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Abstract

We investigate the recently advanced theory that high-technology workers are drawn

to high amenity locations and then the high-technology jobs follow the workers. Using a

novel data set that tracks high-technology job growth by U.S. county, we estimate spatial

parameters of the response of job growth to the level of local natural amenities. We

achieve this estimation with a reasonably new class of models, smooth coefficient models.

The model is employed in a spatial setting to allow for smooth, but nonparametric response

functions to key variables in an otherwise standard regression model. With spatial data this

allows for flexible modeling such as a unique place-specific effects to be estimated for each

location, and also for the responses to key variables to vary by location. This flexibility

is achieved through the non-parametric smoothing rather than by nearest-neighbor type

estimators such as in geographically weighted regressions. The resulting model can be

estimated in a straightforward application of analytical Bayesian techniques. Our results

show that amenities can definitely have a significant effect on high-technology employment

growth; however, the effect varies over space and by amenity level.

Keywords: Bayesian econometrics, employment growth, high technology, smooth coeffi-

cient models, spatial modeling.



1. Introduction

Many rural areas have long lagged their urban cousins in terms of job growth and

income gains (McGranahan and Beale, 2002). However, recent decades have seen a re-

naissance in many rural communities due to migration to rural locations driven by high

amenities such as pleasant landscapes, mountains, lakes, or oceans (McGranahan, 1999;

Deller et al., 2001, 2006). This migration pattern appears to extend far beyond the effects

of tourism and retirees, and seems to extend to other businesses.

Along with this shifting migration pattern to natural amenities (aside from climate),

there have been technological changes that appear to have reduced the costs of distance

and remoteness (Cairncross, 1995, Kotkin, 1998). Indeed, persistent trends toward amenity

migration may support a surge in advanced technology firms locating in rural communi-

ties. Though such stories often seem to be overblown, one can picture a highly-educated

knowledge worker being on her computer, attached to a satellite internet hook-up, in a

remote bucolic setting. With the potential for higher wages in technology firms along

with the opportunity to diversify the local economy, it is easy to imagine why many rural

communities would welcome the prospect of such firms locating in their towns.

There are other arguments supporting the claim that rural communities are increas-

ingly able to attract advanced-technology employment. First, combining the facts that

amenities are generally normal goods and higher-skilled workers have more income, it

seems to be a natural fit that advanced technology firms would increasingly wish to locate

in rural communities to follow their employees preferences. Indeed, Partridge et al. (2008b)

find evidence that subsequent nonmetropolitan employment growth was higher in places

with greater initial shares of college graduates, especially in high-amenity areas. Moreover,
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using geographically weighted regression techniques, they found that the marginal impacts

of both amenities and college attainment spatially varied across the country, suggesting

further heterogeneities.

Despite the possibilities raised here, efforts to attract advanced technology firms and

thereby replicate Silicon Valley (even on a mini-scale) are not new. The general story has

been that it is hard for state and local policy to influence their location (e.g., Partridge,

1993). For example, Saxenian’s (1996) description of Silicon Valley and Route 128 near

Boston stresses organizational and cultural aspects rather than public policy, while acci-

dental location effects are also apparent when considering Microsoft’s location in Seattle.

In terms of nonmetropolitan areas, using data from the 1970 and early 1980s, Barkley et

al. (1989) point out that rural areas tended to greatly lag in terms of attracting high-tech

manufacturing, while the types of high-tech firms they attracted tended to be more mature

and labor-intensive. Thus, one could question whether the notion of attracting advanced

technology firms to rural communities is even feasible.

Though many rural areas offer spectacular amenities, they also lack basic elements that

are traditionally associated with prosperous advanced technology magnets. Foremost, rural

communities often lack the localization and urbanization economies that form the core basis

of agglomeration and city formation (Rosenthal and Strange, 2001). In particular, rural

areas appear to lack the labor market pooling and knowledge spillovers that are the basis

of why many of these firms would prefer locating in cities. Specifically, immigrants and

young urban professionals who form the core of the creative class may strongly prefer the

Bohemian culture found in urban neighborhoods (Florida, 2002). Yet, there are many high-

amenity nonmetropolitan areas that have managed to attract creative-class occupations

(McGranahan and Wojan, 2007). Indeed, these areas have significantly faster job growth
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relative to other nonmetro counties. Thus, natural amenities may counteract some of the

effects of urban amenities stressed by Florida and his followers.

