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I. Introduction 

Since the mixed demand system (Samuelson, 1965) was introduced, full spectrums of 

model specifications exist for demand analyses. While the direct (inverse) demand system 

specifies quantity demanded (willingness to pay) as a function of prices (quantities), the mixed 

demand system specifies demand relationships as a function of mixed set of prices and 

quantities. However, the specification choice is usually based on researchers’ intuition about the 

product properties or market characteristics of a specific commodity and the empirical 

comparisons are rarely pursued. As Thurman (1986) argued “it is odd that such arguments rest 

solely on a priori notions” and the coexistence of alternative specification can result in 

ambiguities. For example, both the direct (Wohlgenant and Hahn, 1982) and the inverse 

(Shonkwiler and Taylor, 1984) demand functions are used for poultry market data. Stockton, 

Capps, and Bessler (SCB) (2005) propose the Causally-Identified Demand System (CIDS) to 

address this issue by using the empirically inferred local causal structures based on the 

graphical causal model (Pearl, 2000). More specifically, SCB use the PC algorithm to infer 

local causal structures among price and quantity variables for meat consumption and 

demonstrate that the Rotterdam mixed demand system identified through the application of the 

PC algorithm is statistically preferred to the synthetic direct demand systems. 

The objective of this paper is to extend their approach in several ways for the full use of 

the direct, inverse, and mixed demand systems (three alternative demand specifications). First, 

the synthetic functional form is derived for the mixed demand system in order to minimize the 

effect of functional form for comparisons among three alternative specifications. SCB use the 

Rotterdam functional form for the mixed demand system derived by Moschini and Vissa (1993). 

However, the Rotterdam type parameterization a priori assumes that the marginal expenditure 

shares and Slutsky terms are constant. The derived synthetic mixed demand system nests the 
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Rotterdam, LA/AIDS, NBR, CBS forms (four differential functional forms) and extends the 

functional form of Matsuda (2004), which nests Rotterdam and CBS. Second, the empirical 

methods to compare alternative demand specifications are proposed. Alternative specifications 

are non-nested each other and have different dependent variables. To address these issues, (i) the 

model selection approaches such as the Likelihood Dominance Criterion (Pollak and Wales, 

1991) are pursued and (ii) the synthetic functional forms of three specifications are further 

transformed to have the common differential AIDS type dependent variable. These generalized 

functional forms of three specifications allow the model selection comparisons among three 

specifications and extend the results of Eales, Durham, and Wessells (1997), which pursue a 

convenient comparison between the direct and inverse demand system. Third, the complete 

relationships among three specifications are derived to allow convenient comparisons of the 

elasticities/flexibilities estimated from alternative specifications. For example, the elasticities 

form in the direct specification can be retrieved from the estimates of the inverse and mixed 

demand system. The derived relationships extend the identified relationships between direct and 

mixed demand systems of Moschini and Vissa (1993) to those between inverse and mixed 

demand systems as well as direct and inverse demand systems. Finally, to more fully incorporate 

the graphical causal model for demand analysis, the Greedy Equivalence Search (GES) 

algorithm is additionally introduced and compared with the PC algorithm used in SCB. Note that 

the graphical causal model has been developed in two distinctive approaches of conditional 

independent test approach (PC algorithm) and goodness-of-fit scoring approach (GES 

algorithm). The argued advantages of GES algorithm relative to PC algorithm are empirically 

tested. 

Based on the extensions mentioned above, we propose the following procedure: (i) the 

causal structures are inductively inferred based on the graphical causal models of the PC and 
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GES algorithms. The information of local causal structure provides guidance for the 

specification choice among the direct, inverse, and mixed demand functions; (ii) the inferred 

specifications are estimated with the generalized functional forms, which extend the synthetic 

approach based on the differential functional form framework; and (iii) the comparison of 

alternative specifications is conducted in terms of the common elasticities/flexibilities 

estimated/retrieved from alternative specifications and model selection approach. The proposed 

method is applied for soft drink consumption by using retail checkout scanner data from 

Dominick’ Finer Foods.  

 

II. Empirical Procedures 

Graphical Causal Models: PC and GES algorithms  

Given that theory does not provide enough information for the choice among direct, 

inverse, and mixed demand systems, the specification choice is usually based on researchers’ 

intuition about product properties or market characteristics of a specific commodity. The typical 

arguments for quantity-dependent specification rely on the price-taking agent assumption, the 

short-run fixity in prices, or the administratively setting of price in publicly offered goods. On 

the other hand, the usual arguments for price-dependent specification are based on the biological 

lags in production and the non-storable or perishable properties of commodities, or the Bertrand 

type strategic pricing rules of suppliers in differentiated good. More fundamentally, the 

specification choice is closely related with the identification issue of the local causal structure 

between price and quantity for a specific commodity. When we choose quantity-dependent 

(price-dependent) specification, we implicitly assume a local causal structure that the price 

(quantity) causes the quantity (price) variable. From this perspective, the graphical causal models 

provide an alternative empirical method for the choice among the direct, inverse, and mixed 
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demand systems (Stockton, Capps, and Bessler, 2005). The first step in empirical modeling the 

consumer behavior is applying the graphical causal models for the price and quantity variables 

for the relevant commodities as well as their total expenditure variables. The local information of 

the identified causal structure provides the empirical guidance for the specification choice among 

direct, inverse, and mixed demand functions.  

Although the graphical causal method is introduced in some econometric literatures 

(e.g., Swanson and Granger 1997, Bessler and Yang 2003, Hoover 2005), its potential 

advantages are not fully recognized. Furthermore, the previous applications of the graphical 

causal model often rely on the PC algorithm, while this study uses the more recent approach of 

GES algorithm as well. On this reason, we provide a brief explanation of the graphical causal 

models on the next section. We refer to Spirtes et al. (2000) for the detailed information of the 

PC algorithm, developed from the conditional independence test approach. The GES algorithm, 

developed from the goodness-of-fit (Bayesian) scoring perspective, is originated from Meek 

(1997) and its optimality is proved by Chickering (2003). More theoretical and conceptual 

aspects of graphical causal models are explained by Pearl (2000).  

The graphical causal models have been developed by mathematically connecting 

probabilistic structures to graphical concepts, which effectively and efficiently capture all the 

probabilistic structures in data. The graphical causal model or directed acyclic graph (DAG) 

approaches are based on several mathematical propositions. When it is assumed that the cyclic or 

feedback causal structure does not exist (causal acyclic condition) and all the causally relevant 

variables can be measured (causal sufficiency condition), it is proved that the probability 

distribution follows the Markov condition such that every variable is independent of all its causal 

nondescendants, conditional on its direct cause (Pearl and Verma, 1991). This implies that (i) an 

effect is independent of its indirect causes conditional on its direct causes,  and (ii) the effect 
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variables are independent conditional on their common causes. For example, two variables  

and  in both the causal chain (  or ) and fork ( ) are 

unconditionally dependent on each other, but conditionally independent given . On the other 

hand, the other logically possible causal structure among three connected variables is known as 

the selection bias (unshielded-collider of ), where observation on a common 

consequence of two unconditionally independent causes tends to make those two causes 

dependent conditional on common effect (Kim and Pearl, 1983). This causal structure of the 

unshielded-collider provides an “empirical clue” to address induction problem that correlation 

does not imply causation. The combinational statistical information of marginal correlation 

(unconditionally independence of  and ) and partial correlation (conditional dependence of 

 and  given ) makes it possible to infer the causal structure of the unshielded-collider, 

which is discriminated from the observational equivalent causal structures of the causal chain 

and fork. Based on the empirical clue of the unshielded-collider, the graph theory in the 

graphical causal model plays two important roles to infer the underlying causal structures. (i) 

The graph theory provides mathematical information to logically decide relevant search spaces 

and allows an efficient use of the maximum information of (un)conditional probabilistic 

structures from the data. Without such systematically and efficiently defining the relevant or 

entire search space, checking or searching all the relevant (un)conditional probabilistic structures 

among all the possible combinations of variables becomes infeasible. (ii) The graph theory also 

provides logical orientation rules to partially discriminate the observationally equivalent causal 

structures. The logical inferences about causal directions are based on the following idea: An 

orienting the remaining undirected edges does not result in the causal structure which is 

inconsistent with the statistical observations, as long as the logically decided orientations do not 

create either the new unshielded-collider structure or the cyclic causal structure. The former 

A

B BCA  BCA  BCA 

C

BCA 

A B

A B C
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structure is empirically unsupported by data and the latter one is logically excluded by the 

acyclic assumption (Verma and Pearl 1992, Meek 1995b). 

To empirically infer the (un)conditional probabilistic structures, two distinctive 

approaches have been proposed: conditional independent test and goodness-fit scoring 

approaches. The conditional independence test approach, incorporated in the PC algorithm, is 

based on the qualitative decisions about local independence tests. However, it is not easy to 

decide the appropriate significance level for the local tests, because the power of algorithm 

against alternatives is an extremely complex and unknown function of the power of the 

individual local tests. Thus, the PC algorithm can be susceptible to incorrect qualitative local 

decisions and may provide the sensitive results to the chosen significant level. On the other hand, 

the goodness-of-fit scoring approach, incorporated in the GES algorithm, does not require 

choosing a specific significance level and may provide finer results. It is because the goodness-

of-fit scoring approach is based on the quantitative measure about how much the overall 

independence constraints associated with an entire causal structure are true. The GES algorithm 

uses the Bayesian Information Criterion (BIC) as a measure of scoring goodness-fit of a given 

DAG G  at each search step. The BIC is chosen as a goodness-fit score because (i) it is a 

consistent approximation of the Bayesian posterior probability under the Gaussian and 

multinomial distributions and (ii) it has decomposability and equivalence properties, that allow 

efficient scoring. BIC for a given DAG G  of a set of variables  NXXV ,,1   can be written as 

follows:          2logdim|log, TGGVPGVBIC , where T  is the sample size,  Gdim  is the 

dimension or the number of parameters of DAG G , and  GVP |log  is the log-likelihood 

function for a set of variables V  given DAG G . For a given DAG G  at each step of the search 

procedures, the  GVP |log  can be efficiently evaluated by using decomposable property of 
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 n
nnN PaXPXXP )|(log),,(log 1  , where nPa  represent direct causal parents. The 

equivalent property of BIC scores comes from the fact that DAGs in an equivalence class have 

the same number of edges and a common factorization. For example, the joint distribution of 

 CBAP ,,  can be factorized as       BPBAPACP ||  and      APACPABP ||  for DAG of 

BAC  and BAC  , respectively. The relationship          APABPBAPBPBAP |,|   by 

the Bayesian theorem makes the two DAGs equivalent.
 
