
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


 1

 
 
 
 
 

Estimating Multivariate Yield Distributions Using Nonparametric Methods 
 
 
 
 
 

Qiujie Zheng 

School of Economic Sciences, Washington State University 

H. Holly Wang 

Department of Agricultural Economics 

Purdue University 

Qinghua Shi 

Aitai School of Economics and Management 

Shanghai Jiaotong Univeristy 
 
 
 
 
 

Selected Paper prepared for presentation at the American Agricultural Economics 
Association Annual Meeting, Orlando, FL, July 27-29, 2008. 

 
 
 
 
 
 
Copyright 2008 by [authors]. All rights reserved. Readers may make verbatim copies of 
this document for non-commercial purposes by any means, provided that this copyright 
notice appears on all such copies.



 2

Estimating Multivariate Yield Distributions Using Nonparametric Methods 

Abstract 

Modeling crop yield distributions has been an important topic in agricultural production and 

risk analysis, and nonparametric methods have gained attention for their flexibility in describing 

the shapes of yield density functions.  In this article, we apply a nonparametric method to model 

joint yield distributions based on farm-level data for multiple crops, and also provide a way of 

simulation for univariate and bivariate distributions.  The results show that the nonparametric 

models, both univariate and bivariate, are estimated quite well compared to the original samples, 

and the simulated empirical distributions also preserve the attributes of the original samples at a 

reasonable level.  This article provides a feasible way of using multivariate nonparametric 

methods in further risk and insurance analysis. 

Key words: yield distribution, multi-variate nonparametric, China, farm-level, risks 
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Estimating Multivariate Yield Distributions Using Nonparametric Methods 

Introduction 

Modeling crop yield is an important research topic in agricultural economics, because it provides 

a basis for studies on factor productivity, efficiency, risk and crop insurance, adoption of new 

technology, and many other topics.  Vast amounts of literature can be found on crop yield 

modeling, such as Day (1965), Nelson and Preckel (1989), Taylor (1990), Moss and Shonkwiler 

(1990), Goodwin and Ker (1998), Wang and Zhang (2002), and Norwood, Roberts and Lusk 

(2004).  Although yield modeling is only the first step in some of these studies which focus on 

other topics such as crop insurance or productivity analysis, most of them focus solely on the 

yield distribution itself.  

Recently, nonparametric and semi-parametric methods have gained the attention of 

economists because of their flexibility in describing the yield distribution (Goodwin and Ker, 

1998; Ker and Goodwin, 2000; Ker and Coble, 2003; Norwood, Roberts and Lusk, 2004).  Not 

assuming a particular functional form at a priori, nonparametric method will select the shape of 

the yield density function that fits the data the best.  In addition, nonparametric density 

estimation techniques offer a consistent approach to smoothing observations and building a 

continuous density estimation (Goodwin and Ker, 1998).  

Most of the yield modeling research, especially the nonparametric yield models, are 

univariate, i.e., investigating one crop at a time and are often based on aggregated yield data at 

county or state levels.  However, the farm based profitability and risk analysis call for joint 

yield distributions with multiple crops at the farm level.  Although ways have been developed 
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to impose correlations between two non-normally distributed variables such as in Taylor (1990), 

the joint distribution is not unique by applying this method.  

The objective of this article is to use farm level yield data and nonparametric methods to 

model the univariate and multivariate yield distributions.  We also provide an algorithm for 

nonparametric multivariate simulation, and simulate some bivariate distributions based on the 

estimation. Finally, we examine and evaluate the attributes of the simulated distributions and 

analyze the local idiosyncrasies for three crops, wheat, rice and corn, using Chinese farm level 

yield data. 

 

Literature Review 

When modeling crop yields, a long period of historical data is usually needed in order to provide 

an adequate sample size with annual observations and to capture the extremely low yield caused 

by severe natural disasters with a small probability.  Therefore, a trend needs to be considered 

because the long run development of production technology tends to move the mean yield over 

time.  Just and Weninger (1999) showed that errors in specification of trends can influence the 

identification of residual distribution.  In particular, they may introduce skewness and 

nonnormal kurtosis to the otherwise normal errors.  As a result, the trend needs to be identified 

and removed before the residuals can be used to determine the distribution. 

There are basically three types of trend models in the literature.  First, deterministic trend 

models are the most frequently used, including linear, quadratic and other polynomial trends, 

logarithm trend, and exponential trends.  Other exogenous technical and economic variables can 
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also be incorporated into the deterministic trend functions in yield models (Gallagher, 1987). 

Second, time series models using trend conditional on past yield observations such as 

Autoregressive and Moving Average (ARMA) and Integrated ARMA models (Goodwin and Ker, 

1998).  Third, a general stochastic trend model is also used (Moss and Shonkwiler; 1993). 

Once the data is detrended, there are two primary approaches to represent the residual yield 

distributions: parametric and nonparametric distributions.  Under parametric techniques, a 

parametric distribution is selected at a priori, and parameters of the distribution are estimated by 

fitting the data into the model.  Normal distributions are the most conveniently used and can be 

found in early works like Botts and Boles (1958).  Although skewed distributions are favored in 

more recent studies as discussed in the following, Just and Wenninger (1999) claimed that the 

finding of skewed yield distributions may be results of inappropriate detrending and failure to 

properly model heteroskedasticity.  When using flexible polynomial trends for mean yield and 

yield variance, they found that normality is difficult to reject.  