Overall, Barkley et al.’s (1989) pessimistic appraisal may no longer apply due to the

changes in technology and the rising importance of amenities. Rural areas now may be

more competitive in attracting advanced technology firms. Thus, this appears to be an

opportune moment to reassess rural advanced technology employment in a comprehensive

fashion that considers amenities, human capital, access to urban areas, proximity to re-

search universities, and allows for spatial heterogeneity. Following this roadmap, this study

investigates the determinants of county-level advanced technology employment growth over

the 2000-2006 period.

This paper thus joins a strong and growing literature using a wide variety of sta-

tistical techniques to analyze large, spatially-organized data sets in applications such as

the modeling of regional employment growth, industry agglomeration effects, population

trends, income distributions, and more. One important aspect of empirical modeling of

such spatial problems is the forced tradeoff between flexibility of the statistical model and

feasibility of computation. In an ideal world, the coefficients of the statistical model could

vary freely by location to allow for place-specific effects and more accurate forecasts of

future events. Unfortunately, such place-specific models require sufficient data on each

location to allow feasible estimation of all the unknown parameters, and that amount of

data is rarely available (or new enough to still be relevant). Thus, models are commonly

estimated using data for a region (nearest neighbor estimation and geographically weighted

regression techniques), thereby increasing the available data, or parameters are restricted

across locations, thus decreasing the number of unknown parameters. Some type of tradeoff

is required to allow estimation to succeed.
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In this paper, we take a new tack, by applying a new estimation approach that allows

location-specific parameters to be estimated that fall somewhere in between the two more

traditional approaches. We utilize a variation of the smooth coefficient model developed

by Koop and Poirier (2004) and Koop and Tobias (2006) that we have adapted to the

problems inherent in spatial data. This semi-parametric model does not fully restrict

parameters across locations, but instead only requires the location-specific parameters to

vary smoothly in some prescribed pattern. Thus, the parameters could be considered

partially restricted and because the pattern of smoothing is, in part, based on geography

there are some elements of geographically weighted regressions present as well. However,

the method is more flexible than either earlier approach as will be explained below.

The remainder of this paper is organized as follows. In section 2 we discuss the smooth

coefficient models adapted for analysis of spatial data in regional economics applications.

In section 3, we present data for our application. Section 4 presents econometric results

and discusses the policy implications of our findings. Conclusions follow in section 5.

2. A Model with Smooth Spatial and Amenity Characteristics

Begin with a simple linear model that has two coefficients that vary with their asso-

ciated observation:

yi = xiβ + f1(i) + zif2(i, wi) + εi, (2.1)

where yi is the spatially-indexed variable to be modeled (e.g., high-technology employment

growth in location i), xi is a k-vector of location-specific explanatory variables, β is a vector

of coefficients to be estimated that do not vary with location, f1(i) is a nonparametric

location-specific effect, zi is a variable whose effect on the yi varies by either location i
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or by the value of the variable wi (or both), and εi is the observation-specific random

stochastic term. Observations are indexed by a spatial subscript i = 1, 2, ...n.

The two nonparametric parts of the model in equation (2.1) are written as two func-

tions, f1 and f2. While these functions can be generalized, we have written them here so

that f1(i) is a location-specific intercept and f2(i, wi) is a location-specific coefficient that

designates the expected impact of variable zi on yi. Denoting f2 to be a possible function

of both wi and i allows for the possibility that f2 varies in a spatial pattern, in relation

to changes in variable wi, or both. Importantly, because f1 and f2 are nonparametric the

location effects and the effect of variable zi on yi are not constrained to be linear or even

continuous.

Following up on the work of Partridge et al. (2008), it is likely that the determinants of

advanced technology employment growth vary spatially across the country. Thus, we utilize

our Bayesian semi-parametric methodology to estimate state-specific intercept parameters

which will be smoothed to be similar to the two states with the closest state-average

amenity index. These intercepts are the f1 function. We then allow spatial heterogeneity

across the sample in a very flexible manner for the parameter on an amenity index. We

make f2 a function of agglomeration effects by allowing the parameter f2 to vary by county

while smoothing the variation in relation to changes in a variable that tracks the population

of the nearest MSA (our choice for the wi variable). This smoothing will dampen the

noise in the county-specific amenity parameters while still introducing considerable spatial

flexibility. We present the methodology below in somewhat general terms, but the reader

can keep in mind the role to be played by the two non-parametric functions within the

model.
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In order to demonstrate the methodology of smoothing the two nonparametric com-

ponents of the model, it is easier to work with all the observations stacked into matrices.