 It is demonstrated that under the 

Gaussian and multinomial distributions, this independence equivalence become identical to 

distributional equivalence, which means that equivalence class of DAGs have the same 

probability distribution. 

 

Functional Forms of Direct, Inverse, and Mixed Demand Systems  

After obtaining the empirical guidance for the specification choice among the direct, 

inverse, and mixed demand functions through the application of the graphical causal models, the 

next step is to estimate the functional relationships among the price and quantity variables for the 

relevant commodities as well as their total expenditure variables. Various functional forms are 

used for the direct and inverse demand systems. However, when we want to compare the direct, 

inverse, and mixed demand systems with minimizing the effect of functional specifications, the 

possible use of the mixed demand system imposes some limitations for considering possible 

range of functional forms. It is because the mixed demand system requires consistent and 

simultaneous specifications for both direct and indirect utility functions and the commonly used 

flexible functional forms, such as the Translog and the Almost Ideal Demand Systems (AIDS), 

do not have a closed form dual representation for both direct and indirect utility functions. As 

Moschini and Vissa (1993) emphasize, an appropriate approach for a flexible demand system of 
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mixed demand functions is to approximate each demand function directly by a differential 

Rotterdam demand system and to impose the theoretical restrictions.  

However, the parameterization assumptions for the Rotterdam functional form has 

different implications for the empirical results, comparing with those for another commonly used 

functional form of AIDS (Lee, Brown, and Seal, 1994). While the Rotterdam functional form 

assumes that both the expenditure (scale) coefficient and the compensated price (quantity) 

coefficient in the direct (inverse) demand system are constant parameters, the AIDS or Linear 

Approximated AIDS (LA/AIDS) functional form assumes that both are function of budget 

shares. Two more logically possible combinations of constant/variational parameterization for 

these two coefficients are also used for both the direct and inverse systems. While Keller and van 

Driel (1985) of Dutch Central Bureau of Statistics (CBS) introduce the variational expenditure 

(scale) coefficient with the constant Slutsky (Antonelli) coefficient by reparameterizing the 

Rotterdam specification, Neves (1987) of Netherlands National Bureau of Research (NBR) 

introduce the constant income (scale) coefficient with the variational Slutsky (Antonelli) 

coefficient by reparameterizing the LA/AIDS specification.  

To address the issue that the elasticities (flexibilities) are sensitive to the chosen 

parameterizations among the Rotterdam, LA/AIDS, and two hybrid demand specifications of 

CBS and NBR in the direct and inverse demand systems, Barten (1993) and Brown, Lee, and 

Seal (1995) propose the synthetic functional form for the direct and inverse demand system 

respectively, based on the principle of artificial nesting. The synthetic functional form nests the 

four differential families and the statistical tests of the nesting parameters provide the empirical 

guidance for the best parameterization among the differential family of functional forms. 

Furthermore, it has been demonstrated that these two synthetic direct and inverse demand 

systems can be considered as demand systems in their own right, beyond an artificial composite 
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of known models. For example, Matsuda (2005) shows that one of the nesting coefficients in the 

inverse synthetic model of Brown, Lee, and Seal (1995) implies the transformation parameter of 

the Box-Cox scale curves.  

Applying the similar approach for the mixed demand systems, Matsuda (2004) extends 

the Rotterdam parameterizations of Moschini and Vissa (1993) by incorporating a generalized 

form of marginal budget shares. However, comparing with the synthetic functional form for the 

direct and inverse demand system, Matsuda’s functional form only encompasses the Rotterdam 

and CBS specifications, not the LA/AIDS and NBR specifications. To fill out this gap, the 

synthetic differential demand model is derived for the mixed demand system based on the 

similar logic to derive synthetic demand model in direct and inverse demand systems. The 

derived synthetic mixed demand system allows estimating the direct, inverse, and mixed demand 

systems in the similar degrees of flexibility in functional form specifications, when the flexibility 

means the capability of the empirical model to allow the possible combinations of 

constant/variational parameterization for the expenditure (scale) and the Slutsky (Antonelli) 

coefficients.  

Within the direct, inverse, or mixed demand system, the statistical tests of the two 

nesting coefficients provide the empirical guidance for the best parameterizations among the 

Rotterdam, LA/AIDS, CBS, NBR, and synthetic functional forms. On the other hand, the 

empirical comparisons across three different specifications are still difficult, because the direct, 

inverse, and mixed demand systems have different dependent variables. To address these issues, 

based on the approach of Eales, Durham, and Wessells (1997), the synthetic functional forms of 

three specifications are further transformed to have the common differential AIDS type 

dependent variable. These generalized functional forms of three specifications allow easy 
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comparisons among three specifications and extend the results of Eales, Durham, and Wessells 

(1997), which pursue the comparison between the direct and inverse demand system. 

The main advantage of these differential functional form approaches is that the four 

differential functional forms, synthetic, and generalized functional forms can be directly derived 

from the Rotterdam demand system, which is regarded as flexible in that it provides a first-order 

approximation to an arbitrary demand system in either parameter or variable space (Mountain, 

1988). Thus this approach does not need to specify the direct and/or indirect utility functions. Let 

the set of commodities of interest  NmmBA ,,1,,,1    be divided into quantity-

dependent  mA ,,1 
 

and price-dependent  NmB ,,1   commodity groups. The 

subscripts   BAnn ', ,   Aji , , and   Bsrk ,,  
are used to denote whole and each group 

of commodities, respectively. Total expenditure and the normalized prices can be represented by 

BBAA
QPQPQPy   and yp

nn
 , respectively. The superscript c  is used for 

compensation and D , I , and M  are used for the direct, inverse, and mixed demand systems,  

respectively. The ', nn  denotes the Kronecker delta such that  for  and  for

. Both the relationships among the Rotterdam, LA/AIDS, CBS, NBR functional forms and 

their connections to the synthetic and generalized functional forms are based on the differential 

relationships of   ydwpdwqdwdw nnnnnn lnlnln  ,   nnnnn qdwdwdw lnln   , and 

Apdydyd lnlnln   for the direct, inverse, and mixed demand specification, respectively. 

Derivations of the synthetic and generalized functional forms for the direct, inverse, mixed 

demand functions are explained in Appendix A. The synthetic and generalized functional forms 

can be summarized as follows. The original form of four differential forms and their 

corresponding Rotterdam- and AIDS-type dependent variables forms are provided to clarify their 

relationships with the synthetic and generalized functional forms. 

1
',


nn
 'nn  0

',


nn


'nn 
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The differential family of four direct demand systems can be summarized and nested in 

the synthetic or generalized direct demand systems. If the expenditure coefficient is defined as 

 
nnn

wa   or  
nnnn

wwc    and the Slutsky coefficient is defined as  c

nnnnn
wa

',',
  or 

  
','',', nnnn

c

nnnnn
wwwc   , then both are nested by the synthetic parameters of 

 n
D

nnn wwC 1   and   ','2',', nnnn
Dc

nnnnn wwwC   , respectively. 

Rotterdam :      


N

n
n

c

nnnnnnn
pdwQdwqdw

1'
'',

lnlnln   or 

      


N

n
nnnnnn

pdaQdaqdw
1'

'',
lnlnln  or 

        


N

n
nnnnnnnnnn

pdwwaQdwadw
1'

'','',
lnln  . 

Differential AIDS:       


N

n
nnnnn

c

nnnnnnn
pdwwwQdwwdw

1'
'','',

lnln   or 

     


N

n
nnnnnnnnnnn

pdwwcQdwcqdw
1'

'','',
lnlnln   or 

   


N

n
nnnnn

pdcQdcdw
1'

'',
lnln . 

CBS:     












N

n
nnnn

n

n
paQdc

Q

q
dw

1'
'',

lnlnln  or 

   


N

n
nnnnnnn

pdaQdwcqdw
1'

'',
lnlnln  or 

     


N

n
nnnnnnnnn

pdwwaQdcdw
1'

'','',
lnln  . 

NBR:        


N

n
nnnnnn

pdcQdaQdwdw
1'

'',
lnlnln  or 

     


N

n
nnnnnnnnnn

pdwwcQdaqdw
1'

'','',
lnlnln   or 

   


N

n
nnnnnn

pdcQdwadw
1'

'',
lnln . 
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Synthetic:      




N

n

nnnnn
D

nnn
D

nnn pdwwCQdwCqdw

1'

'','2',1 lnlnln    

Generalized:         




N

n

nnnnn
D

nnn
D

nn pdwwCQdwCdw

1'

'','2',1 ln1ln1  . 

Theoretical restrictions can be imposed by using following relations  

(a) Homogeneity:  0
1'

',




N

n
nn

C ,  

(b) Symmetry:  
nnnn

CC
,'',

 ,  

(c) Adding-up:  D
N

n

nC 1

1

1 


 . 

The elasticities can be calculated as follows  

(a) Expenditure elasticity:  D

n

n
n

w

C
1  ,  

(b) Compensated elasticity:   ','2

',

', nnn
D

n

nnc
nn w

w

C
  , and  

(c) Uncompensated elasticity:  







































 '1

'
','2

',

', n
D

n

n
nnnn

D

n

nn

nn w
w

w
Cw

w

C
 . 

The differential family of four inverse demand systems can be summarized and nested 

in the synthetic or generalized inverse demand systems. When the scale coefficient is defined as 

 
nnn

fwb   or  
nnnn

wfwd   and the Antonelli coefficient is defined as  c

nnnnn
fwb

',',
  or 

  
','',', nnnn

c

nnnnn
wwfwd  , both of them are nested by the synthetic parameters of 

 
n

I

nnn
wfwD

1
  and   

','2',', nnnn

Ic

nnnnn
wwfwD    respectively. 

Rotterdam:      


N

n
n

c

nnnnnnn
qdfwQdfwdw

1'
'',

lnlnln  or 

   


N

n
nnnnnn

qdbQdbdw
1'

'',
lnlnln  or 



13 

 

     


N

n
nnnnnnnnnn

qdwwbQdwbdw
1'

'','',
lnln  . 

