss = )ˆ( 1,2

nHDnHD uss = ))(ˆ()( 1,2 αα ccD uss =
 
Proof of Lemma 6:  Because , it follows that .  Hence, by 

continuity, there exists such a 

∞=→
nLDu

L 1,20 ˆlimα 1lim 0 =→
nLDs

Lα

01 >α  such that  and  for all <nHLu 1,2ˆ nLDnHD uu 1,21,2 ˆˆ < LDss ≤
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which, by (A25), implies that .  Then, by continuity, there exists a )0(1,21,2 => L
cn uu α 04 >α  
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The proof is completed by setting ][min 5,...,10 ii αα == . ■ 
 
Proof of Proposition 3: By Propositions 1 and 2, the equilibrium pumping rates under 
incomplete (respectively, complete) information are continuous in  for  
(respectively, , 
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Proof of Proposition 5: The proof is analogous to the proof of Proposition 3. ■ 
 
Proof of Proposition 6:  Consider the social planner’s problem under complete information 
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It is convenient to solve (A26) as a two-step optimization program, as follows 
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maximum attainable welfare under incomplete information.  Note that for ]5.0,0(∈α , we 
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s−=1  and  are also the (unique) equilibrium pumping rates when 

both farmers know that 
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The first inequality follows because non-cooperative farmers cannot attain a higher joint 
welfare than the social planner (in fact, from the optimality conditions it follows that they 
attain a strictly lower joint welfare under incomplete information).  The second inequality 
follows because the lack of information cannot possibly increase the maximum attainable 
joint welfare, i.e. )],~([)( sWEsW scsn α<  (because the social planner can always discard more 
precise information about α~ ).  The inequality is strict because the socially efficient allocation 
is responsive to the realization of α~  since HL αα <= 0 .  By continuity, there exists 0α  
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The first inequality follows by (A27).  The second inequality follows because re-optimization 
by farmer 1 conditional on the new information cannot decrease profits, where we assume 
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To show that farmer 2 achieves a lower expected profit under better public 
information, we first establish the validity of the following claims.   
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Note that, by (1), (A28) trivially holds for 0=Lα .  Hence, by continuity, one can always 
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The first inequality follows because  is the (unique) maximizer of the farmer 2’s expected 
profits under incomplete information.  In particular, farmer 2’s expected profits cannot 
increase if she randomizes between the pumping rates that are her equilibrium choices under 
complete information (note that the pumping rates are assumed to be independent from 

nu 1,2

α~ ).  
The second inequality follows because, by (A30), her expected profits decrease further if her 
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