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Monthly Storage Model of U.S. Cotton
Market: Estimation of the Basis under

Rational Expectations

Oleksiy Tokovenko Lewell F. Gunter

Abstract

The paper outlines an approach to estimation and analysis of the futures
basis in the U.S. cotton market under weakly rational expectations. Given the
model specification derived from the underlying dynamic profit optimization
problem of the dealers, the intermediary market model is estimated using the
self-organizing state-space (SOSS) approach. Estimation results are used to
evaluate the prediction power of the method and test the main assumptions
about the existence and consistency of the subjective rational expectations
incorporated in the model.

Research in progress. Do not quote without authors’ permission.

Introduction

The contemporary theory of commodity markets attempts to model the behavior of

commodity prices in order to explain the factors that generate the price fluctuations

and thus to make predictions of future prices, basis and market response. Assump-

tions about rationality of price expectations have been widely used in empirical studies

in order to provide dynamic links and close the market model. Although the ratio-

nal expectations of the market prices are often efficiently approximated through the

observed futures prices on the relevant commodities, this approach is more appro-

priate to studying of contemporaneous or past market history as well as to making
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short period predictions based on the current information. An alternative, endoge-

nous modeling of market expectations allows one to estimate the effects of struc-

tural changes in the model and thus analyze market performance under alternative

scenarios (e.g. Miranda and Helmberger (1988)). Applications of endogenous ra-

tional expectations models to the analysis of agricultural commodity markets in a

fully stochastic-dynamic setting can be found, for example, in Miranda and Glauber

(1993) and Peterson and Tomek (2005) . The main issue with this class of models is

using parameterized expectations as a function of the current value of state variables,

such as carryover of commodity. We propose to treat the values of future prices as

unobserved market expectations applying the idea behind the state-space approach

to time-series analysis. In such a framework expected values of prices and basis risk

at a future period can be learned through the information available up to the current

period. We suggest to impose the weaker condition for rationality of the model be-

havior (such as consistency of price expectations or asymptotic rationality) that will

serve as an important argument for the model identification.

Objectives

The objective of this paper is to develop an alternative estimation algorithm for the

commodity storage market model with nonlinear rational expectations and to use the

underlying structural model to obtain accurate estimates and forecasts of the futures

basis at different points of time that can be used to support the marketing decisions

made under uncertainty (see, e.g. Taylor, Dhuyvetter and Kastens (2006) and Lai,

Myers and Hanson (2003)).
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Model

In the case of storable commodity markets the analysis of futures markets can be

focused on the decisions of the dealers who serve as intermediaries between the farmers

and consumers. Consider risk-averse dealers with their risk preferences represented

by an increasing and concave von Neumann-Morgenstern utility function of profit,

U(πt). Assume that at any time period t the intermediates face demand, output and

relative price uncertainty in the absence of input price uncertainty. At the beginning

of each decision period dealers choose an amount of the commodity st to purchase at

the spot market at the current market price pt that can be sold next period at the

expected price p̃t+h or held for the future transaction if the higher value of inventory is

expected. The dealers charge the sellers and buyers commissions v(st) which establish

the nonspeculative income of the intermediates. They also carry storage, financing

and distributional costs φ(st) associated with the amount of commodity purchased.

In order to reduce the risk associated with the spot price uncertainty the dealers take

a position at the futures market by selling xt futures contracts at price ft for delivery

at time T . At time t+h the value of one contract will be defined by the expected price

f̃t+h therefore the dealers can make profit by adjusting their futures position based

on the expected difference in futures prices of two periods. With this assumptions

the expected profit of dealers at time t+ h is defined by

π̃t+h = (p̃t+h − pt)st + v(st)− φ(st) + xt(ft − f̃t+h) (1)

At present, we are interested in the one period decisions therefore h = 1 is fixed.