Differential AIDS:       


N

n
nnnnn

c

nnnnnnn
qdwwfwQdwfwdw

1'
'','',

lnln   or 

     


N

n
nnnnnnnnnnn

qdwwdQdwddw
1'

'','',
lnlnln   or 

      


N

n
nnnnn

qddQdddw
1'

'',
lnln . 

CBS:      










N

n
nnnn

n

n
qbQdd

P

p
dw

1'
'',

lnlnln  or 

   


N

n
nnnnnnn

qdbQdwddw
1'

'',
lnlnln  or 

   


N

n
nnnnn

qddQdddw
1'

'',
lnln . 

NBR:        


N

n
nnnnnn

pddQdbQdwdw
1'

'',
lnlnln  or 

     


N

n
nnnnnnnnnn

qdwwdQdbdw
1'

'','',
lnlnln   or 

   


N

n
nnnnnn

pdcQdwbdw
1'

'',
lnln . 

Synthetic:       


N

n
nnnnn

I

nnn

I

nnn
qdwwDQdwDdw

1'
'','2',1

lnlnln   

Generalized:          


N

n
nnnnn

I

nnn

I

nn
qdwwDQdwDdw

1'
'','2',1

ln1ln1  . 

Theoretical restrictions can be imposed by using following relations  

(a) Homogeneity:  0
1'

',




N

n
nn

D ,  

(b) Symmetry:  
nnnn

DD
,'',

 ,  

(c) Adding-up:  I
N

n
n

D
1

1

1 


 . 

The elasticities can be calculated as follows  
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(a) Scale flexibility:   I

n

n

n

w

D
f

1
 ,  

(b) Compensated flexibility:   
','2

',

', nnn

I

n

nnc

nn
w

w

D
f   , and  

(c) Uncompensated flexibility:  




































'1

'

','2

',

', n

I

n

n

nnnn

I

n

nn

nn
w

w

w
Dw

w

D
f  . 

The differential family of mixed demand systems can be derived and nested in either 

Rotterdam or AIDS dependent variable forms of analogous synthetic mixed demand systems, 

when the expenditure coefficients of group A  and B  are defined as  
i

M

iii
ww

1
   and 

 
k

M

kkk
wfw

1
   and the Slutsky coefficients are defined as   

jiji

Mc

jiiji
www

,2,,
  , 

  
sksk

Mc

skksk
wwfw

,2,,
  ,  

jk

Mc

jkkjk
wwpw

2,,
  , and  

si

Mc

siisi
wwqwg

2,,
 . 

Rotterdam: 

 

  

  
s

N

ms

N

mr

c

srrii

c

sii

j

m

j

N
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c

jkkii

c

jii

iiii

qdfwwqw

pdpwww

ydwqdw
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ln

lnln

1 1
,,

1 1
,,

 

  



 

 







 

 

  
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s

N
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N
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c
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c
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j

m

j

N
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c
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c
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pdpwfwpw
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1 1
,,

1 1
,,

 

 



 

 

 

Synthetic: 

 

      

     
s

N

ms
srsr

M
N

mr
sri

M

isi

M

si

j

m

j

N

mr
jr

M

jri

M

ijiji

M

ji

i

M

iii

qdwwwwwg

pdwwwww

ydwqdw
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ln

lnln

1
,2

1
,12,

1 1
2,1,2,

1

 

  



 

 






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N
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N
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M
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1 1
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

 

 







 

Generalized: 

  

        

     
s

N
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M
N
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sri

M
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M
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j

m

j

N
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jr

M
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M
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ji

i
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1
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1
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1
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  



 

 







 

  

      

       
s

N
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N
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srsr

M

srk

M

kskk

M

sk

M
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j

m

j

N

mr
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M
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M
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M
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k

M
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qdwwwwww

pdwwwww

ydwdw

ln1

ln1

ln1

1 1
,2,1,22,

1 1
2,12,

1

  

  



 

 







 

Theoretical restrictions can be imposed by using following relations  

(a) Homogeneity:   











N

ms
si

M
m

j
ji

M
m

j
ji

wwww
1

2
1

2
1

,
1   and 

  










N

ms
s

M

r

m

j
j

M

r

m

j
jr

wwww
1

2
1

2
1

,
111   

(b) Symmetry:  
ijji ,,

  , 
rssr ,,

  , and 
rjjr

g
,,

 ,  

(c) Adding-up:  M
N

mk
k

m

i
i 1

11

1  


 , 

 











N

mk
ki

M
m

j
ji

M
m

i
ji

wwww
1

2
1

2
1

,
1  , and 

  










N

ms
s

M

r

m

j
j

M

r

m

i
ri

wwwwg
1

2
1

2
1

,
111   

The elasticities can be calculated as follows  

(a) Expenditure elasticities:    
M

i

i

i

w
1




   and 
M

k

k

k

w
f

1



 ,  

(b) Compensated elasticities:    
jij

M

i

jic

ji
w

w
,2

,

,



  ,  

sks

M

k

skc

sk
w

w
f

,2

,

,



 ,  
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j
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w
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,

,



 , and 

s

M

i
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w

w

g
q

2

,

,
 , 

(c) Uncompensated elasticities: 

 











 






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
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i
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
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

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Table 1. Synthetic Parameters for Three Specifications 

Rotterdam 0 0 0 0 0 0

LA/AIDS 1 1 1 1 1 1

NBR 0 1 0 1 0 1

CBS 1 0 1 0 1 0

Model
Direct Inverse Mixed

D

1


D

2


I

1


I

2


M

1


M

2


 

1.  Restrictions of synthetic parameters to nest popular functional forms for three specifications.  

2.  Refer to synthetic/generalized demand equation for synthetic coefficients.  
For example, synthetic parameters in the direct demand system corresponds to parameters in                 

    




N

n

nnnnn
D

nnn
D

nnn pdwwCQdwCqdw

1'

'','2',1 lnlnln 
 
 

 

The synthetic parameters for the direct, inverse, and mixed demand functions can be 

summarized as in Table 1. The value of 0 and 1 for 
1
 captures the constant and variational 

expenditure or scale coefficients and the value of 0 and 1 for 
2

  represents the constant and 

variational Slutsky or Antonelli coefficients respectively, where the variations rely on the budget 
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share values. Even though it is difficult to directly compare each of four types of specifications, 

it is possible to indirectly compare each of them to the synthetic or generalized model, because 

the synthetic/generalized model nests all four specifications. The joint tests for combinations of 

possible values of 
1
  and 

2
  can be used to compare among the synthetic/generalized model 

itself and four nesting differential functional forms within each of direct, inverse, and mixed 

demand systems respectively. 

 

Relationships among Direct, Inverse, and Mixed Demand Systems  

While the statistical tests of the two nesting coefficients can provide the empirical 

guidance for the best parameterizations among the Rotterdam, LA/AIDS, CBS, NBR, and the 

generalized functional forms within the direct, inverse, or mixed demand systems, the economic 

interpretations of the estimated results across three different specifications are not easy. Given 

one objective of the demand study is to understand and measure the consumers’ responsiveness 

to the changes in exogenous variables, the responsiveness is measured by elasticities or 

flexibilities, where the elasticity (flexibility) is defined by the percentage change in quantity 

demanded (willingness to pay) resulting from a 1-percent increase in an exogenous variable. The 

difficulties arise from the fact that the flexibility (elasticity) matrix has not the simple matrix 

inversion relation with the elasticity (flexibility) matrix estimated from the direct (inverse) 

demand functions (e.g., Schultz, 1938, Houck, 1966, and Huang, 1996). Furthermore, the 

substitutability of the mixed compensated elasticities need not be equivalent to either p-

substitutability ( 0
'


nn
pq ) in terms of the direct system, nor q-substitutability ( 0

'


nn
qp ) 

in terms of the inverse system (Moschini and Vissa, 1993). In this respect, it is worthwhile to 

derive some functional relationships among the direct, inverse, and mixed demand systems to 
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allow convenient interpretations and comparisons of the estimated results from three alternative 

specifications.  

The relationships among three specifications can be derived based on the mixed demand 

framework by extending the argument of Moschini and Vissa (1993). While they use a set of 

identity equations relating the mixed to the direct demand system, there is another set of identity 

relations relating the mixed to the inverse demand system. Using both sets of identity, we can 

also derive some relationship between the direct and the inverse demand, based on the mixed 

demand framework. Following notation is introduced.  
ii

D

AA
E

,,
 ,  

sk

D

BB
E

,,
 ,  

ki

D

BA
E

,,
 , 

 
ik

D

AB
E

,,,
 ,  

i

D

A
E  , and  

k

D

B
E   are the submatrices from the direct demand,  

ii

I

AA
fF

,,
 , 

 
sk

I

BB
fF

,,
 ,  

ki

I

BA
fF

,,
 ,  

ik

I

AB
fF

,,,
 ,  

i

I

A
fF  , and  

k

I

B
fF   are the submatrices from the 

inverse demand, and  
ii

M

AA
E

,,
 ,  

sk

M

BB
fF

,,
 ,  

ki

M

BA
qQ

,,
 ,  

ik

M

AB
pP

,,,
 ,  

i

M

A
E  , and  

k

M

B
fF   

are the submatrices from the mixed demand. As Moschini and Vissa (1993) demonstrated, the 

direct demand system is related to the mixed demand system through the identities 

    yqpqyyqpppq
BA

M

ABA

M

BA

D

A
,,,,,,   and    M

BBA

M

BA

D

B
qyyqpppq ,,,, . By applying a similar 

logic, the inverse demand system is related to the mixed demand system through the following 

identities   
ABBA

M

A

I

A
pyqyqpqp ,,,,  and     yqppyqyqpqp

BA

M

BBBA

M

A

I

B
,,,,,,  , which are 

implied by   
ABBA

M

A

I

A
qqq  1,,1,,  and     1,,1,,1,,

BA

M

BBBA

M

A

I

B
qqqq    through the 

relations of    yyqqq
ABBA

M

A

I

A
  1,,1,,  and      yqyqqq

BA

M

BBBA

M

A

I

B
 1,,1,,1,,  . From 

the resulting two kinds of relationships, the other implied relationships can also be derived 

between the direct and the inverse demand systems. Note that these relationships are based on 

the partitioning quantity-dependent and price-dependent groups of commodities or the legitimate 

mixed demand system. Note also that the scale flexibility is defined as responsiveness of 

(normalized) inverse demand with respect to scale parameter not with respect to expenditure 
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variable. Derivations of following relationships are explained in Appendix B. The resulting 

relationships among the direct, inverse, and mixed demand functions are summarized as follows: 

Theoretical relation of direct elasticities to mixed elasticities. , 

  M

BA

M

BB
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Theoretical relation of inverse flexibilities to mixed elasticities. 
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The identified relationships among three specifications allow retrieving the usual 

elasticity form in the direct demand system from the estimates of the mixed as well as the 

inverse demand systems. On the other hand, the overall evaluations of three alternative 

specifications are still not easy. The difficulties to compare different specifications across direct, 

inverse, and mixed demand systems are that the alternative specifications are non-nested relative 

to each other and non-nested hypotheses testing approach oftentimes does not provide definite 

answer for this problem. Unlike the non-nesting test procedures and artificial nesting approach, 

the model selection criterion does not require actual estimation of the composite model. In this 

respect, the model selection approach, such as the Likelihood Dominance Criterion introduced 

by Pollak and Wales (1991), provides an alternative method to rank competing models as long as 

the competing specifications have the common dependent variables. Furthermore, Saha, 

Shumway, and Talpaz (1994) demonstrated that the likelihood dominance criterion 

outperformed some widely used non-nested testing procedures such as Davidson-MacKinnon J 

test and Cox test in selecting the true model, using Monte Carlo evidence.  