On the other hand, many studies have supported that crop yields are skewed.  Day’s work 

(1965) on yield distributions for cotton, corn, and oats found positive skewness.  Gallagher 

(1987) noted soybean yields are nonsymmetric and negatively skewed, when he used a gamma 

distribution.  Nelson and Preckel (1989) confirmed negative skewness in corn yield and 

assumed a beta distribution.  Taylor (1990) estimated multivariate nonnormal probability 

distributions by fitting hyperbolic tangent transformations of normal variates.  Moss and 

Shonkwiler (1993) and Wang et al. (1998) used an inverse hyperbolic sine transformation to 

incorporate negative skewness in a model of corn yields.  Ramirez (1997) extended Moss and 
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Shonkwiler’s model to allow heteroskedasticity and multivariate distributions for U.S. Corn Belt 

corn, soybean, and wheat yields.  In addition, Atwood, Shaik and Watts (2003) demonstrated 

cases when normality is failed to be rejected while the distribution is actually non-normal. 

The nonparametric density estimation technique may offer advantages in that no argument 

needs to be made between symmetric or skewed distributions at a priori.  It can also represent 

multi-mode distributions with local idiosyncrasies that may not be reflected in parametric 

specifications.  Goodwin and Ker (1998) used nonparametric density estimation procedures to 

evaluate county-level crop yield distributions and then to evaluate yield risk and insurance 

premium rates for wheat and barley.  The results showed that nonparametric methods may offer 

improved accuracy and thus improve the performance of crop insurance programs.  Ker and 

Goodwin (2000) employed empirical Bayes nonparametric kernel density estimator to estimate 

the conditional yield densities.  They found such methodological improvements can 

significantly aid in ameliorating the data lack problem.  

Ker and Coble (2003) mentioned the correctness problem of parametric estimators and 

inefficiency problem of nonparametric kernel estimator, and proposed a semiparametric 

estimator by undertaking two simulations.  Norwood, Roberts and Lusk (2004) used a 

semiparametric model, which is parametric for the trend model and nonparametric for the 

residual distribution, to model crop yields with a nonparametric kernel smoother.  They 

compared six yield densities based on the out-of-sample forecasting performance and concluded 

that the best model to forecast county yields is a semiparametric model.  Following these results, 

we use semiparametric methods here.  
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Data 

The empirical analysis in this article is based on farm level crop yields in China, the world’s 

largest producer and consumer of several grain crops.  Rice, wheat and corn are three main 

crops produced in the country.  As China is currently developing its crop insurance programs, it 

is important to examine the yield risks of these crops.  For individual farm households, the 

average acreage of production is very small and the yield is risky.  No quantitative farm level 

crop yield analysis has been found. 

A farm household survey was conducted tracking farm level crop yields for about 12 years 

in Shandong Province and the Yantze River delta area in China by National Rural Fixed 

Observation Office.  Winter wheat and summer corn are planted in rotation within one year in 

Shandong province, while in the Yantze River delta area, wheat and rice are planted concurrently 

in different fields, often in rotation with other minor crops.  

In Shandong province, seventeen villages were randomly chosen in which there are 

approximately 40 farm households each.  In the Yantze River delta area, fifteen villages were 

chosen with five in each province of Shanghai, Jiangsu, and Zhejang, and there are about 100 

farm households in each village.  Those farms with less than three years of multiple crop yield 

data were dropped.  Finally, we have twelve villages with 479 farms total in the Shandong 

province for the period between 1995 and 2006, and five villages each in Shanghai and Jiangsu 

of the Yantze River delta area with 527 farms total for the period between 1993 and 2005 with 

1994 missing.  All villages in Zhejiang province of the Yantze River delta area were dropped 

because wheat is rarely grown there.  
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Method 

In this section, we discuss model estimation and simulation, compare empirically the univariate 

and bivariate yield distributions, and provide the algorithm for multivariate nonparametric 

simulation. 

Trend and detrend 

The semiparametric approach is taken when a deterministic yield trend is identified for each 

village.  This is because the yield trend is determined by technology and agronomic conditions.  

The agronomic conditions are quite heterogeneous within a province but relatively homogeneous 

within a village, so is the technology.  The linear trend model as in (1) is adopted after higher 

polynomial specifications are examined and dropped.  

jit j j jity tα β ε= + +     (1) 

where y represents crop yield, subscript j, i, and t denotes village, household, and year, 

respectively .  

Model (1) is estimated for each village j, separately.  Because the production scale of each 

farm can be quite different in any village, we calculate the weighted average of farm yield for 

each year to represent the village yield using the corresponding farm’s planted acreage as the 

weight.  Then the time series village yield data are used to obtain the village trend 

parameter, jβ through model (1).  Each farm is then assumed to follow the same slope of time 

trend, but having individual intercept coefficient, jiα . 

Univariate estimation and simulation 

The detrended farm yields are considered iid samples for each farm that can be used to fit 
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nonparametric distributions.  We examine the univariate model estimation and simulation first 

for each crop individually.  

The kernel function for a zero mean random variable e, the detrended yield in this case, is 

defined as follows:  

1

1( ) ( )
n

i

i

e ef e K
nh h=

−
= ∑     (2) 

where ei is the ith observation; n is the number of observations for a particular farm; h  is a 

bandwidth parameter, which determines the weight to assign to neighboring observations in 

constructing the density and corresponds to the amount of smoothing to be done; according to 

Silverman’s modified rule-of-thumb method, we set (1/5)0.9h nσ −= , where σ is the smaller of 

standard deviation and interquartile range divided by 1.34; and ( )K ⋅  is the standard normal 

probability density function. 

Because the nonparametric nature of the distribution, numerical analysis based on simulated 

empirical distribution is often needed for risk analysis to serve the need of topics introduced at 

the beginning of the article.  Here we simulate an empirical distribution with 100,000 samples 

for each crop in each farm household to illustrate the procedure.  

We first define an interval around mean zero with upper and lower bounds defined by the 

sample residuals, assuming the probability for the random variable to take a value beyond this 

interval is zero.  We then divide the interval into 200 equal segments.  Based on the calculated 

distribution density from (2), we can determine the counts of random numbers among the total of 

100,000 that fall into each of the segment.  Uniformly distributed random numbers in each 
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segment are generated for the calculated counts.  Finally, we can convert the 100,000 random 

numbers into yields by adding back the trend for any year of interest.  