By recognizing the intertemporal arbitrage opportunities dealers seek to maximize

the expected discounted stream of their utility of profits over the infinite horizon (we
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consider the rollover hedging using consequent overlapping contracts):

maxEt

∞∑
t=0

βtU(π̃t) (2)

where β is the discount rate and Et is the conditional expectation operator given in-

formation Ft at time t. At each period t = 0, 1, . . . , the decisions of dealers are subject

to the stochastic constraints arising from the optimal actions of their counterparts.

Thus the spot market decisions are limited by the following transition equation that

defines the supply of inventory investment as

st+1 = st + g(pt+1) + εt (3)

where g(pt) is the inverse function that maps current production, export and con-

sumption levels into the equilibrium price on the positive half line, while εt combines

the supply and demand shocks of time t. The inventory choice assumes st ≥ 0 for all

periods which introduces additional nonlinearities into the conditional expectations

functions. Simultaneously, the choice of amount to hedge xt bounds the behavior of

the futures price through the weighted value of the expected spot price p̃t+1 and the

risk premium r resulting from the net hedging pressure

ft+1 = αp̃t+1 + rxt + νt (4)

To solve the stochastic optimization problem (2) subject to stochastic constraints (3)

and (4) along the lines of Chow (1992) we introduce Lagrange multipliers λt and µt
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and set to zero the derivatives of the Lagrangian expression

L = Et

∞∑
t=0

[
βtU(π̃t)− βt+1λt+1(st+1 − st − g(pt+1)− εt) (5)

− βt+1µt+1(ft+1 − αp̃t+1 − rxt + νt)
]

with respect to the action variables st and xt and state variables pt and ft, given

the expectations of the futures and spot prices are known. In this study we place an

emphasis on the existence of the subjective expectations, formed by dealers condi-

tional on the past and present information Ft available to them. The subjective price

expectations serve as the hidden states of the system that can be revealed once the

system response is observed. To make a prediction given Ft we need to bound the

time path of p̃t+1 and f̃t+1 using the optimal conditions obtained from maximizing

the Lagrangian function (5). Differentiating (5) with respect to st, pt and pt+1 and

simplifying yields

−Etβλt+1 = EtU
′(π̃t+1)[(p̃t+1 − pt) + v′(st)− φ′(st)] + λt (6)

λt = −EtU ′(π̃t+1)st/g
′(pt) (7)

−Etβλt+1 = Et[βU
′(π̃t+2)st+1/g

′(pt+1)] (8)

Now, by substituting (7) and (8) into (6) and collecting the terms we derive the

intertemporal substitution condition that relates subjective spot price expectations

of two consecutive periods

Et

[ st+1βU
′(π̃t+2)

g′(pt+1)U ′(π̃t+1)

]
= (p̃t+1 − pt) + v′(st)− φ′(st)− st/g′(pt) (9)
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which can be rewritten as

st+1βU
′(π̃t+2)

g′(pt+1)U ′(π̃t+1)
= (p̃t+1 − pt) + v′(st)− φ′(st)− st/g′(pt) + ηt+1 (10)

by introducing the error term ηt+1. By analogy, the second set of optimal conditions

is obtained by differentiating (5) with respect to xt and ft+1 and then simplifying to

get

−Etβµt+1 = EtU
′(π̃t+1)(ft − f̃t+1)/r (11)

−Etβµt+1 = −Et[βU ′(π̃t+2)xt+1] (12)

Substituting (12) into (11) and collecting the terms yields the second intertempo-

ral substitution condition that relates subjective futures price expectations of two

consecutive periods

Et

[rxt+1βU
′(π̃t+2)

U ′(π̃t+1)

]
= f̃t+1 − ft (13)

Again we introduce the error term ωt+1 and rewrite (13)

rxt+1βU
′(π̃t+2)

U ′(π̃t+1)
= f̃t+1 − ft + ωt+1 (14)

The final optimality condition we need is precisely (4). When the corresponding spot

price value pt+1 is subtracted from both sides of this constraint it provides useful

decomposition of the forecast error

ft+1 − pt+1 = (αp̃t+1 − pt+1) + rxt + νt (15)
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where the deviation of the futures price from the objective market expectation, that

would otherwise be rational in the sense of Muth (1961), can be explained by the

existence of the endogenous risk premium rxt, unavoidable error νt and the Bayesian

error αp̃t+1 − pt+1. The last component characterizes the difference between the

subjective and the objective price expectations which is the key argument for relaxing

the perfect rational expectations assumption in a favor of it’s asymptotic equivalent.