Let 
1

H and 
2

H denote two non-nesting hypotheses and
1

n , 
2

n  
and 

1
L , 

2
L are the 

corresponding number of independent parameters and log-likelihood values with assumption of 
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21
nn  . Let  ,vC  denote the critical values of the chi-square distribution with v degrees-of-

freedom at some fixed significant level  . Pollak and Wales (1991) demonstrate that the use of 

three model selection rules can result in one of three possible outcomes:  

 (a)
2

H  is preferred to
1

H , 

iff        
1212

,1,121 LLCnnC    or 
21

LL  for 
21

nn    

or     121221 LLnn   for likelihood dominance criterion of 
C

n  

or     12122log LLnnT   for Schwarz model selection rule 

or   1212 LLnn   for Akaike model selection rule.   

(b)
1

H is preferred to
2

H , 

iff        ,1,121
1212
 nCnCLL  or 

12
LL   for 

21
nn    

or    1212 21 nnLL   for likelihood dominance criterion of 
C

n  

or    1212 2log nnTLL   for Schwarz model selection rule 

or  1212 nnLL   for Akaike model selection rule.   

(c) Indecisive between 
1

H  and 
2

H , 

iff               ,1,121,1,121
121222

CnnCLLnCnC   

or 
21

LL   for 
21

nn 
 

or    1212 21 nnLL   for likelihood dominance criterion of 
C

n  

or    1212 2log nnTLL   for Schwarz model selection rule 

or  1212 nnLL   for Akaike model selection rule.  

The similar implications of the Likelihood Dominance and the two common model 

selection criteria of Akaike Information criterion (Akaike, 1973) and Schwarz information 

criterion (Schwarz, 1978) can be understood as follows: The Akaike and Schwarz model 



22 

 

selection rules of choosing the largest value of 
ii

nL   and  
ii

nTL  2log  can be understood 

as pair-wise comparison rules for 
12

LL   in terms of relative penalty functions  
12

nn   and 

   
12

2log nnT   respectively. These two relative penalty functions have similar implications 

as the likelihood dominance criterion, as Pollak and Wales (1991) argued that 

       ,,21
21

nnCnnC
CC
  converges to    

12
21 nn   as 

C
n  based on the 

asymptotic normality property as a function of degrees-of-freedom of the chi-squared 

distribution.  

Note that non-nesting hypotheses hypothesis should involve the same dependent 

variables for the above discussions. If the hypotheses involve different dependent variables but 

are functionally related, then the likelihood function must be adjusted by including the 

appropriate Jacobian bias term. To avoid the difficulties involved this adjustment, the synthetic 

models with the different Rotterdam-type dependent variables are further transformed into the 

generalized models with the common AIDS-type dependent variables across three alternative 

specifications. In this respect, the generalized functional forms allow the more convenient 

comparisons based on the model selection approaches. Note also that to narrow this indecisive 

range, the significant level  be adjustably selected and/or the composite parametric size 
C

n can 

be determined directly from the significance tables for the chi-square distribution for given 
1

n , 

2
n  

and 
1

L , 
2

L .  

 In the next section, the following empirical procedure is applied to study consumer 

behavior for soft drink consumptions: (i) the graphical causal methods of the PC and GES 

algorithms are applied and the information of local causal structure is used to obtain an empirical 

guidance for the specification choice among three demand specifications; (ii) the generalized 

functional forms for three specifications are estimated and the statistical tests of synthetic 
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coefficients are used to choose the best parameterizations among the Rotterdam, LA/AIDS, 

CBS, NBR, and generalized functional forms within each of the three specification; (iii) the 

estimated results of the chosen parameterization are interpreted and compared based on the 

identified relationship among three demand specifications. Finally, the overall results of three 

alternative specifications are evaluated based on the model selection frameworks. 

 

III. Empirical Results 

Data Description 

The data set consists of weekly observations on 23 soft drink products with size of 6/12 

oz sold at Dominick’s Finer Foods (DFF) from 09:14:1989 through 09:22:1993 with the sample 

size 210. All the data are from the Dominick’s database, which is publicly available from the 

University of Chicago Graduate School of Business (http://www.chicagogsb.edu/). The original 

data set is the store level weekly retail scanner data for the specific items represented by UPC 

code. The Dominick’s Finer Foods (DFF) is the second largest supermarket chain in the Chicago 

metropolitan area with about 25% market share. Each soft drink used for this study is a specific 

soft drink of 6/12 oz size such as Coca-cola classic, Pepsi-cola cans, Seven-up diet can.  

The chain level data for the aggregated commodity groups is used for this study. In order 

to characterize the chain level characteristics, the store level data are aggregated across stores by 

using the simple sum and unit value for quantity and price variables, where unit value is total 

sale revenue divided by the total quantity sold. For commodity aggregation, the 23 soft drink 

products are aggregated as following 6 groups: Coca-Cola and Sprite (group 01), Pepsi-Cola and 

Mountain Dew (group 02), Seven-Up and Dr Pepper (group 03), Lipton Brisk (group 04), A&W 

and Rite-Cola (group 05), and Sunkist and Canada Dry (group 06). The choice of 6/12 oz size 

and the commodity grouping are based on the data availability and identified homogeneity in 
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terms of the co-movements of price and quantity variables in the preliminary study. The 

Tornqvist-Theil indexes are used to represent price and quantity variables for each group. 

For the purpose of estimating differential demand systems, the differential terms for 

price and quantity variables are approximated by the finite first differences 

(
1,,

lnlnln



tntnn

pppd  and 
1,,

lnlnln



tntnn

qqqd ) and the market share terms are replaced by 

their moving average (   2
1,, 


tntnn

www ). The market share changes dw  are approximated 

based on the log differential property (      
1,,1,,

lnln21ln



tntntntn

wwwwwdwdw ), since 

dw  has a limited range of  1,1 , whereas wdwdw ln  has a range of   ,  (Barten, 

1993). The preliminary unit root tests imply that these transformed variables in differential 

demand system are all stationary. These results are consistent with the observation in the demand 

literature that the differential demand system has been considered as appropriate specification to 

deal with the possible non-stationarity problems.  

 

Local Causal Structures among Prices and Quantities  

The specification choice is closely related with the identification issue of the local causal 

structure between price and quantity for a specific commodity. We apply the graphical causal 

models of the PC and GES algorithms to inductively derive this local causal structure. The 

empirical results are presented in Figure 1 and 2. There remain several undecided causal 

directions in both results and such directions cannot be decided without additional causal 

information. The undirected edges in the result of the GES algorithm represent the limitations to 

identify causal directions based on the statistical observations only (observational equivalence). 

On the other hand, the bi-directed edges in the result of PC algorithm imply the existence of 

unobserved factors. The capability of identifying unobserved factors between two variables, 
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1.  P and Q denotes representative price and quantity indices for each group defended as  
    Group 01: Coca-Cola and Sprite, Group 02: Pepsi-Cola and Mountain Dew, Group 03: Seven-Up and Dr Pepper,  

Group 04: Lipton Brisk., Group 05: A&W and Rite-Cola, Group 06: Sunkist and Canada Dry, and E denote total expenditure variable. 

2.  The result of PC algorithm is based on the significant level of 0.1, which is recommended for sample size of 100-300 (Spirtes et al., 2000). 
 

Figure 1. Causal Structure Inferred by PC Algorithm   Figure 2. Causal Structure Inferred by GES Algorithm 
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based on the tetrad relationship among partial correlations, is one advantage of the PC algorithm 

relative to the GES algorithm. On the other hand, given the Markov condition (causal sufficiency 

and acyclic assumptions), the GES algorithm has following advantages relative to the PC 

algorithm (i) The GES algorithm does not require the choice of the significant level. This is 

advantage, given that the result of PC algorithm oftentimes is sensitive to the choice of the 

significant level. (ii) The GES algorithm oftentimes provides finer results than the PC algorithm. 