Bivariate estimation and simulation 

The bivariate estimation and simulation are more complicated than the univariate ones since  

we need to consider the covariance between the two crops and take the two crops yields as an 

2n×  matrix (Takada 2001).  

First we need to standardize yield residual vector ie  into iz  with zero mean and identity 

variance covariance matrix as: 

1
2 ( )i i iz e e

−
= Ω −     (3) 

where Ω  is the covariance matrix and ie  is the mean for vector ie . 

The kernel function is as follows: 

1

1( ) ( )
n

i
d

i

z zf z
nh h

φ
=

−
= ∑%     (4) 

where n represents the number of sample data; d represents dimension of data which equals to 2 

in bivariate analysis; h represents bandwidth which is set at
1 1

4 44( )
2

d dh n
d

−
+ +=

+
; and ( )zφ  is the 

bivariate standard Gaussian Kernel function, 
2

1( ) exp( )
2(2 )

d
z zzφ

π

′
= − . 

Further we need to calculate local bandwidth factors iλ as: 

( ) 1( )   
2

i
i

f z with
g

αλ α−= =
%

    (5) 

where 
1

1log log( ( ))
n

i
i

g f z
n =

= ∑ % . 
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Then the Adaptive Kernel Density function is as follows: 

1

1 1ˆ ( ) ( )
( )

n
i

d
i i i

z zf z
n h h

φ
λ λ=

−
= ∑     (6) 

Finally we transform the estimate back to the original scale for e as: 

1
2ˆ ˆ( ) (det ) ( )f e f z

−
= Ω     (7) 

Similar to the univariate simulation procedure, we first define a rectangle interval around 

mean (0, 0) in 2-dimension plane representing the detrended yields of two crops.  The lower 

and upper bounds of each dimension are again determined by the original sample yield residuals. 

We then divide the interval into 50 by 50 equal rectangle segments.  Based on the calculated 

distribution density from (7), we can determine the count of random pairs among the total 

100,000 pairs that fall into each of the segment.  This number of uniformly distributed random 

pairs is then generated within each segment.  Finally, we can convert the 100,000 random pairs 

into yields by adding back the mean and the trends for any year of interest.  

 

Results 

The distributions of farm level crop yield are estimated and simulated for the year 2007.  All 

yields in this article are measured by kilogram per hectare (kg/ha).  Because there are more than 

1,000 farms in our dataset, it is impossible to report the result individually.  Therefore, we 

report the averaged sample attributes across farms for each village.   

Trends 

Table 1 represents the village trends of wheat and corn yield of Shandong Province.  For the 
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wheat yield, there are seven villages out of twelve that have a significant trend most of which are 

positive.  The positive trends suggest that yields have an increasing tendency over time, thanks 

to technology development in irrigation, seed, and fertilizer.  One village, 3715, has a 

significant negative trend.  It is also possible that crop yields fall over time because of water 

scarcity and soil degradation.  While for corn yield, ten villages have significant trends. The 

trend for the same village 3715 is negative and significant, confirming the environmental 

changes impact negatively on both crops. 

Table 2 represents the Yantze River delta area wheat and rice yield trends.  For wheat yield, 

four villages out of nine have significant positive trends.  For rice yield, six villages have 

positive significant trend.  The trends are moderate compared to Shandong province.  This is 

because rainfall is abundant in this area make irrigation less contributive.  No village has 

significant negative trends in this area.  This reveals the environmental degradation, primarily 

water scarcity, is more serious in Northern China.  

Moments from estimations 

Tables 3.1 through 4.3 report the crop yield statistics from the sample, the estimation and the 

simulation, for Shandong Province and the Yantze River delta area, respectively.  We list the 

statistics from both univaraite and bivariate models for comparison purpose.  Tables 3.1 and 4.1 

are the sample moment statistics, which means the statistics are calculated from the detrended 

yields directly.  Tables 3.2 and 4.2 report the estimated results, which means the statistics are 

calculated from the theoretical definition based on the estimated density function of each crop 

individually.  Tables 3.3 and 4.3 include the simulated results. 



 13

The first three moments and correlations are calculated for all farms and all crops but only 

reported at the village average level supported with the standard deviation for each village, 

which gives readers a measure of heterogeneity of the farms within each village.  The first two 

columns are village average and standard deviation for farm yield means wμ and 
wμ

σ .  The 

second two columns are the village average and standard deviation for farm yield standard 

deviations wσ  and wσ
σ , which measures the risks of farm yield.  The next two columns are 

the village average and standard deviation of farm yield skewness, wS  and wSσ .  They 

indicate the average level and the variability of the degree of farm yield symmetry.  These six 

columns show up again for the second crop on the right side of the table.  The right most two 

columns in the tables are the village average and standard deviation of the farm yield correlation 

between the two crops which are denoted as wcρ  and 
w cρσ .  These measures are not 

applicable to univariate estimation or simulation, because each crop yield is independently 

simulated.  The subscripts, c, w and r of the variables denote corn, wheat and rice, respectively. 

Comparing the Tables 3.1 with 3.2, and 4.1 with 4.2, we find that the nonparametric 

univariate density functions are estimated very well in that the theoretical first three moments are 

very close to those from the original samples.  At the village average level, the yield means are 

very accurate with less than 0.05% difference.  The yield standard deviations are also closely 

estimated with less than 0.5% difference.  Even the third moments estimated are quite close to 

the sample.  

The moments calculated from the estimated bivariate density function, the fourth panel, are 

also quite close to the sample statistics.  Especially, the correlations between the two crops 
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resemble the sample correlation very well.  The differences between the estimated density and 

the sample are slighter large for the bivariate model than the univariate model. 