Thus, rewrite the model in (2.1) as

y = Xβ + Sγ + Zκ + ε = Wλ + ε, (2.2)

where y, X, and ε are the usual vertical concatenations of the yi, xi and εi, S is a matrix

with n rows and a column for each of ns included states where the (i, j) element equals

one if the observation in row i is in state j, Z is a diagonal matrix of the zi, and γ and κ

are column vectors of the ns and n values of the two respective nonparametric functions,

f1 and f2. The model as written obviously needs some restrictions as it has n observations

and n+ns +k parameters to be estimated. The smoothing of the nonparametric functions

will serve as the necessary reduction in free parameters even though the parameters are

not placed exactly on a continuous function (Koop and Tobias, 2006).

To accomplish the smoothing of the nonparametric functions, one must first define

what is meant by “smooth.” It makes sense to begin with the county-specific amenity

effects.

The function f2 is made smooth in the sense that the effect of zi changes “smoothly”

as the variable wi increases. To make this concrete, order the observations so that wi is

increasing from first to last observation. Then the necessary smoothing matrix is

D2 =


1 −2 1 0 . . . 0
0 1 −2 1 0 . . . 0
...

. . .
...

0 . . . . . . 1 −2 1

 , (2.3)

The reader should note that D2 is ((n−2)×n), not square, due to the inability to smooth the

first two data points of the nonparametric function with this approach. That is, the initial
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conditions are left free. This matrix D2 will allow a transformation of the county-specific

amenity-effects into a vector of the smoothed differences which will actually be estimated

along with the first two county-specific effects. Then the differencing transformation can

be reversed to recover the remainder of the county-specific effects by use of the simple

formula f2(i) = f∗2 (i) + 2f2(i− 1)− f2(i− 2) where f∗2 (i) are the smoothed differences.

Next, the function f1 will be made smooth in the sense that the state-specific intercepts

(or effects) that it represents will be restricted to be similar to those of the two states with

the adjoining ranked state-average amenity index. This concept is made mathematical

through the application of a smoothing matrix, denoted D1. Similar to D2, D1 will be

((ns− 2)×ns) where ns is the number of states. If the observations were arranged so that

states appeared in order of increasing state-average amenity ranks, the smoothing matrix

would be identical in form to D2. However, because the observations will be ordered to

facilitate the modeling of the amenity effect, the pattern of the state-specific intercepts

will be non-standard and cannot be written out in general. Each row of D1 will have a -2

on the main diagonal, but the two elements that equal 1 will not be on each side as they

are in D2. Instead the 1’s appear in the columns for the adjacent states in the ordering

of the state-average amenity index. All other elements of the row will equal 0. Thus, the

matrix D1 defines smooth as the state-specific effect changing in a nearly linear manner

from low amenity states to high amenity states.

The definition of a full-model smoothing matrix R,

R =
[

0 D1 0
0 0 D2

]
, (2.4)

allows for smoothness of the two nonparametric functions to be imposed by the linear

approximate restriction

Rλ ≈ 0, (2.5)
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which imposes n + ns − 4 approximate restrictions on the n + ns + k parameters. If

the restrictions in (2.5) were imposed exactly, the state effects would be linear in state-

average amenities and the effect of the amenity variable zi on y would be linearly increasing

throughout the range of the data (in the order of variable wi). By imposing the restrictions

embodied in (2.5) through a Bayesian prior with a nonzero prior variance, we will allow

these two effects to vary over space, but not to be completely unfettered. Thus, the model

will have state-specific effects that vary gradually over space and the effect of the variable

zi can vary as wi increases, but in a gradual, more continuous way than without the

smoothness prior.