The difference is due to the fact that the GES algorithm is based on the numerical scores on the 

overall hypothetic causal structures, whereas the PC algorithm is based on the categorical 

decision on individual edges and such categorical decisions can be sensitive to the chosen 

significant level. In our results, the GES algorithm provides all the edges (skeleton) identified by 

the PC algorithm with some additional edges. Sometimes these additional edges are important to 

decide the causal directions among variables. For example, the edge 0201 QP   is crucial to 

orient 0101 PQ   in the GES algorithm, because this orientation is based on the unshielded 

collider pattern of 020101 QPQ  . In the PC algorithm, the edge 0201 QP   is statistically 

removed and this categorical decision can be sensitive to the specified significant level. Similar 

patterns such as 0602 PP   for 060202 PPQ   and 0302 PQ   for 030302 QPQ   

can be used to explain the different implications for local causal structure between price and 

quantity between PC and GES algorithms. In this respect, the results of the PC algorithm need to 

be carefully used for the choice of the significant level. In fact, the local causal structures 

between price and quantity variables inferred by the PC algorithm are sensitive to the change of 

the significant level. In this study, the final result of PC algorithm is based on the significant 

level of 0.1, which is recommended for sample size of 100-300 (Spirtes et al., 2000).  
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For the full use of theoretical information from the demand theory, all we need is the 

local causal structures between price and quantity variables for each commodity. This local 

information provides the data-based information to address the choice issue among three 

possible specifications of direct, inverse, and mixed demand functions. The local causal 

structures identified by the PC algorithm imply the mixed demand system, where quantity 

dependent specifications are suggested for commodity groups of 01 (Coca-Cola and Sprite), 02 

(Pepsi-Cola and Mountain Dew), 03 (Seven-Up and Dr Pepper), and 04 (Lipton Brisk) and price 

dependent specifications are suggested for commodity groups of 05 (A&W and Rite-Cola) and 

06 (Sunkist and Canada Dry). On the other hand, the local causal structures identified by the 

GES algorithm imply the inverse demand system, where price dependent specifications are 

suggested for all the aggregate commodities. Given that the direct demand system or quantity 

dependent specification is widely used in empirical studies, the possibility of the price dependent 

or the mixed demand specification implied from the GES and PC algorithms need to be 

interpreted. One possible interpretation is that (i) The soft drinks are differentiated products, 

where the differentiated products are defined as the products differentiated by taste, packing and 

brand-base advertisement to influence consumers’ perception of different brands, and (ii) The 

retail prices for differentiated products can be determined by strategic pricing rules of firms 

incorporating supply and demand characteristics for these products (Dhar, Chavas, and Gould, 

2003).  

 

Estimations of Direct, Inverse, and Mixed Demand Systems  

The generalized functional forms for the inverse and the mixed demand systems as well as the 

direct demand specification are estimated to study the consumption pattern for the soft drinks. 

The direct demand system is estimated for the comparison purpose with the inverse and mixed 
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demand systems, which are chosen based on the local causal structure of the GES and PC 

algorithms respectively. The estimated parameters in all three direct, inverse, and mixed 

synthetic demand systems of the common differential AIDS type dependent variable are 

presented in Table 2. All three types of demand systems are estimated by the nonlinear 

seemingly unrelated regression estimation method with allowing autoregressive errors 

(SHAZAM). The first order autocorrelation is used with the restriction that the autocorrelation 

coefficients are constrained to be the same in all equations. The homogeneity, symmetry, and 

adding-up properties are used for the economy of parameters in empirical models. One equation 

is dropped in estimation step for the direct and inverse demand, since the adding-up condition in 

direct or inverse demand makes the demand system singular. The parameters in the dropped 

equation are recovered by using the homogeneity, symmetry, and adding-up conditions. On the 

other hand, all the equations are used in estimation for the mixed demand, since the adding-up 

condition holds only at a point and thus does not induce the singularity in the resulting system. 

The number of independent parameters in all the demand systems is 23 for all three demand 

specifications, which include the two synthetic parameters and one autocorrelation correction 

term.  

For the comparison of different parameterization assumptions of the constant and/or 

variation for the expenditure (scale) coefficient and Slutsky (Antonelli) coefficient within each 

of direct, inverse, and mixed demand system, the Wald statistic, which  is distributed chi-square 

with the same degrees of freedom as the number of restrictions, is used. The empirical results of 

these comparison statistics are presented in Table 3. Within each of direct, inverse, and mixed 

demand system, all the nested Rotterdam, LA/AIDS, NBR, and CBS specifications, which 

assume the fixed restriction on the synthetic parameters, are strongly rejected. This test results 

imply that none of the four nested models is adequate and the generalized functional forms are 
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Table 2. Parameter Estimates 
 

Coefficient Estimate Std. Error t-Statistic p-value Coefficient Estimate Std. Error t-Statistic p-value Coefficient Estimate Std. Error t-Statistic p-value

th1 1.3852 0.0338 41.0025 0.0000 th1 0.9609 0.0084 113.9911 0.0000 th1 0.1086 0.0502 2.1641 0.0305

th2 4.7255 0.1193 39.6028 0.0000 th2 0.1852 0.0068 27.0705 0.0000 th2 -0.1618 0.0464 -3.4893 0.0005

c01 -0.1119 0.0110 -10.2124 0.0000 d01 -0.0144 0.0027 -5.3288 0.0000 a01 0.2790 0.0183 15.2047 0.0000

c02 -0.0813 0.0114 -7.1276 0.0000 d02 -0.0102 0.0030 -3.4277 0.0006 a02 0.3470 0.0200 17.3620 0.0000

c03 -0.0771 0.0086 -8.9905 0.0000 d03 -0.0104 0.0023 -4.5423 0.0000 a03 0.2233 0.0165 13.5553 0.0000

c04 -0.0363 0.0021 -17.0796 0.0000 d04 -0.0072 0.0007 -10.2280 0.0000 a04 0.0280 0.0060 4.6852 0.0000

c05 -0.0700 0.0070 -9.9813 0.0000 d05 -0.0085 0.0019 -4.5498 0.0000  b05 -0.0010 0.0047 -0.2020 0.8399

 c06* -0.0086 0.0071 -1.2171 0.2236  d06* 0.0116 0.0041 2.8590 0.0043    b06* 0.0150 0.0031 4.9234 0.0000

c11 0.1552 0.0486 3.1933 0.0014 d11 -0.0046 0.0024 -1.9450 0.0518 a11 -1.1976 0.0683 -17.5455 0.0000

c12 0.0393 0.0319 1.2314 0.2182 d12 -0.0019 0.0013 -1.4661 0.1426 a12 0.6802 0.0566 12.0154 0.0000

c13 -0.0851 0.0289 -2.9473 0.0032 d13 0.0002 0.0013 0.1935 0.8465 a13 0.4324 0.0504 8.5805 0.0000

c14 -0.0083 0.0108 -0.7693 0.4417 d14 0.0002 0.0005 0.4582 0.6468  a14* 0.0759 0.0259 2.9288 0.0034

c15 -0.0626 0.0241 -2.5933 0.0095 d15 -0.0003 0.0012 -0.2691 0.7879 a22 -1.2570 0.0726 -17.3187 0.0000

 c16* -0.0385 0.0209 -1.8430 0.0653  d16* 0.0064 0.0012 5.5284 0.0000 a23 0.4667 0.0583 8.0043 0.0000

c22 0.0690 0.0466 1.4810 0.1386 d22 -0.0019 0.0024 -0.8231 0.4105   a24* 0.1007 0.0279 3.6095 0.0003

c23 -0.0027 0.0276 -0.0965 0.9232 d23 -0.0034 0.0012 -2.8513 0.0044 a33 -0.9733 0.0751 -12.9635 0.0000

c24 -0.0375 0.0111 -3.3800 0.0007 d24 0.0006 0.0005 1.2309 0.2183   a34* 0.0678 0.0232 2.9224 0.0035

c25 -0.0464 0.0256 -1.8114 0.0701 d25 -0.0005 0.0012 -0.3980 0.6906   a44* -0.2708 0.0253 -10.7210 0.0000

 c26* -0.0218 0.0208 -1.0484 0.2944  d26* 0.0071 0.0013 5.4636 0.0000  b55 -0.0374 0.0075 -5.0124 0.0000

c33 0.1427 0.0435 3.2816 0.0010 d33 -0.0003 0.0022 -0.1390 0.8894  b56 0.0071 0.0021 3.4392 0.0006

c34 -0.0133 0.0095 -1.3949 0.1631 d34 0.0005 0.0004 1.0416 0.2976  b66 -0.0383 0.0066 -5.8044 0.0000

c35 -0.0224 0.0209 -1.0699 0.2847 d35 -0.0025 0.0011 -2.2266 0.0260 r51 -0.0079 0.0085 -0.9321 0.3513

 c36* -0.0192 0.0215 -0.8928 0.3720  d36* 0.0055 0.0011 4.8862 0.0000 r52 -0.0393 0.0103 -3.7990 0.0002

c44 0.1097 0.0156 7.0345 0.0000 d44 -0.0052 0.0010 -4.9888 0.0000 r53 -0.0331 0.0107 -3.0846 0.0020

c45 -0.0322 0.0132 -2.4347 0.0149 d45 0.0017 0.0007 2.5608 0.0104   r54* -0.0156 0.0056 -2.7905 0.0053

 c46* -0.0183 0.0065 -2.8149 0.0049  d46* 0.0022 0.0004 5.5577 0.0000 r61 -0.0137 0.0077 -1.7791 0.0752

c55 0.1622 0.0391 4.1501 0.0000 d55 0.0005 0.0018 0.2620 0.7933 r62 -0.0215 0.0085 -2.5286 0.0115

 c56* 0.0014 0.0224 0.0644 0.9487  d56* 0.0011 0.0011 0.9812 0.3265 r63 -0.0394 0.0092 -4.2923 0.0000

 c66* 0.0964 0.0340 2.8321 0.0046  d66* -0.0224 0.0035 -6.4711 0.0000   r64* -0.0092 0.0035 -2.6017 0.0093

rho -0.3569 0.0303 -11.7773 0.0000 rho -0.3614 0.0296 -12.2266 0.0000 rho -0.3660 0.0278 -13.1655 0.0000

Direct Model Inverse Model Mixed Model

 
 

1.  Each number represent each group defended as Group01: Coca-Cola and Sprite, Group02: Pepsi-Cola and Mountain Dew, Group03: Seven-Up and Dr Pepper, Group04: Lipton Brisk.,             

    Group05: A&W and Rite-Cola, and Group06: Sunkist and Canada Dry. For example, c12 corresponds to parameter in quantity equation of group01 w.r.t. group02 price variable in 

   
 

2.  Coefficients with * mark  are derived based on the adding-up and homogeneity conditions. 
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the statistically better specification for all three demand specifications. In this respect, the 

generalized functional form of the common differential AIDS type dependent variable is used for 

the comparison across the direct, inverse, and mixed demand system.  