Distribution moments from simulations 

Tables 3.3 and 4.3 report sample statistics from the univariate simulated distributions in the top 

panel, and the bivariate simulated distributions in the bottom panel.  

In general, the simulated results are quite close to the estimated ones.  The univariate 

simulated yield means are very close to the estimated means, with most of the differences from 

the estimated means less than 0.5%, while the bivariately simulated means are also quite close to 

the estimated values with most of the deviations less than 3%.  The reason for the slightly lower 

accuracy is truncation.  For 10,000 simulated yields in the univariate model and 100,000 in the 

bivariate model, we drop a small number of negative or unreasonably large realizations, which 

may result in a small difference in yield means.  

The simulated yield standard deviations are smaller than the sample or estimated ones.  

This is a result of our simulation algorithm.  When we simulate uniformly distributed yields 

within in each interval, we lose some variability. The finer the intervals are allocated, the more 

variability can be simulated.1 The truncation mentioned above also contributes to smaller 

standard deviations.   

From the nonzero estimation of yield skewness, we know that the yield distribution is not 

symmetric.  We have seven villages with negative skewness versus five of those with positive 

skewness.  However, the size of the skewness is generally small.  The univariate simulation 

exactly reflects the original estimated skewness.  The bivariate simulations reflect the original 
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estimated skewness reasonably well.  Although a few signs are different, most of them are in 

line with the estimated ones.  

The correlations are preserved very well in the simulated bivariate yield distributions.  

There is a strong positive correlation between wheat and corn in Shandong province when the 

two crops are planted in rotations.  However, the correlations are small with different signs 

depending on the village in Yangtze River delta area, when the two crops are planted in different 

fields with different growing seasons.  This means bivariate nonparametric models are needed 

in describing and simulating joint yield distributions. 

Flexibility and Local idiosyncrasies 

Figures 1 and 2 show the empirical distributions from simulated detrended wheat and rice yields 

based on univariate model for one farm in Jiangsu and another in Shanghai in the Yantze River 

delta area.  Both of these two distributions have two humps that cannot be captured by most 

conveniently available parametric distributions.  Distribution of each crop in each farm shows 

different shapes with single or multiple humps, symmetric or skewed, little or very kurtotic.  

Figure 3 shows the joint distribution from simulated wheat and rice yield of a farm in Jiangsu.  

The surface is not smooth enough to show the local idiosyncrasies clearly because of the sample 

size, however, we can tell the surface does not keep a consistent concavity.  Both univariate and 

multivariate distributions show the power of non-parametric methods over parametric methods in 

describing local idiosyncrasies. 

Crop yields in the two regions in China 

Although not a focus of this article, we can briefly introduce the empirical results of Chinese 
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corn, wheat and rice yield distributions from empirical results.   

 From tables 1 through 4, we can assess the crop yield patterns numerically for the two areas 

in China.  Over the recent decades, wheat, corn, and rice yields all increase over time in the 

Northern Plains and Downstream Yantze River Plains, which are two of the most important grain 

production areas in China, with very few exceptions.  The corn yield increases a lot faster than 

wheat and rice.  Since rice is traditionally planted in regions with plenty of precipitation, its 

yield increase depends mainly on technology, especially the crop breeding ability.  However, 

corn and wheat traditionally grow in Northern China with limited precipitation.  Their yield 

increase in recent years comes not only from biological technology, but also from the adoption of 

irrigation and increasing use of fertilizer.  As the underground water level falls in most areas in 

Northern China, it will be increasingly challenging to keep the yield trend in the future.   

The simulated average 2007 farm level wheat and corn yields in each village range from 

3268 to 7641 kilograms per hectare and 4528 to 8161 in Shandong, for wheat and rice range 

from 2823 to 4783 and 7118 to 9403 in Yantze River Delta.  The wheat yield is a lot higher in 

Shandong than in the Yantze River Delta because the weather in Shandong is more suitable for 

wheat planting and harvesting than in the Yantze River Delta which has shorter summer daylight 

hours, more humidity, and shorter growing season allocated to wheat rotation. 

On the other hand, the risks associated with yield, ranking from low to high, are rice in the 

Yantze River Delta, corn in Shandong, wheat in Shandong, and wheat in the Yantze River Delta. 

The corresponding average coefficients of variation are about 9%, 13%, 17%, and 18%, 

respectively.  Because our rice data are the annual average yield across two rotations in the 
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same field, the intra-year weather effects can be smoothed out, resulting in lower variation.  The 

corn has the shortest growing season, and any adverse weather can have an unforgiving effect on 

yield.  The reason that wheat yield is more risky in the Yangtze River delta area than in 

Shandong is, again, that because wheat is sensitive to excess moisture.  Even though, all of the 

crop yield risks are not very high. 

The wheat and corn correlation is quite high, around 0.5 in Shandong because of the rotation 

in a year.  The good or bad weather can affect both crops in the year.  On the other hand, 

hardly any correlation pattern is detected for wheat and rice in the Yantze River delta area. 

Although the two crops grow during the same year, they tend to be planted at different plots of 

fields with different soil and agronomic conditions, such as the availability of water.  

Furthermore, the level of precipitation can affect the two crops in different ways. 