2.1 Some Helpful Definitions and Notation

To simplify the derivation of the posterior distribution of the parameters of interest,

it is useful to define a few more subsets of parameters to be estimated and smoothing

matrices. Let

λ∗ =
(

λ1

R2λ2

)
, (2.6)

where λ1 = (β′, γ1, γ2, κ1, κ2)′, λ2 = (γ̃′, κ̃′), γ̃ = (γ3, ..., γs)′ , and κ̃ = (κ3, ..., κn)′. Note

that R2λ2 is the vector of smoothed effects, both the state-specific effects and the spatially-

varying amenity parameter. Further, partition R to define R2 from (2.6) as

R2 =
[

D̃1 0
0 D̃2

]
, (2.7)

where D̃1 and D̃2 are respectively D1 and D2 minus the first two columns on the left, and

R1 =
[

0 D∗
1 0

0 0 D∗
2

]
. (2.8)

The definition of R1 includes the first two columns of D1 and D2 that were removed to

free up the initial conditions of the smoothing functions. Finally, define the data matrix

partition W = [W1 W2] such that
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S = [ s1 s2 S2 ] , Z = [ z1 z2 Z2 ] ,

W1 = [ X s1 s2 z1 z2 ] , W2 = [S2 Z2 ] , (2.9)

where s1, s2, z1, and z2 are the first two columns of the respective matrices S and Z.

With these additional matrices defined, a transformed model can be defined that is

easier to work with. This model has the transformed data matrices

W ∗
1 = W1 −W2R

−1
2 R1 and W ∗

2 = W2R
−1
2 . (2.10)

Using these transformed data matrices, we can rewrite the model as

y = Wλ + ε = W ∗
1 λ∗1 + W ∗

2 λ∗2 + ε = W ∗λ∗ + ε. (2.11)

2.2 The Prior

To analyze this model within a Bayesian framework we need a prior distribution for

all the unknown random parameters. In particular, we need prior distributions for λ∗ and

for σ2
ε . If we employ the natural conjugate prior, this model can actually be examined

analytically, avoiding the need for numerical approximation methods. Thus, unless one

has a strong reason for choosing another shape for one’s prior beliefs about the model

parameters, using the normal-Gamma prior seems a good choice. Therefore, we assume a

prior distribution of the form

p(λ∗, σ−2
ε ) ∼ NG(mo, Vo, s

−2
o , νo). (2.12)

The prior mean of the regression model parameters, mo, would commonly be set to a

vector of zeros unless the researcher possessed specific information on the parameters. In

the smooth parameter model developed here, choosing zeroes for the prior means of the
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parameters within λ∗2 is critical as that is what imposes the smoothness on the nonpara-

metric functions f1 and f2, so the final n + ns − 4 elements of the prior mean should

always be set to zero. The variance of the prior on λ∗, Vo, controls how near to mo one

believes the elements of λ∗ to be, as well as whether one believes the parameters to be

independent or correlated in some way. However, because some of the parameters are part

of the smoothed non-parametric functions, it is likely best to specify this matrix in four

parts,

Vo =


τ1Ik 0 0 0
0 τ2I4 0 0
0 0 τ3Is−2 0
0 0 0 τ4In−2

 . (2.13)

This partion of the prior variance allows for the researcher to place a loose prior on the

structural parameters in λ1 by setting τ1 to a relatively large scalar. The parameter τ2

allows a prior variance on the initial conditions for the smoothed parameters; this is also

likely to be set to a fairly large scalar in most applications. In turn, τ3 and τ4 control how

smooth the individual spatial effects and the effect of zi on the dependent variable are to

be; smaller values of (τ3, τ4) lead to smoother non-parametric functions. Conversely, as

τ3, τ4 go to infinity, f1, f2 become fully flexible non-parametric functions and the model

cannot be estimated due to underidentification.

The Gamma prior on the error variance term is a standard one. Common choices of

values for s−2
0 are on the order of 0.1 or 0.01. The degree of freedom hyperparameter νo in

the Gamma prior is typically set to a small, positive integer representative of the size of

an imaginary sample of data used to measure the amount of prior information held about

the variance.
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2.3 The Posterior Distributions

If one assumes that the εi are i.i.d. as normal random variables with zero mean

and constant variance σ2
ε , that is equivalent to specifying the standard normal-gamma

likelihood function for the observations on yi. With such a likelihood function and the prior

described in the previous subsection, Bayes’ Theorem leads one to a posterior distribution

in the normal-Gamma form:

p(λ∗, σ−2
ε ) ∼ NG(mp, Vp, s

−2
p , νp), (2.14)

where

Vp = (V −1
o + W ∗′W ∗)−1, (2.15)