For practical purposes we assume a constant relative risk aversion utility function

such that

U(π̃t) =

 π̃1−γ
t /(1− γ), if γ 6= 1 ;

log(π̃t), if γ = 1 .
(16)

where γ > 0 denotes a measure of relative risk aversion of dealers. This particular

form of the utility function implies that U ′(π̃t) = π̃−γt for all admissible values of γ.

Estimation

Given the specification derived from the underlying dynamic optimization problem the

market model is estimated using the self-organizing state-space (SOSS) method intro-

duced in Kitagawa (1998) implemented through the genetic algorithm type resampling

of non-linear particle filter suggested in Higuchi (1997). The general parametrized

state-space model can be described as

kt+1 = H(kt,ut, ε1t) (17)

yt = M(kt,ut, ε2t) (18)

where H and M are the parametrized state transition and measurement equations, kt,

ut, yt are the state, control and measurement vectors, and ε1t and ε2t are the process
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and measurement noise vectors, all at period t. Since the state-space systems in (17)

and (18) are often non-linear and have non-Gaussian disturbances, the estimation

is complicated since one have to solve computational problems involving numerical

integration over multiple dimensions of the state space (Tanizaki (1996), Ristic, Aru-

lampalam and Gordon (2004)). In this case the tool known as the particle filter (PF)

based on Monte Carlo methods can be used for smoothing and filtering purposes.

In particle filter algorithms arbitrary non-Gaussian densities are approximated by

many particles that can be considered realizations from the corresponding distribu-

tions. Among the most popular PF algorithms are Monte Carlo filter introduced in

Kitagawa (1993, 1996) and Tanizaki and Mariano (1998) and bootstrap filter (sam-

pling importance resampling filter) developed in Gordon, Salmond and Smith (1993).

Using relevant posterior densities and recurrent relations, it is possible to construct

the simulated likelihood function of interest. However, unlike in the signal extraction

applications the system parameters are often unknown and have to be estimated.

Unfortunately, the simulated nature of the likelihood function makes conventional

statistical approach maximum likelihood method almost impractical, especially in

the case of high-dimensional problems. Kitagawa (1998) refers to two factors that

are the sources of limitations. First, the non-Gaussian filtering and smoothing proce-

dures are computationally intensive and thus it is extremely hard to use the iterated

numerical optimization algorithms for maximizing the likelihood function effectively

for practical purposes. Second, the particle filter likelihood function is approximated

using only the finite sample of particles and therefore is the subject to the sam-

pling error inherent in the Monte-Carlo approximation. In order to obtain precise

maximum likelihood estimates and inference about them one should reduce the sam-

pling error by using a very large number of particles or by parallel application of

many particle filters, which increases the computational costs dramatically. Several
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approaches were proposed to deal with these difficulties by introducing the class of

self-organized time series models, estimated in the framework of the genetic algorithm

(GA) particle filter (Higuchi (1997)) and the self-organizing state-space model (Kita-

gawa (1998)). The GA filter is based on the strong parallelism between the Monte

Carlo filter and the genetic algorithm. It replaces the prediction step in the MC filter

with the mutation and crossover steps in GA to avoid the estimation of parameters

of the transition equation (17). In latter approach, the unknown parameters of the

model are treated as the additional state variables so that both the state and the

parameters are estimated simultaneously using filtering and smoothing. Instead of

estimating the parameters of the model, Kitagawa (1998) suggests to implement a

Bayesian estimation by augmenting the state vector with the vector of model param-

eters θ as zt = [kt,θt]
T . Given the augmented state vector zt the self-organizing form

of the original state-space model is

zt+1 = H∗(zt,ut, ε1t) (19)

yt = M∗(zt,ut, ε2t) (20)

whereH∗(zt,ut, ε1t) = [H(kt,ut, ε1t),θt]
T andM∗(zt,ut, ε2t) = M(kt,ut, ε2t). Given

the particular form of utility function we accepted, the Euler equations derived in (10)

and (14) reduce to the transition equations of the state space model for the original

problem as follows

π̃−γt+2 =
π̃−γt+1g

′(pt+1)[(p̃t+1 − pt) + v′(st)− φ′(st)− st/g′(pt) + ηt+1]

st+1β
(21)