 

Conclusion 

In this article, we apply nonparametric methods to estimate univariate and bivariate farm-level 

crop yield distributions and simulate a crop yield series.  We use the Shandong Province and the 

Yantze River delta area farm-level data to represent Northern China Plains and Downstream 

Yantze River Plains, two most important food grain production areas with distinct agronomic 

conditions.  The estimated density functions accurately represent the original sample, and the 

simulated empirical distributions also preserve the attributes of the original data quite well. The 

results indicate that nonparametric methods are suitable and flexible to estimate the crop yield 

distributions especially when multiple crops are considered with correlations, and the marginal 
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distribution of each crop has multiple humps and local idiosyncrasies.  
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1 We have tried 20 by 20 rectangles for bivariate simulation with 10,000 realizations, the 

variances are smaller.  Then we use 50 by 50 rectangles and increase the size to 100,000, the 

variances are bigger.    
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Table 1. Shandong Wheat and Corn Yield Trend 

Wheat (kg/ha) Corn (kg/ha) Village 
ID 

Number of 
Households 0β  1β  0β  1β  

3702 46 6141.26  
(14.77) 

44.72  
(0.99) 

5163.95 
(9.78) 

150.06**  
(2.61) 

3703 40 4696.16  
(4.47) 

-48.92  
 (-0.43) 

5073.09 
(4.41) 

-50.10  
 (-0.40) 

3704 28 6204.19  
(7.82) 

-205.53  
 (-1.20) 

4695.50 
(4.83) 

173.08  
(0.83) 

3705 40 5361.11  
(22.86) 

100.11***
(3.92) 

3530.89 
(20.28) 

211.92*** 
(11.17) 

3707 40 6026.41  
(15.58) 

16.39  
(0.39) 

6136.52 
(13.05) 

83.15*  
(1.62) 

3708 39 4673.95  
(13.86) 

174.90***
(4.76) 

3418.97 
(7.80) 

302.72*** 
(6.34) 

3709 40 4611.84  
(11.61) 

165.36***
(3.58) 

5346.79 
(12.45) 

162.01*** 
(3.25) 

3711 45 5002.37  
(12.03) 

28.14  
(0.62) 

4658.48 
(9.15) 

146.32**  
(2.64) 

3712 40 4304.48  
(12.60) 

75.66**  
(2.03) 

4254.01 
(16.37) 

208.36*** 
(7.36) 

3713 40 4882.58  
(16.25) 

128.47***
(3.92) 

2917.12 
(2.91) 

332.50*** 
(3.04) 

3714 41 4983.26  
(17.87) 

173.68***
(5.86) 

2113.63 
(1.52) 

405.93**  
(2.74) 

3715 40 5850.77  
(15.74) 

-83.85** 
 (-2.12) 

6765.32 
(10.44) 

-140.35**  
 (-2.04) 

Note: ***, ** and * denote trend significance at 1%, 5% and 15% level respectively.  

Numbers in the parentheses are the t-values of the estimates. 
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Table 2. Yantze River delta area Wheat and Rice Yield Trend 

Wheat (kg/ha) Rice (kg/ha) Village 
ID 

Number of 
Households 0β  1β  0β  1β  

3101 96 3885.48  
(8.45) 

-64.43  
 (-0.91) 

6182.93  
(21.23) 

89.43**  
(2.00) 

3102 26 2312.30  
(7.51) 

165.99** 
(2.88) 

6494.79  
(9.70) 

208.29*  
(1.66) 

3103 75 3031.09  
(6.73) 

13.53  
(0.20) 

6592.69  
(23.26) 

57.99*  
(1.33) 

3104 19 3278.17  
(6.63) 

70.98*  
(1.27) 

6504.53  
(31.79) 

45.67**  
(1.97) 

3207 96 3669.14  
(12.39) 

35.68  
(1.06) 

7650.61  
(36.22) 

99.47***  
(4.15) 

3208 60 3012.20  
(6.95) 

112.77** 
(2.29) 

7618.34  
(14.81) 

44.67  
(0.77) 

3209 62 3653.37  
(6.04) 

-8.16  
 (-0.12) 

7367.16  
(22.84) 

6.59  
(0.18) 

3210 52 3723.85  
(7.21) 

-58.67  
 (-1.00) 

6806.01  
(25.89) 

58.65**  
(1.97) 

3211 40 1955.38  
(6.14) 

173.54  
(5.00)*** 

7505.42  
(15.22) 

-38.79  
 (-0.72) 

Note: ***, ** and * denote trend significance at 1%, 5% and 15% level respectively. 

Numbers in the parentheses are the t-values of the estimates. 

3101 to 3104 are villages in Shanghai, and 3207 to 3211 are villages in Jiangsu province. 
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Table 3.1. Shandong Wheat and Corn Yield Sample Statistics 

Wheat Corn Wheat and Corn 
Village 

ID wμ  
wμ

σ  wσ  wσ
σ wS  wSσ cμ  

cμ
σ  cσ  cσ

σ cS  cSσ wcρ  w cρσ  

3702 6801.202 403.72 892.233 390.213 0.145 0.876 7418.296 384.074 1080.815 452.517 0.127 0.835 0.531 0.333 

3703 4153.334 492.381 1431.633 358.351 -0.26 0.627 4528.274 518.033 1634.109 425.473 -0.139 0.609 0.776 0.172 

3704 3267.627 1063.599 892.202 1573.613 -0.076 0.475 7497.473 1545.866 1499.649 2167.009 0.01 0.676 0.126 0.716 

3705 6928.482 710.097 841.629 435.444 0.112 0.641 6780.449 557.062 829.335 292.2 0.123 0.603 0.562 0.332 

3707 6388.284 607.54 1033.662 479.324 0.135 0.872 7502.581 696.263 1165.382 515.951 0.124 0.815 0.477 0.37 

3708 7399.242 561.755 970.561 425.113 0.003 0.635 8161.251 723.374 1430.61 865.818 0.235 0.81 0.422 0.342 

3709 7121.884 444.621 797.501 253.902 -0.319 0.661 7807.883 436.381 880.937 317.632 -0.02 0.543 0.494 0.299 

3711 5524.797 460.83 933.348 822 -0.071 0.897 6863.844 499.467 1270.308 404.063 -0.078 0.598 -0.08 0.35 

3712 5508.789 465.766 655.827 207.094 0.078 0.586 7430.553 364.935 898.468 369.426 -0.143 1.061 0.061 0.311 