νp = νo + n, (2.16)

mp = Vp

(
V −1

o mo + W ∗′y
)
, (2.17)

and

s2
p = ν−1

p

(
νos

2
o + (y −W ∗mp)′(y −W ∗mP ) + ((mo −mp)′V −1

o (mo −mp)
)
. (2.18)

Because the conditional posterior distribution of λ∗ is normal and the transformation

from λ to λ∗ was a linear one, it is simple to recover the posterior estimates of the ele-

ments of λ and those original, structural parameters will also have conditional posterior

distributions that are normal. Also, note that if one chooses to work with the marginal dis-

tribution of λ∗, integrating out σ2
ε will yield a t-distribution for λ∗. Either the conditional

or marginal distribution makes it easy to construct a variety of probability statements

about elements of λ∗ or any linear function of these parameters, say Aλ∗.
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For example, to recover the location-specific estimates of f1 and f2 that were denoted

in stacked form by λ2 from the marginal distribution of λ∗2, one simply inverts the trans-

formation in (2.6). If we define m2p and V2p as the relevant subvector and submatrix of

mp and Vp, respectively, that would give a marginal distribution for λ2 of

p(λ2|s2
p) ∼ tνp−k−2(R−1

2 m2p, s
2
pR

−1
2 V2p(R−1

2 )′). (2.19)

This marginal posterior for the nonparametric function estimates is a t-distribution, mak-

ing it straightforward for the researcher to make statistical inferences about the location-

specific effects and the location-specific impact of amenities.

3. Data for Modeling County High-Tech Employment Growth

To assess the role of amenities in drawing high-technology employment to specific

locations, we take advantage of an innovative dataset provided by EMSI. This data set

provides accurate county sectoral employment to the four-digit level, allowing us to much

more closely measure advanced technology employment than past studies that often were

forced to rely on two or three digit data. In order to capture its complete picture of

industry employment, EMSI combines covered employment data from Quarterly Census

of Employment and Wages (QCEW) produced by the Department of Labor with total

employment data in Regional Economic Information System (REIS) published by the

Bureau of Economic Analysis (BEA), modified with County/ZIP Business Patterns (CBP)

and Non-employer Statistics (NES), both published by the U.S. Census Bureau.

The data integration process seeks to unsuppress QCEW to the 6-digit industry level

for all counties in the United States and to combine the dataset with various other sources

to fill in existing holes. The first step involves combining QCEW with CBP to remove
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QCEWs internally placed suppressions and arrive at industry specific county level data.

QCEW is the best, highly detailed single data source available but this dataset is corrob-

orated with REIS, an equally reliable but less detailed source, to ensure its accuracy. To

achieve this, modified QCEW and NES data sets are used as seed numbers to disaggregate

2 and 3-digit REIS numbers among 3 and 4-digit industries. At this point, proprietors

and non-covered employment data from NES and REIS are also extracted. This is neces-

sary because QCEW does not include these sections of the workforce. After these three

steps, mid-level industry employment data specificity is achieved. The last step focuses

on inputting the mid-level unsuppressed REIS numbers back into the unsuppressed 6-digit

QCEW data and adjusting the QCEW numbers accordingly. Once the REIS matrix has

been incorporated back into QCEW the industry employment data set is complete. In this

project, only 4-digit level employment specificity was used.

High technology employment is defined for the purposes of this study as employment

in 14 4-digit NAICS industries, sometimes called level-I high technology industries because

they have the highest percentage of employees that fit the definition of high technology jobs.

Based on Hecker (2005), these 14 industries have at least 5 times the average proportion

of high technology workers and constitute 24.7% of all high technology employment. The

list of these 4-digit industries is provided in table 1. We sum the employment in all 14

industies using the unsuppressed data from EMSI for two years: 2000 and 2006. Our

dependent variable is the difference in employment between these two years; that is, 2006

employment minus 2000 employment.

We also check the county-level high-technology employment data by ensuring that

all counties have at least minimal employment estimates. This is to minimize the chance

that our unsuppression methods do not invent jobs and to make any errors in generating
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the unsuppressed data less important in magnitude (since at very low numbers, any error

would be magnified). Thus, all counties that did not have at least 10 high technology

employees in both 2000 and 2006 were eliminated. The data set is left with 2,937 counties

for our regression.