 

Table 3. Comparison Statistics for Three Specifications 

Restrictions on 

Synthetic parameters Wald statistic p-value Wald statistic p-value Wald statistic p-value 

th1 = 0 1681.2049 0.0000 12993.9780 0.0000 4.6833 0.0305

th2 = 0 1568.3829 0.0000 732.8099 0.0000 12.1754 0.0005

th1 = 1 129.9852 0.0000 21.5216 0.0000 315.5424 0.0000

th2 = 1 974.8223 0.0000 14180.2140 0.0000 628.0337 0.0000

th1 = 0 & th2 = 0 3032.4904 0.0000 13000.9610 0.0000 12.6597 0.0018

th1 = 1 & th2 = 1 1059.2406 0.0000 14640.0880 0.0000 3708.4420 0.0000

th1 = 0 & th2 = 1 2485.3570 0.0000 34603.8330 0.0000 1267.3297 0.0000

th1 = 1 & th2 = 0 1642.1024 0.0000 847.4041 0.0000 967.7887 0.0000

Direct Inverse Mixed

 

1.  Refer to synthetic/generalized demand equation for synthetic coefficients. For example, th1 and th2 corresponds the synthetic 

parameters in the direct demand system of DD
and 21   in     
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The compensated and uncompensated elasticities/flexibilities estimates with their 

standard errors and corresponding p-values for the direct, inverse, and mixed demand systems 

are presented in Table 4. In the results of the direct demand system, the own elasticities are all 

negative and statistically significant. The expenditure elasticities are close to unity, as expected 

for the normal goods. The soft drinks are net and gross p-substitutes for each other, given that 

negative estimates 
Dc ,

5,4
 , 

Dc ,

4,5
 , 

D

5,4
 , 

D

4,5
 , and

D

4,6
  are insignificant, where 

Dc

nn

,

',
  and 

D

nn ',
  denote the 

compensated and uncompensated elasticities in the direct demand system. In the results of the 

inverse demand system, the own flexibilities are all negative and statistically significant. The 

scale flexibilities are close to unity in absolute values, as expected for the normal goods. The soft 

drinks are gross q-substitutes for each other. Note that the compensated flexibilities in inverse 
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Table 4. Elasticities/Flexibilities Estimates 
 

P01 P02 P03 P04 P05 P06 note Q01 Q02 Q03 Q04 Q05 Q06 Group P01 P02 P03 P04 Q05 Q06 Group

Q01 -2.871 1.468 0.596 0.193 0.289 0.313 Group01 P01 -0.152 0.045 0.037 0.010 0.019 0.041 Group01 Q01 -4.291 2.459 1.561 0.272 -0.047 -0.066 Group01

0.149 0.112 0.104 0.040 0.087 0.075 Coke 0.006 0.004 0.004 0.002 0.004 0.004 Coke 0.257 0.210 0.186 0.095 0.031 0.028 Coke

0.000 0.000 0.000 0.000 0.001 0.000 Sprite 0.000 0.000 0.000 0.000 0.000 0.000 Sprite 0.000 0.000 0.000 0.004 0.134 0.018 Sprite

Q02 1.424 -3.156 0.900 0.090 0.354 0.376 Group02 P02 0.043 -0.140 0.023 0.011 0.019 0.043 Group02 Q02 2.385 -4.372 1.635 0.352 -0.158 -0.092 Group02

0.109 0.134 0.094 0.039 0.091 0.072 Pepsi 0.004 0.006 0.004 0.002 0.004 0.005 Pepsi 0.204 0.264 0.208 0.100 0.037 0.030 Pepsi

0.000 0.000 0.000 0.020 0.000 0.000 Mt. Dew 0.000 0.000 0.000 0.000 0.000 0.000 Mt. Dew 0.000 0.000 0.000 0.000 0.000 0.002 Mt. Dew

Q03 0.841 1.310 -3.075 0.155 0.403 0.354 Group03 P03 0.052 0.034 -0.151 0.011 0.007 0.046 Group03 Q03 2.203 2.380 -4.928 0.345 -0.190 -0.220 Group03

0.147 0.137 0.194 0.049 0.108 0.110 7-up 0.006 0.006 0.009 0.002 0.006 0.006 7-up 0.263 0.303 0.394 0.121 0.055 0.048 7-up

0.000 0.000 0.000 0.002 0.000 0.001 Dr Pepper 0.000 0.000 0.000 0.000 0.198 0.000 Dr Pepper 0.000 0.000 0.000 0.004 0.001 0.000 Dr Pepper

Q04 1.108 0.533 0.629 -2.189 -0.160 0.068 Group04 P04 0.055 0.065 0.045 -0.286 0.056 0.064 Group04 Q04 1.555 2.078 1.399 -5.555 -0.347 -0.209 Group04

0.228 0.228 0.200 0.266 0.275 0.135 Lipton 0.011 0.010 0.009 0.018 0.014 0.008 Lipton 0.546 0.589 0.490 0.526 0.118 0.074 Lipton

0.000 0.020 0.002 0.000 0.561 0.616 Brisk 0.000 0.000 0.000 0.000 0.000 0.000 Brisk 0.004 0.000 0.004 0.000 0.003 0.005 Brisk

Q05 0.714 0.902 0.705 -0.069 -2.731 0.467 Group05 P05 0.047 0.048 0.013 0.024 -0.161 0.028 Group05 P05 0.028 0.312 0.270 0.135 -0.196 0.049 Group05

0.214 0.232 0.189 0.118 0.324 0.203 A&W 0.010 0.010 0.010 0.006 0.014 0.010 A&W 0.079 0.097 0.100 0.051 0.035 0.017 A&W

0.001 0.000 0.000 0.561 0.000 0.022 Rite Cola 0.000 0.000 0.198 0.000 0.000 0.006 Rite Cola 0.725 0.001 0.007 0.008 0.000 0.003 Rite Cola

Q06 0.883 1.097 0.709 0.034 0.535 -3.269 Group06 P06 0.117 0.126 0.093 0.032 0.032 -0.400 Group06 P06 0.098 0.179 0.378 0.088 0.056 -0.252 Group06

0.212 0.211 0.220 0.067 0.233 0.313 Sunkist 0.012 0.013 0.011 0.004 0.012 0.034 Sunkist 0.083 0.092 0.096 0.037 0.019 0.032 Sunkist

0.000 0.000 0.001 0.616 0.022 0.000 Canada Dry 0.000 0.000 0.000 0.000 0.006 0.000 Canada Dry 0.236 0.052 0.000 0.018 0.003 0.000 Canada Dry

P01 P02 P03 P04 P05 P06 Expenditure Q01 Q02 Q03 Q04 Q05 Q06 Scale P01 P02 P03 P04 Q05 Q06 Expenditure

Q01 -3.135 1.196 0.409 0.147 0.182 0.219 0.973 P01 -0.427 -0.239 -0.159 -0.038 -0.092 -0.056 -1.014 Q01 -4.614 2.083 1.267 0.191 -0.028 -0.044 1.136

0.150 0.111 0.104 0.040 0.087 0.075 0.020 0.006 0.004 0.004 0.002 0.004 0.004 0.006 0.260 0.208 0.186 0.096 0.031 0.028 0.038

0.000 0.000 0.000 0.000 0.036 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.046 0.363 0.110 0.000

Q02 1.126 -3.462 0.689 0.038 0.234 0.271 1.095 P02 -0.227 -0.420 -0.168 -0.036 -0.091 -0.053 -0.997 Q02 2.002 -4.819 1.287 0.257 -0.136 -0.067 1.348

0.109 0.133 0.094 0.039 0.091 0.073 0.018 0.004 0.005 0.004 0.002 0.004 0.005 0.006 0.203 0.263 0.209 0.097 0.036 0.030 0.042

0.000 0.000 0.000 0.322 0.011 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.008 0.000 0.025 0.000

Q03 0.574 1.034 -3.264 0.108 0.295 0.260 0.985 P03 -0.224 -0.250 -0.347 -0.037 -0.104 -0.051 -1.015 Q03 1.843 1.959 -5.256 0.255 -0.169 -0.196 1.269

0.146 0.137 0.193 0.050 0.109 0.110 0.028 0.006 0.005 0.009 0.002 0.006 0.006 0.008 0.263 0.302 0.398 0.121 0.055 0.048 0.066

0.000 0.000 0.000 0.029 0.007 0.018 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.035 0.002 0.000 0.000

Q04 0.939 0.359 0.509 -2.219 -0.228 0.008 0.621 P04 -0.247 -0.247 -0.169 -0.339 -0.066 -0.043 -1.113 Q04 1.357 1.846 1.218 -5.604 -0.336 -0.196 0.699

0.228 0.227 0.200 0.266 0.275 0.136 0.035 0.010 0.009 0.009 0.019 0.014 0.008 0.013 0.548 0.578 0.487 0.533 0.118 0.074 0.113

0.000 0.114 0.011 0.000 0.407 0.952 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.013 0.001 0.012 0.000 0.004 0.008 0.000

Q05 0.511 0.692 0.561 -0.104 -2.814 0.395 0.749 P05 -0.234 -0.243 -0.187 -0.025 -0.275 -0.072 -1.038 P05 -0.001 0.278 0.244 0.127 -0.194 0.051 0.100

0.213 0.231 0.189 0.119 0.325 0.204 0.055 0.011 0.009 0.010 0.006 0.014 0.010 0.015 0.079 0.095 0.100 0.051 0.034 0.017 0.028

0.017 0.003 0.003 0.378 0.000 0.053 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.993 0.004 0.015 0.012 0.000 0.002 0.000

Q06 0.532 0.734 0.460 -0.028 0.392 -3.393 1.295 P06 -0.111 -0.109 -0.069 -0.008 -0.061 -0.481 -0.840 P06 0.023 0.091 0.310 0.069 0.060 -0.247 0.265

0.211 0.210 0.220 0.067 0.233 0.314 0.069 0.015 0.016 0.013 0.004 0.012 0.035 0.041 0.085 0.094 0.097 0.037 0.019 0.031 0.045

0.012 0.000 0.036 0.677 0.092 0.000 0.000 0.000 0.000 0.000 0.057 0.000 0.000 0.000 0.787 0.331 0.001 0.058 0.002 0.000 0.000

Direct Compensated Inverse Compensated Mixed Compensated

Direct Uncompensated Inverse Uncompensated Mixed Uncompensated

 
*  P and Q denotes representative price and quantity indices for each group defended as Group 01: Coca-Cola and Sprite, Group 02: Pepsi-Cola and Mountain Dew, Group 03: Seven-Up and 

Dr Pepper, Group 04: Lipton Brisk., Group 05: A&W and Rite-Cola, Group 06: Sunkist and Canada Dry, and E denote total expenditure variable 

* In each cell, the first element is the estimates, the second is the standard error, and the third is the associated p-value.
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demand system are imperfect measures of the interaction of goods in their satisfaction of wants, 

since the dominating complementarity 0
',


c

nn
f  does not come from the preference structures but 

from the adding-up or homogeneity condition 01' ',
 

N

n

c

nn
f  together with the negativity condition 

0
',


c

nn
f  (Barten and Bettendorf, 1989). Note that the magnitudes of the compensated cross 

flexibilities are relatively small. In the results of the mixed demand system, the own elasticities 

and/or flexibilities are all negative and statistically significant. The expenditure elasticities are 

close to unity, as expected for the normal goods. The soft drinks are net and gross substitutes 

each other, given that negative estimate 
M

p
1,5
 is insignificant. The exceptions are 

Mc
f

,

6,5
, 

Mc
f

,

5,6
, 

M
f

6,5

, and
M

f
5,6

, whose magnitudes are relatively small compared to other estimates. 