3713 6846.792 267.7 761.369 310.463 -0.06 1.016 7995.644 450.716 1682.266 432.401 -0.44 0.765 0.206 0.24 

3714 7640.503 326.623 702.607 370.056 -0.072 0.663 8133.366 393.683 2241.334 695.353 -0.958 0.645 0.104 0.364 

3715 4596.322 173.505 613.721 194.243 -0.112 0.571 4751.547 574.614 1155.273 436.116 0.451 0.525 0.231 0.294 

 



 25

Table 3.2. Moments from Estimated Density Functions for Shandong Wheat and Corn Yield 

Wheat Corn Wheat and Corn 
Village 

ID wμ  
wμ

σ  wσ  wσ
σ wS  wSσ cμ  

cμ
σ  cσ  cσ

σ cS  cSσ wcρ  w cρσ  

Univariate            

3702 6802.271 405.974 922.955 395.689 0.146 0.74 7417.262 382.967 1111.028 453.569 0.136 0.673 N/A N/A 

3703 4151.521 490.944 1509.274 376.523 -0.202 0.461 4528.871 519.742 1724.692 456.919 -0.113 0.448 N/A N/A 

3704 3278.396 1116.078 861.849 1491.308 -0.045 0.291 7500.093 1610.501 1440.228 2079.276 0.00 0.419 N/A N/A 

3705 6930.117 709.45 889.007 467 0.084 0.489 6780.823 556.921 879.974 310.372 0.079 0.443 N/A N/A 

3707 6387.271 604.24 1079.034 492.325 0.109 0.705 7501.621 689.885 1221.943 532.304 0.085 0.619 N/A N/A 

3708 7399.824 562.11 1023.138 446.586 0.005 0.525 8161.754 723.732 1488.148 849.096 0.197 0.708 N/A N/A 

3709 7121.967 444.671 842.782 266.197 -0.237 0.507 7806.629 437.517 924.363 327.776 -0.021 0.399 N/A N/A 

3711 5524.173 460.471 961.767 784.534 -0.05 0.822 6863.477 499.435 1338.065 420.727 -0.074 0.468 N/A N/A 

3712 5508.143 464.553 693.122 191.978 0.076 0.502 7430.63 364.69 935.373 368.017 -0.122 0.995 N/A N/A 

3713 6846.771 267.944 795.231 308.438 -0.033 0.867 7994.699 450.41 1763.602 457.933 -0.352 0.634 N/A N/A 

3714 7640.197 328.506 732.512 376.806 -0.035 0.459 8124.705 397.231 2325.573 695.449 -0.663 0.451 N/A N/A 

3715 4595.527 173.867 653.092 207.28 -0.073 0.394 4752.557 571.156 1216.556 450.06 0.353 0.46 N/A N/A 

Bivariate 
3702 6791.278 383.842 935.839 413.26 0.08 0.348 7413.321 369.792 1132.081 470.326 0.025 0.321 0.523 0.326 

3703 4151.442 493.072 1499.972 415.151 -0.087 0.269 4527.937 511.379 1714.617 494.624 -0.064 0.269 0.766 0.172 

3704 3258.167 2302.92 851.82 1553.705 -0.081 0.19 7925.33 3701.412 1338.718 2126.911 -0.044 0.226 0.126 0.71 

3705 6911.716 701.249 887.608 455.047 0.074 0.294 6767.406 544.912 883.853 306.98 0.078 0.269 0.554 0.324 

3707 6400.891 626.774 1067.395 493.913 0.027 0.364 7507.171 700.413 1206.17 529.886 0.099 0.374 0.467 0.366 

3708 7390.186 549.659 1046.123 456.003 0.043 0.318 8146.27 702.14 1525.363 845.225 0.095 0.33 0.413 0.337 

3709 7129.124 443.13 851.643 264.734 -0.163 0.33 7806.803 429.091 947.536 346.072 -0.038 0.274 0.485 0.298 

3711 5521.692 437.049 967.25 744.037 -0.037 0.362 6859.323 489.98 1343.375 429.199 0.023 0.302 -0.079 0.339 

3712 5504.234 460.923 708.815 221.934 0.054 0.284 7427.199 355.698 958.155 383.265 -0.053 0.426 0.058 0.3 

3713 6849.052 257.637 819.489 298.702 -0.101 0.467 7997.425 432.371 1848.906 484.44 -0.2 0.353 0.198 0.23 

3714 7639.806 320.386 699.828 328.782 -0.022 0.313 8155.269 397.226 2159.094 563.045 -0.352 0.262 0.103 0.351 

3715 4593.618 171.872 639.584 201.699 0.015 0.227 4745.06 567.194 1188.635 404.226 0.185 0.27 0.224 0.289 



 26

Table 3.3. Sample Statistics from Simulated Shandong Wheat and Corn Yield Distributions 