For explanatory variables in our model, we used a set of seven variables in addition

to our state-specific effects and the amenity variable that is of particular interest. Those

seven variables capture the impact on high-tech employment growth of local population,

nearby research universities, urban amenities, housing prices, and education levels. We use

1990 values for time dependent variables as “deep lags” to minimize endogeneity concerns.

Details of these variables are as follows.

Our first variable is the 1990 log of the county’s high-tech employment to account for

localization or Marshallian economies in which greater agglomeration economies take place

due to factors such as labor-market pooling, better access to inputs, knowledge spillovers,

etc (Glaeser et al., 1992; Rosenthal and Strange, 2001; Desmet and Fafchamps, 2005,

Partridge, 1993; Partridge et al., 2008). Though increased concentration of industry em-

ployment may be associated with localization economies or “clusters,” the general evidence

is that concentrations of sectoral employment in a given location are inversely associated

with subsequent local growth in that industry–i.e., a reversion to the mean effect.

A key input for knowledge-oriented businesses is highly skilled labor. We proxy for

this variable by accounting for the 1990 share of the population over 25 years old that has

a four-year college degree (using 1990 Census of Population data). We anticipate greater

shares of college graduates to be positively related to subsequent growth in high-tech

employment (Partridge, 1993). Because we are modeling high-technology employment,

rates of achievement for lower levels of education were not included as a control variable.
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Another advantage of rural locations is lower costs for land and for housing, which

would be attractive for both the firm and for the workforce. We account for this by

including the log of the 1990 median home value from the 1990 Census of Population.

A rural life style in high-amenity locations is appealing to many individuals. Yet,

these same individuals may want access to higher-ordered consumer services only found

in successively larger cities (Partridge et al., 2007, 2008). Likewise, advanced technology

firms need access to urban markets as well as need to be closely proximate to specialized

inputs. For example, using data from the 1970s and early 1980s, Smith and Barkley (1991)

find that metropolitan adjacency is a key factor supporting rural high-tech manufacturers.

We account for proximity to urban areas with a series of distance and population variables

used by Partridge (2008) in their study of the urban hierarchy. The first measure is

distance to the nearest metropolitan area (or urban center) of any size, measured as the

distance in kilometers from the population-weighted centroid of the rural county to the

population-weighted centroid of the metro area. Beyond the nearest metro area of any size,

we also include the incremental distances in kms to larger, higher-tiered urban centers to

reflect added “penalties” such as costs for households and businesses in acquiring higher-

order services and access to customer markets. These distances reflect the incremental or

marginal costs to reach each higher-tiered (larger) urban center. Specifically, the model

includes the incremental distance in kms from the county to reach a metro area of at least

250,000, at least 500,000, and at least 1.5 million people. The largest category generally

corresponds to national and top-tier regional centers, with the 500,000-1.5 million category

reflecting sub-regional tiers.

Because the closest metropolitan area may be most important to households and

firms for urban services and markets, we also include the 1990 population of the nearest
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metropolitan or micropolitan area in the model. Though the effects of this population

variable are partially captured by the distance variables, we expect that a larger nearest

urban area will be positively related to rural advanced technology employment growth.

The last control variable is the one to measure proximity to a major university. Using

a list of major land-grant and research universities, a map was developed containing the

geographic locations of the institutions. In addition, an additional map was developed

using county-level geographically weighted population center data provided by the U.S.

Census. The weighted population center map was superimposed upon the university map.

From here, a 50 mile buffer was placed around the universities, allowing the geographically

weighted population centers contained within each of the buffer zones to be identified. The

result is a variable that equals one for all counties within the 50 mile buffer surrounding

at least one of these research universities.

Because the role of natural amenities on high technology employment and migration

is of particular interest in this study, the choice of variable to measure amenities is very im-

portant. The amenity variable used is a 1 to 7 amenity ranking produced by the Economic

Research Service of the U.S. Department of Agriculture, with higher numbers reflecting

greater amenities. This measure is a composite of various natural amenities that have

been shown to influence migration such as climate, topography, and access to water area.