Note that the substitutability of the mixed compensated elasticities need not be 

equivalent to either p-substitutability in terms of the direct system, nor q-substitutability in terms 

of the inverse system, where the 0
'


nn
pq  means p-substitutability in terms of the direct 

system and the 0
'


nn
qp  q- substitutability in terms of the inverse system (Moschini and 

Vissa, 1993). Note also that the expenditure elasticities for quantity dependent group (group 01-

04) measure percentage changes in consumption with respect to one percent increase in total 

expenditure as in the direct demand system, whereas the expenditure elasticities for price 

dependent group (group 05-06) measure percentage changes in willingness to pay with respect to 

one percent increase in total expenditure. On the other hand, the scale flexibilities measure 

percentage changes in normalized price with respect to one percent increase in the proportionate 

increase in consumption. For example, for group 05 (A&W and Rite Cola), the percentage 

increase in consumption with respect to one percent increase in total expenditure is 0.749 

estimated in the direct demand system, the percentage increase in willingness to pay with respect 

to one percent increase in total expenditure is 0.100 estimated in the mixed demand system, and 
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the percentage decrease in normalized price with respect to one percent increase in the 

proportionate increase in consumption is 1.038 estimated in the inverse demand system. 

 

Comparisons of Direct, Inverse, and Mixed Demand Systems  

The convenient and familiar forms of comparison are possible across the direct, inverse, 

and mixed demand systems in terms of one of three possible forms: the elasticities in the form of 

direct demand system, the flexibilities in the form of inverse demand system, and the elasticities 

in the form of mixed demand system. These results are retrieved based on the derived 

relationships among the direct, inverse, and mixed demand systems. The relationships across the 

direct, inverse, and mixed demand system in terms of the uncompensated elasticities/flexibilities 

retrieved from the direct, inverse, and mixed demand system are presented in Table 5. The tables 

in diagonal positions are replicated from the estimated ones and the own and expenditure/scale 

elasticities/flexibilities are summarized in the tables at the bottom positions.  

The own elasticities and/or flexibilities are all negative and the soft drinks are gross 

substitutes each other, given that the insignificance estimates imply the insignificant 

corresponding retrieved ones. For example, the insignificant estimate 
D

4,5
  in the direct demand 

system implies the corresponding insignificant retrieved one 
M

p
4,5
 in the mixed demand form 

retrieved from the direct system estimates. Overall, the expenditure elasticities and scale 

flexibilities are close to unity, as expected for the normal goods. Recall that the expenditure 

elasticities for the direct demand system and for the quantity dependent variables group in the 

mixed demand system, the expenditure elasticities for the price dependent variables group in the 

mixed demand system, and the scale flexibility for the inverse demand system measure different 

responses of consumers with respect to the changes in different variables as discussed.  
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Table 5. Elasticities/Flexibilities Comparisons 
 

P01 P02 P03 P04 P05 P06 Expenditure Q01 Q02 Q03 Q04 Q05 Q06 Scale P01 P02 P03 P04 Q05 Q06 Expenditure

Q01 -3.135 1.196 0.409 0.147 0.182 0.219 0.973 P01 -0.460 -0.230 -0.133 -0.037 -0.069 -0.066 -0.995 Q01 -3.058 1.301 0.484 0.137 -0.075 -0.073 1.124

Q02 1.126 -3.462 0.689 0.038 0.234 0.271 1.095 P02 -0.215 -0.438 -0.146 -0.025 -0.073 -0.069 -0.965 Q02 1.224 -3.329 0.785 0.026 -0.096 -0.091 1.285

Q03 0.574 1.034 -3.264 0.108 0.295 0.260 0.985 P03 -0.187 -0.220 -0.405 -0.031 -0.080 -0.070 -0.993 Q03 0.682 1.181 -3.157 0.094 -0.117 -0.090 1.189

Q04 0.939 0.359 0.509 -2.219 -0.228 0.008 0.621 P04 -0.254 -0.198 -0.158 -0.477 -0.017 -0.047 -1.151 Q04 0.894 0.297 0.460 -2.210 0.082 0.007 0.550

Q05 0.511 0.692 0.561 -0.104 -2.814 0.395 0.749 P05 -0.187 -0.212 -0.152 -0.003 -0.413 -0.089 -1.056 P05 0.207 0.281 0.222 -0.039 -0.361 -0.042 0.325

Q06 0.532 0.734 0.460 -0.028 0.392 -3.393 1.295 P06 -0.163 -0.184 -0.124 -0.012 -0.085 -0.339 -0.907 P06 0.181 0.249 0.161 -0.013 -0.042 -0.300 0.419

P01 P02 P03 P04 P05 P06 Expenditure Q01 Q02 Q03 Q04 Q05 Q06 Scale P01 P02 P03 P04 Q05 Q06 Expenditure

Q01 -3.841 1.327 0.731 0.173 0.502 0.135 0.972 P01 -0.427 -0.239 -0.159 -0.038 -0.092 -0.056 -1.014 Q01 -3.687 1.476 0.891 0.163 -0.102 -0.077 1.157

Q02 1.261 -4.139 1.086 0.144 0.477 0.106 1.065 P02 -0.227 -0.420 -0.168 -0.036 -0.091 -0.053 -0.997 Q02 1.403 -4.000 1.236 0.134 -0.097 -0.063 1.226

Q03 1.029 1.604 -4.684 0.159 0.849 0.061 0.981 P03 -0.224 -0.250 -0.347 -0.037 -0.104 -0.051 -1.015 Q03 1.262 1.834 -4.424 0.144 -0.169 -0.053 1.185

Q04 1.080 0.967 0.709 -3.244 -0.174 0.010 0.652 P04 -0.247 -0.247 -0.169 -0.339 -0.066 -0.043 -1.112 Q04 1.036 0.923 0.657 -3.241 0.034 0.001 0.625

Q05 1.292 1.292 1.523 -0.081 -5.132 0.322 0.785 P05 -0.234 -0.243 -0.187 -0.025 -0.275 -0.072 -1.038 P05 0.262 0.260 0.301 -0.017 -0.197 -0.029 0.194

Q06 0.274 0.224 0.048 -0.029 0.304 -2.185 1.363 P06 -0.111 -0.109 -0.069 -0.008 -0.061 -0.481 -0.840 P06 0.162 0.139 0.064 -0.016 -0.027 -0.462 0.651

P01 P02 P03 P04 P05 P06 Expenditure Q01 Q02 Q03 Q04 Q05 Q06 Scale P01 P02 P03 P04 Q05 Q06 Expenditure

Q01 -4.619 2.002 1.146 0.148 0.215 0.223 1.055 P01 -0.405 -0.256 -0.168 -0.033 -0.086 -0.075 -1.022 Q01 -4.614 2.083 1.267 0.191 -0.028 -0.044 1.136

Q02 1.993 -5.092 0.946 0.119 0.837 0.442 1.147 P02 -0.246 -0.393 -0.163 -0.034 -0.100 -0.076 -1.012 Q02 2.002 -4.819 1.287 0.257 -0.136 -0.067 1.348

Q03 1.820 1.533 -5.867 0.032 1.191 1.036 0.875 P03 -0.245 -0.248 -0.318 -0.034 -0.106 -0.097 -1.048 Q03 1.843 1.959 -5.256 0.255 -0.169 -0.196 1.269

Q04 1.330 1.148 0.325 -5.958 2.108 1.224 0.164 P04 -0.232 -0.245 -0.164 -0.205 -0.137 -0.099 -1.082 Q04 1.357 1.846 1.218 -5.604 -0.336 -0.196 0.699

Q05 0.022 1.632 1.688 0.778 -5.494 -1.123 0.847 P05 -0.157 -0.201 -0.144 -0.044 -0.265 -0.007 -0.818 P05 -0.001 0.278 0.244 0.127 -0.194 0.051 0.100

Q06 0.098 0.763 1.662 0.468 -1.332 -4.314 1.277 P06 -0.124 -0.136 -0.129 -0.029 0.007 -0.293 -0.703 P06 0.023 0.091 0.310 0.069 0.060 -0.247 0.265

Own Direct Inverse Mixed Direct Inverse Mixed Expenditure Own Direct Inverse Mixed Direct Inverse Mixed Sclae Own Direct Inverse Mixed Direct Inverse Mixed Expenditure

Q01 -3.135 -3.841 -4.619 0.973 0.972 1.055 Coke, Sprite P01 -0.460 -0.427 -0.405 -0.995 -1.014 -1.022 Coke, Sprite Q01 -3.058 -3.687 -4.614 1.124 1.157 1.136 Coke, Sprite

Q02 -3.462 -4.139 -5.092 1.095 1.065 1.147 Pepsi, Mt. Dew P02 -0.438 -0.420 -0.393 -0.965 -0.997 -1.012 Pepsi, Mt. Dew Q02 -3.329 -4.000 -4.819 1.285 1.226 1.348 Pepsi, Mt. Dew

Q03 -3.264 -4.684 -5.867 0.985 0.981 0.875 7-up, Dr Pepper P03 -0.405 -0.347 -0.318 -0.993 -1.015 -1.048 7-up, Dr Pepper Q03 -3.157 -4.424 -5.256 1.189 1.185 1.269 7-up, Dr Pepper

Q04 -2.219 -3.244 -5.958 0.621 0.652 0.164 Lipton Brisk P04 -0.477 -0.339 -0.205 -1.151 -1.112 -1.082 Lipton Brisk Q04 -2.210 -3.241 -5.604 0.550 0.625 0.699 Lipton Brisk