                      Wheat                        Corn Wheat and Corn 
Village 
ID wμ  

wμ
σ  wσ  wσ

σ  wS  wSσ cμ  
cμ

σ  cσ  cσ
σ  cS  cSσ  wcρ  w cρσ  

Univariate            

3702 6802.777 431.292 685.752 292.078 0.181 0.877 7401.697 382.072 825.054 333.21 0.168 0.762 N/A N/A 

3703 4116.449 494.172 1121.01 303.175 -0.195 0.489 4526.639 546.399 1290.013 375.698 -0.117 0.457 N/A N/A 

3704 3325.57 1399.551 530.428 890.031 -0.046 0.28 7516.006 2011.405 870.273 1256.346 0.002 0.402 N/A N/A 

3705 6951.315 707.462 667.664 348.079 0.079 0.521 6791.79 562.583 664.107 233.976 0.071 0.464 N/A N/A 

3707 6382.135 594.565 787.162 347.497 0.154 0.822 7497.264 665.061 899.71 378.608 0.104 0.667 N/A N/A 

3708 7407.685 573.199 795.435 348.918 0.017 0.571 8169.23 708.609 1141.476 621.893 0.205 0.828 N/A N/A 

3709 7119.122 448.597 635.41 189.459 -0.24 0.548 7791.138 456.932 697.398 251.419 -0.024 0.414 N/A N/A 

3711 5502.706 408.257 718.586 578.579 -0.061 1.047 6862.282 510.853 1010.558 317.05 -0.084 0.536 N/A N/A 

3712 5502.78 461.921 533.299 150.518 0.095 0.567 7428.347 347.469 713.517 274.847 -0.133 1.254 N/A N/A 

3713 6839.577 275.324 610.2 222.458 -0.003 0.991 7979.252 465.153 1370.125 346.267 -0.386 0.688 N/A N/A 

3714 7631.957 347.067 521.162 248.061 -0.041 0.485 7986.663 433.295 1621.871 432.704 -0.71 0.486 N/A N/A 

3715 4580.056 188.877 488.176 151.617 -0.069 0.409 4776.659 561.35 904.233 303.341 0.39 0.563 N/A N/A 

Bivariate  
3702 6897.394 633.456 749.492 368.451 -0.036 0.163 7604.26 823.005 952.582 459.187 -0.039 0.22 0.556 0.337 

3703 4072.284 670.074 1204.672 350.611 -0.035 0.163 4456.518 1015.565 1356.311 418.364 -0.04 0.273 0.771 0.171 

3704 3449.062 1766.964 532.732 908.798 -0.02 0.102 7543.081 2736.19 867.578 1257.909 -0.008 0.099 0.127 0.709 

3705 6971.436 794.377 708.483 360.87 0.05 0.163 6809.915 665.872 696.48 265.339 0.051 0.239 0.549 0.332 

3707 6319.353 801.834 848.257 396.785 0.052 0.195 7615.257 1114.807 948.914 433.911 -0.039 0.25 0.466 0.386 

3708 7487.54 739.934 837.811 391.732 0.047 0.229 8479.476 1646.151 1295.579 809.566 0.02 0.239 0.44 0.363 

3709 7046.054 524.102 698.267 238.27 -0.054 0.177 7913.965 589.02 756.913 310.074 -0.153 0.243 0.487 0.309 

3711 5652.613 1641.594 817.837 824.55 -0.001 0.198 6805.806 821.494 1050.504 381.027 -0.016 0.261 -0.073 0.353 

3712 5550.936 690.073 547.964 193.893 -0.057 0.293 7340.972 860.707 817.716 390.412 0.029 0.229 0.075 0.335 

3713 6882.219 606.658 661.623 263.944 -0.15 0.269 7739.517 1115.788 1531.16 446.104 -0.064 0.388 0.22 0.247 

3714 7653.823 474.104 527.899 265.492 -0.226 0.194 7247.137 669.345 1754.773 386.335 -0.026 0.235 0.126 0.379 

3715 4564.119 242.734 499.797 162.037 0.111 0.165 5038.531 683.641 939.271 313.414 -0.01 0.177 0.227 0.303 
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Table 4.1. Yantze River Delta Area Wheat and Rice Yield Sample Statistics 

Wheat Rice Wheat and Rice 
Village 
ID wμ  

wμ
σ  wσ  wσ

σ  wS  wSσ rμ  
rμ

σ  rσ  rσ
σ  rS  rSσ  wrρ  w rρσ  

Sample 
3101 2883.833 290.575 747.843 379.018 -0.162 0.841 7516.781 357.191 706.829 542.159 -0.114 0.801 -0.264 0.485 

3102 4783.31 567.869 615.464 374.284 0.105 0.554 9403.285 516.007 665.807 255.723 0.033 0.409 0.2 0.639 

3103 3256.317 802.9 1036.115 617.776 0.033 0.632 7676.03 732.529 1004.498 770.927 -0.019 0.704 -0.095 0.53 

3104 4334.06 351.693 644.48 462.664 0.052 0.898 7152.321 331.108 553.225 379.331 0.112 0.804 0.21 0.527 

3207 4235.015 289.939 791.063 264.209 -0.453 0.747 9207.545 417.674 723.338 455.443 -0.117 0.82 0.005 0.349 

3208 4662.805 293.868 854.737 254.408 0.02 0.564 8350.593 323.892 970.135 284.023 -0.355 0.675 -0.257 0.266 

3209 3564.594 453.947 1226.724 933.271 -0.346 0.616 7427.622 531.631 1040.916 1246.333 0.149 0.756 -0.33 0.349 

3210 2822.928 299.719 963.097 370.632 -0.106 0.484 7783.176 340.056 689.81 484.006 -0.022 0.896 -0.26 0.405 

3211 4599.937 372.452 747.918 208.705 0.173 0.67 7117.657 468.038 1251.337 554.658 -0.306 1.064 0.111 0.293 
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Table 4.2. Moments from Estimated Density Functions for Yantze River Delta Area Wheat and Rice  