As already noted, natural amenities are increasingly key factors driving rural and urban

migration flows (McGranahan, 1999; Deller et al., 2001, 2006; Ferguson et al, 2007). As

in the case of urban amenities, natural amenities are generally normal goods, which would

be especially attractive to knowledge workers with high incomes. Indeed, the notion that

information technology workers could live anywhere–including high amenity locales–is a
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driving factor behind claims such as the “death of distance” and “Forty Acres and a Mo-

dem” (Cairncross, 1995; Kotkin, 1998). Despite these romantic notions, many observers

have stated that personal contact and access to urban areas are still key features of busi-

ness location including for advanced technology firms (Kolko, 1999; Smith and Barkley,

1991; Partridge et al., 2008).

4. Econometric Results and Policy Implications

In estimating our model of high-technology employment growth and amenities using

the county data set just described, we have to specifiy all the prior parameters in the

model as shown in (2.12). We do so by setting these parameters to mo = 0, νo = 10, and

s2
o = 0.1. The specification of Vo according to (2.13) is made by setting τ1 = τ2 = 10,

τ3 = 0.001, and τ4 = 0.0001.

The estimation results of the smoothed coefficient model for the structural parameters

in β are presented in table 2, using posterior means as point estimates for the regression

parameters. We find by comparing posterior means to posterior standard deviations that

satisfactory statistical precision has been achieved for the variables measuring lagged high

technology employment, distance to the nearest metropolitan area with a population of

at least 250,000, the lagged share of college graduates, and the lagged population of the

nearest metropolitan area. Also, for a relatively simple model on a huge cross-section data

set with enormous variability, the R2 is quite impressive at 0.6481.

The parameters of these significant variables are quite interesting. First, one notices

that the impact of lagged high-tech employment is negative; the more high-technology

employment there was in 1990, the less growth in high-tech employment one should expect

in that county from 2000 to 2006. This is slightly surprising and supports the reversion

to the mean effect in local high technology employment. The negative effect may also be
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impacted by the fact that the composition of high technology jobs has changed quite a bit

from the 1980s to the 2000s. Distance to the nearest metropolitan area with a population

of at least 250,000 also has a negative effect which makes sense due to the increasing

difficulty in obtaining urban amenities and agglomeration effects. A higher proportion of

college graduates in 1990 leads to greater high-technology job growth 10-16 years later.

This result agrees with the conventional wisdom that employers in need of highly educated

workers are having to follow the workers rather than vice versa. Interestingly, higher

population in the nearest city has a small negative effect, implying that being near a big

city is not a universal positive. It is also worth noting that the presence of a research or land

grant university within 50 miles has no significant impact on high technology employment

growth.

Moving to consideration of the smoothed state-specific effects, table 3 shows a few

summary statistics for the estimated parameters (again using posterior means for point

estimates). The range of state-specific effects is quite large. Figure 1 shows that the

evolution of the state-specific effects is, indeed, smooth. Since the state-specific intercepts

are still being applied to county-level data, these magnitudes suggest that counties in the

most favorable state have an expected growth in high technology employment of about

350 more jobs in a 6 year period relative to the least favorable state. That is almost 60

jobs per year, which in non-urban counties is a significant economic development success.

Finally, the county-specific amenity effects are also summarized in table 3. The range

of these smoothed effects is enormous, from a minimum of -211 to a maximum of 5,180.

Recall that these are parameters on an index with a range of 1-7, so a value of 100 would

imply an additional 100 expected new jobs in the county over the study period for each

unit increase in the amenity index. Clearly, the magnitude of the amenity parameters says
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that natural amenities can have a significant role in high technology job growth. Unfor-

tunately, almost all of the amenity parameters have highest posterior density regions that

include 0 (the Bayesian equivalent of a confidence interval that covers 0), so we cannot

find much evidence for a statistical impact of natural amenities on high technology employ-

ment growth. Still, we have uncovered significant spatial heterogeneity in the estimates

of amenity effects that cover a wide range of both positive and negative values. There is

certainly evidence of a role for amenities in high technology job creation and it is one with

an important spatial component.

It is somewhat interesting to note that the median value amenity parameter is -30, sug-

gesting that in over half the counties more natural amenities are (weakly) correlated with a

loss in high technology jobs. That certainly is not the effect we expected to find, although

in some counties the amenity effect does has the expected positive sign. The conundrum

and low statistical precision suggests several possibilities. One is that the amenity index

is not sufficient to capture the effect of natural amenities, individual component variables

are needed. Perhaps natural beauty, water, and recreation opportunities matter but not

temperatures, or different components in the index matter in different regions. A second

possibility is that the impact of natural amenities is only felt in certain circumstances such

as in the absence of urban amenities or agglomeration effects.