Q05 -2.814 -5.132 -5.494 0.749 0.785 0.847 A&W, Rite Cola P05 -0.413 -0.275 -0.265 -1.056 -1.038 -0.818 A&W, Rite Cola P05 -0.361 -0.197 -0.194 0.325 0.194 0.100 A&W, Rite Cola

Q06 -3.393 -2.185 -4.314 1.295 1.363 1.277 Sunkist,Canada P06 -0.339 -0.481 -0.293 -0.907 -0.840 -0.703 Sunkist,Canada P06 -0.300 -0.462 -0.247 0.419 0.651 0.265 Sunkist,Canada

Direct Form Estimated from Direct Model Inverse Form Retrieved from Direct Model Mixed Form Retrieved from Direct Model

Direct Form Retrieved from Inverse Model Inverse Form Estimated from Inverse Model Mixed Form Retrieved from Inverse Model

Direct Form Retrieved from Mixed Model Inverse Form Retrieved from Mixed Model Mixed Form Estimated from Mixed Model

Comparison of Own/Expenditure Elasticities in Ordinary Form Comparison of Own/Scale Flexibilities in Inverse Form Comparison of Own/Expenditure Elasticities in Mixed Form

 

*  P and Q denotes representative price and quantity indices for each group defended as Group01: Coca-Cola and Sprite, Group02: Pepsi-Cola and Mountain Dew, Group03: Seven-Up and 
Dr Pepper, Group04: Lipton Brisk., Group05: A&W and Rite-Cola, Group06: Sunkist and Canada Dry. 
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The magnitudes of consumers’ response measured in three different specifications are 

different in general and some differences are not trivial. For the group 05 (A&W and Rite Cola) 

as an example, (a) The percentage increase in consumption with respect to one percent increase in 

total expenditure measured in the direct, inverse, and mixed demand systems are 0.749, 0.785, 

and 0.847 represented in the direct demand form. (b) The percentage decrease in normalized price 

with respect to one percent increase in the proportionate increase in each consumption measured 

in the direct, inverse, and mixed demand systems are 1.056, 1.038, and 0.818 represented in the 

inverse demand form. (c) The percentage increase in willingness to pay with respect to one 

percent increase in total expenditure measured in the direct, inverse, and mixed demand systems 

are 0.325, 0.194, and 0.100 represented in the mixed demand form. (d) The percentage decrease 

in consumption with respect to one percent increase in its own price measured in the direct, 

inverse, and mixed demand systems are 2.814, 5.132, and 5.494 represented in the direct demand 

form. (e) The percentage decrease in normalized price with respect to one percent increase in its 

own consumption measured in the direct, inverse, and mixed demand systems are 0.413, 0.275, 

and 0.265 represented in the inverse demand form. (f) The percentage decrease in willingness to 

pay with respect to one percent increase in its own consumption measured in the direct, inverse, 

and mixed demand systems are 0.361, 0.197, and 0.194 represented in the mixed demand form. 

Recall that these relationships are based on the partitioning quantity-dependent and price-

dependent groups of commodities or the legitimate mixed demand system, which is identified by 

the PC algorithm.  

Given the observation that the magnitudes of consumers’ response measured in three 

different specifications are different in general, interpretations of the overall empirical results are 

not easy. One plausible comparison among three different demand systems of the direct, inverse, 

and mixed demand systems is possible based on the model selection approach. Given that all 

three competing models have the same number of independent parameters (23), all three model 

selection rules, the Akaike Information, Schwarz information criterion, and the Pollak and Wales’ 
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likelihood dominance criterion, are used based on the comparison of the estimated log-likelihood 

function values, such as the higher log-likelihood value, the higher ranking among competing 

models. The estimated log-likelihood values are 2698.77, 1332.23, 1269.15 for the inverse, direct, 

and mixed demand system, respectively. This result suggests that the inverse demand 

specification strongly dominates both the direct and the mixed demand specifications and the 

direct demand specification statistically dominates the mixed demand specifications. Note that 

this ordering of the statistical dominance is interpreted as the ranking among the competing 

models rather than the rejection one of the competing models. Additional empirical result that 

might lead one to prefer the inverse demand system is that the overall standard errors for the 

flexibility estimates of the inverse demand system are smaller than the overall standard errors for 

the elasticity estimates of the direct and mixed demand system. For example, the simple average 

of standard errors for the inverse, direct, and mixed uncompensated flexibility/elasticity estimates 

are 0.009, 0.159, and 0.164 respectively. Given that the inverse demand system identified through 

the application of the GES algorithm statistically dominate the other two specifications, it can be 

argued that the graphical causal model, especially the GES algorithm, provides reliable guidance 

for the choice among the direct, inverse, mixed demand systems. 

On the other hand, it can be also argued that the information inferred by the PC algorithm 

is also useful, given the observations that (i) the comparisons among three different specifications 

are possible due to the reasonable partitioning of quantity-dependent and price-dependent groups 

of commodities or legitimate mixed demand system, which is identified by the PC algorithm. (ii) 

The magnitudes of consumers’ response measured in three different specifications do not deviate 

too far with each other and thus provide plausible bounds in all the three different forms, although 

they are different in general and some differences are not trivial. In this respect, another possible 

approach to interpret the overall empirical results is to pursue the model averaging method rather 

than model selection method taken in this study, given that the model selection ordering of the 

statistical dominance need to be interpreted as the ranking among the competing models, rather 



37 

 

than the rejection one of the competing models and accepting the other. Given that a whole 

family of mixed demand systems exists depending on the different partitioning of quantity-

dependent and price-dependent groups of commodities, the overall results imply that the 

graphical causal methods of the PC and GES algorithms can provide reliable and informative 

guidance for the local identification issue of the choice among the direct, inverse, and mixed 

demand systems.  

 

IV. Concluding Remarks 

For the full use of the theoretical development to derive three alternative demand 

specifications of the direct, inverse, and mixed demand systems, the empirical procedure is 

proposed to address three issues of the identification, functional form, and comparisons among 

three specifications. The validity of the proposed procedure is illustrated by using retail checkout 

scanner data of soft drinks products. For the local (causal) identification issue between price and 

quantity variables among three possible specifications, the graphical causal models of the PC and 

GES algorithms are used. The GES algorithm result implies the inverse demand specification, 

whereas the PC algorithm result suggests the mixed demand system. Based on these inductively 

inferred local causal structures between price and quantity variables of a particular product, the 

inverse and mixed demand systems are estimated as well as the direct demand system for 

comparison purpose. To minimize the effect of different parameterization assumptions in the 

differential family of Rotterdam, LA/AIDS, NBR, and CBS, the generalized functional forms are 

derived for all the three demand systems. In all three demand systems, four nested 

parameterizations are statistically rejected and the synthetic differential functional forms are used 

for three demand systems. Based on the partitioning of the price-dependent variable group (the 

A&W and Rite-Cola and the Sunkist and Canada Dry product groups) and the quantity-dependent 

variable group (all other three groups) in the mixed demand system, which is identified by the PC 
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algorithm, the estimated elasticities and flexibilities of three specifications are compared in the 

direct, inverse, and mixed demand system forms. Finally, the model selection approach, such as 

the Akaike Information, Schwarz information criterion, and the Pollak and Wales’ likelihood 

dominance criterion, is adopted to statistically compare the competing three demand systems. 

Statistical evidences imply that the data support the inverse demand system, which is identified 

by the GES algorithm. Overall the empirical evidences suggest that the graphical causal models 

of the PC and GES algorithms provide helpful and reliable guidance for the full use of the 

theoretical development of three alternative demand specifications of the direct, inverse, and 

mixed demand systems. 
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APPENDIX A  

The main idea to identify the relationships among the Rotterdam, LA/AIDS, CBS, NBR 

functional forms and to derive their connections to the synthetic and generalized functional forms 
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are based on the differential relationships of   ydwpdwqdwdw nnnnnn lnlnln  , 

  nnnnn qdwdwdw lnln   , and Apdydyd lnlnln  . These differential relationships are 

derived as follows: (i)  or   is 
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The derived relationships are used to identify the relationships between the Rotterdam 
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The derivations of the synthetic and generalized functional forms for the direct and 

inverse demand systems are also based on the same relationships. For the direct demand 

specifications, the synthetic form can be derived as follows:  
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 

   
   









N

n
nnnnnnnn

N

n
nnnn

N

n
nnnnnn

nnnnnn

pdwwQdwqdw

pdwwQdwpdwqdw

PdQdwpdwqdwdw

1'
'','

1'
''

1'
'',

lnlnln

lnlnlnln

lnlnlnln



  

          


N

n
nnnnn

O

nnnn

Oc

nnnn

O

n

O

nnn
pdwwwwwQdwwwdw

1'
'','2','2',11

ln1ln1  . 

or
 

        


N

n
nnnnn

O

nnn

O

nn
pdwwCQdwCdw

1'
'','2',1

ln1ln1   

For the inverse demand specifications, the synthetic form can be derived as follows:  
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which can be transformed into the generalized form as follows: 
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Based on the common logics, the analogous synthetic and generalized functional forms 

for the mixed demand system can be derived. For the mixed demand specifications for quantity-

dependent group A, the synthetic form can be derived as follows:  
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APPENDIX B 

Direct demand system is related to mixed demand system by using following identities: 

 and . From identity of 

, (a) by differentiating identity w.r.t. , we get 

 or , which can be written as 

 or , (b) by differentiating w.r.t. , we 

get  or  which, using , 

can be written as  or  through the 

relation of , and (c) by differentiating 

w.r.t. , we also get  or  , which, using 

 again, can be written as  or 

 through . 
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, can be written as  or  through 

, and (c) by differentiating w.r.t. , we get 

 or , which, using  again, can be written 

as  or  through the relation of 

. 

Inverse demand system is related to mixed demand system by using following identities: 

 and  which are implied by 
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we get  or  which can be written as 

 or , (b) by differentiating 

w.r.t. , we get  or  which, using 

, can be written as  or 

 , which in turn equal 

to . From the relation  or  of inverse 

demand function, we get  and . Using 

 and , we can write . Using 

 and , we can write 

 . 

From the resulting two kinds of relationships between the mixed and the direct and 

between the mixed and the inverse demand systems, the other implied relationships can also be 

derived between the direct and the inverse demand systems through their relationships with the 

mixed demand systems. 
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