Wheat Rice Wheat and Rice 
Village 
ID wμ  

wμ
σ  wσ  wσ

σ  wS  wSσ rμ  
rμ

σ  rσ  rσ
σ  rS  rSσ  wrρ  w rρσ  

Univariate            

3101 2882.653 294.456 775.457 398.156 -0.104 0.55 7517.248 363.297 731.989 560.81 -0.076 0.522 N/A N/A 

3102 4784.048 570.962 600.636 352.524 0.07 0.344 9403.035 515.773 652.956 249.241 0.02 0.246 N/A N/A 

3103 3256.308 801.854 1032.143 610.105 0.02 0.398 7676.468 735.262 1001.087 768.537 -0.01 0.445 N/A N/A 

3104 4334.445 357.731 656.942 476.086 0.035 0.587 7153.326 332.99 564.405 392.549 0.077 0.52 N/A N/A 

3207 4234.439 290.259 831.651 274.221 -0.31 0.514 9206.596 418.192 758.086 454.977 -0.075 0.61 N/A N/A 

3208 4662.521 293.89 905.497 257.669 0.022 0.436 8350.823 322.48 1011.427 270.808 -0.301 0.593 N/A N/A 

3209 3563.785 463.727 1296.226 961.035 -0.235 0.426 7429.701 551.05 1069.207 1260.646 0.127 0.603 N/A N/A 

3210 2823.18 300.928 1014.629 385.597 -0.068 0.324 7781.147 343.585 720.174 498.367 -0.012 0.677 N/A N/A 

3211 4600.778 294.456 775.457 398.156 -0.104 0.55 7116.456 467.074 1290.112 532.022 -0.235 0.957 N/A N/A 

Bivariate  
3101 2881.449 274.128 723.742 372.661 -0.066 0.359 7519.173 338.041 679.156 496.004 -0.013 0.332 -0.26 0.474 

3102 4780.051 564.62 541.627 294.35 0.003 0.224 9398.609 501.271 587.596 219.409 0.041 0.123 0.197 0.63 

3103 3257.164 798.712 936.271 527.613 -0.001 0.219 7674.629 722.208 903.309 667.185 0.018 0.227 -0.094 0.518 

3104 4331.744 343.091 588.471 424.51 0.062 0.372 7149.912 320.643 503.072 338.131 0.056 0.348 0.201 0.517 

3207 4242.017 287.482 806.427 257.581 -0.215 0.306 9205.689 407.898 743.769 426.165 -0.022 0.353 0.004 0.336 

3208 4660.908 291.452 937.422 280.861 -0.011 0.274 8356.552 314.178 1062.996 287.828 -0.128 0.293 -0.249 0.26 

3209 3569.637 426.868 1242.147 847.005 -0.289 0.298 7431.251 552.004 1058.326 1145.466 0.078 0.315 -0.317 0.341 

3210 2824.143 291.181 970.787 359.707 -0.054 0.257 7782.56 319.533 692.955 471.905 0.011 0.35 -0.256 0.396 

3211 4599.46 368.133 812.82 217.767 0.076 0.299 7122.423 447.864 1340.553 561.644 -0.128 0.421 0.105 0.281 
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Table 4.3. Sample Statistics from Simulated Yantze River Delta Area Wheat and Rice Yield Distriubtions  

Wheat Rice Wheat and Rice 
Village 
ID wμ  

wμ
σ  wσ  wσ

σ  wS  wSσ rμ  
rμ

σ  rσ  rσ
σ  rS  rSσ  wrρ  w rρσ  

Univariate simulation 
3101 2875.578 350.102 536.732 282.18 -0.104 0.591 7509.895 449.821 503.857 381.766 -0.083 0.565 N/A N/A 

3102 4791.899 596.908 375.834 212.531 0.073 0.344 9404.711 520.629 416.436 162.519 0.024 0.246 N/A N/A 

3103 3260.251 812.632 670.008 387.344 0.024 0.405 7676.037 777.988 648.767 496.05 -0.01 0.458 N/A N/A 

3104 4342.042 426.581 439.39 326.371 0.034 0.634 7167.99 380.775 376.23 263.469 0.081 0.57 N/A N/A 

3207 4217.408 306.84 604.226 192.483 -0.322 0.545 9191.939 438.287 555.479 324.742 -0.069 0.686 N/A N/A 

3208 4654.793 296.668 699.353 197.086 0.025 0.46 8345.033 313.508 784.159 204.871 -0.311 0.693 N/A N/A 

3209 3542.755 618.326 940.506 634.694 -0.234 0.469 7437.18 753.705 784.719 857.283 0.156 0.724 N/A N/A 

3210 2820.761 334.75 735.819 269.451 -0.067 0.331 7767.277 397.863 516.952 345.423 -0.005 0.789 N/A N/A 

3211 4616.075 376.448 603.657 154.734 -0.132 0.585 7105.279 444.903 977.198 381.97 -0.257 1.133 N/A N/A 

Bivariate simulation             

3101 2940.991 691.338 566.272 304.815 0.003 0.209 7466.719 840.293 528.648 434.251 -0.061 0.254 -0.261 0.478 

3102 4761.532 529.573 383.522 218.417 0.006 0.077 9415.004 564.514 419.32 163.989 -0.022 0.141 0.196 0.638 

3103 3265.146 806.853 684.226 400.35 0.003 0.137 7661.047 974.456 663.06 508.459 -0.006 0.148 -0.087 0.529 

3104 4347.998 676.524 461.576 353.029 0.046 0.234 7228.766 798.486 382.698 267.7 0.058 0.281 0.22 0.508 

3207 4163.872 469.066 650.028 228.65 -0.036 0.246 9242.866 880.479 603.938 390.994 -0.157 0.233 0.004 0.349 

3208 4806.918 540.706 744.955 269.938 -0.089 0.208 8114.486 764.109 902.994 337.004 -0.012 0.221 -0.274 0.294 

3209 3522.199 1401.438 949.638 669.88 0.1 0.203 7739.679 1936.009 914.932 884.074 -0.19 0.176 -0.402 0.372 

3210 2776.741 562.93 765.349 277.063 0.003 0.22 7798.264 772.72 578.367 438.698 -0.048 0.189 -0.275 0.421 

3211 4721.633 526.899 642.763 197.325 -0.072 0.296 6798.088 1188.128 1160.181 606.382 0.087 0.248 0.112 0.324 
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Figure 1. Simulated detrended wheat yield for farm 3207776 

 

 

 

Figure 2. Simulated detrended rice yield for farm 3103794  
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Figure 3. Simulated joint distribution of wheat and rice yields for farm 3211030 

 

 