Finally, for comparison purposes, the same model was estimated by maximum like-

lihood without state-specific effects and with a single, constant amenity parameter. The

parameters on the structural variables (the β vector) have very similar estimates in both

magnitude and precision, with the same variables being significant. However, the amenity

parameter is estimated to be 59.3 and is statistically significant with a t-value of 2.03. This

result, in conjunction with the positive effect of lagged share of college graduates, would
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support our hypothesis of jobs following high-skill workers to locations with high natu-

ral amenities. However, the difference between the constant coefficient estimate and the

median of the county-specific parameters (-30.0) suggests that the restriction to a single,

linear effect introduces an aggregation bias that causes a possibly faulty conclusion.

5. Summary and Conclusions

The question of whether policies exist that can help counties to increase high tech-

nology employment is an important one. This paper has tried to address a narrower part

of that question: whether natural amenities can be used to entice high-skill workers to a

location where the high technology employers will follow. This paper reveals a few insights

into both the broad and more narrow question, but much more work is still needed to

settle these issues.

On the broader question, it appears that some strategies do not pay off, notably hav-

ing a major research or land grant university. This suggests that all the locations trying to

duplicate Research Triangle (NC) by pushing high technology parks near their major uni-

versities are unlikely to be successful. Distance to large metropolitan areas was a negative,

when measured to the nearest metro population of at least 250,000. However, we found no

effect to the distance to the nearest 500,000 or 1,500,000 population center, suggesting that

any urban amenities or services that do matter can be captured by relatively small metro

areas. Further, we find a negative effect to increases in the nearest MSA’s population. In

conjunction, these two results suggest that we want some urban amenities, but not too

close and not at the expense of major city inconveniences. We also find empirical support

for the reversion to the mean effect in local high technology employment, but do not see

how this helps policy makers other than to encourage those who have not succeeded so far.

20



The clearest prescription we find for policy makers is in the results for our variable on

the proportion of college graduates in 1990. Having a population with an extra 1 percent

of college graduates is expected to result in about 53 more high technology jobs in our

six year study period. Clearly, this has the potential to produce sizable results for small

to medium counties if they can find strategies for attracting or producing more college

graduates.

On the issue of natural amenities, unfortunately, our results are inconclusive. A fixed

coefficient model found significant results in favor of amenities leading to more high technol-

ogy job growth. However, our spatial model of amenities produced county-specific amenity

parameters that were mostly statistical insignificant and just as likely to be negative as

positive. However, the state-level effects were important and varying significantly across

states and the county-specific amenity effects also have sizable magnitudes from which

further refining of the statistical modeling may help to draw statistical inferences on the

important and spatially-variable role of natural amenities in high technology employment

growth.
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Table 1: High Technology Industries

Industry 4-digit NAICS

Pharmaceutical and medicine manufacturing 3254
Computer and peripheral equipment manufacturing 3341

Communications equipment manufacturing 3342
Seminconductor and other electronic component manufacturing 3344

Navigational, measuring, electromedical, and 3345
control instruments manufacturing

Aerospace product and parts manufacturing 3364
Software publishers 5112

Internet publishing and broadcasting 5161
Other telecommunications 5179

Internet service providers and Web search portals 5181
Data processing, hosting, and related services 5182
Architectural, engineering,and related services 5413
Computer systems design and related services 5415
Scientific research and development services 5417
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Table 2: Parameter Estimates for Basic Variables

Variable post. mean post. std. dev. ratio

1990 HT jobs -0.1907 0.0032 -59.33
univ. 50 miles -28.8034 71.3826 -0.40
km metro 250 -0.6965 0.3695 -1.89
km metro 500 -0.1211 0.5137 -0.24
km metro 1500 -0.2988 0.2796 -1.07
1990 ln(home p) -3.8561 105.3852 -0.04

1990 college grads 52.8410 5.9487 8.88
1990 near MSA pop -0.0010 0.0001 -12.75

Table 3: Smoothed Parameter Estimate Summaries

Measure Value

State effect minimum -282.26
State effect maximum 74.20
State effect median -109.35

Amenity effect minimum -211.73
Amenity effect maximum 5179.7
Amenity effect median -30.00
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