π̃−γt+2 =
π̃−γt+1[f̃t+1 − ft + ωt+1]

βrxt+1

(22)
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where the error terms ηt+1 and ωt+1 are assumed to be random shocks that follow

some bivariate distribution with zero means and covariance matrix P . Further trans-

formation of transition equation into the general state-space representation of (17)

requires raising both sides of (21) and (22) to the power −1/γ and rearranging the

terms to get

p̃t+2 =
pt+1st+1 − v(st+1) + φ(st+1)− xt+1(ft+1 − f̃t+2)

st+1

+
π̃t+1g

′(pt+1)
−1/γ[(p̃t+1 − pt) + v′(st)− φ′(st)− st/g′(pt) + ηt+1]

−1/γ

s
γ−1/γ
t+1 β−1/γ

(23)

f̃t+2 =
(p̃t+2 − pt+1)st+1 + v(st+1)− φ(st+1) + xt+1ft+1)

xt+1

− π̃t+1[f̃t+1 − ft + ωt+1]
−1/γ

β−1/γr−1/γx
γ−1/γ
t+1

(24)

where the vector of state variables kt = {p̃t+1, f̃t+1}. The corresponding measurement

equation is defined by (4). Equations (23), (24) and (4) describe the state-space

model with nonlinear transition equations and multiplicative errors, that governs

first order dynamics of the unobserved states of the system by incorporating infor-

mation from the current and the past decision periods. Any information from the

time past two lags is unnecessary as it does not affect the transition functions. The

SOSS approach assumes the simultaneous estimation of unobserved state variables

and the model parameters in sequential manner using the Bayesian update as the

new information comes into the market (which allow the use of it in the ”on-line”

decision support systems). The algorithm provides an optimal statistical inference

about the model components and naturally allows for a time-varying specification

which is useful in high frequency and seasonal data analysis.
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Computation

All computations are done on Pentium 4 2.8 GHz IBM PC computer using Math-

works MatLab R2006b programming environment. The estimation algorithm can be

described by the following pseudocode

Step 0a: Initialization Set the number of particles n, number of time periods T
and GA algorithm parameters and set prior distributions for θt, p̃t and f̃t.

Step 0b: Initialization Set t = 1 and simulate vectors qit, i = 1, n, containing inde-
pendent realizations of θt, p̃t and f̃t from the corresponding prior distributions.

Step 1: Prediction Generate the n proposed values of θt+1, p̃t+1 and f̃t+1 from θt,
p̃t and f̃t using the corresponding state transition equations and store the results
in n vectors qit+1.

Step 2: Update Form n vectors qit+1 containing independent realizations of θt+1,
p̃t+1 from their respective marginal posterior distributions using GA resampling
scheme where the fit of qit+1 is evaluated using the likelihood function of mea-
surement equation.

Step 3: Counter check If t < T set t = t+ 1 and go to Step 1. Otherwise Stop.

Step 1 is implemented in blocks. First, for each i at iteration t a set of model

parameters θt is sampled from the posterior density. Second, given the values of

generated parameters the pair of price expectations p̃t and f̃t is sampled using the

Gibbs’ algorithm, starting with the initial guess of f̃t (if p̃t is drawn first). The

sampling blocks are repeated until n vectors qit are obtained. The Step 3 requires

evaluating the likelihood function of measurement equation at each of qit to get the

n × 1 vector ξt > 0 that describes fitness of each possible combination of states

examined. The elements of ξt are then normalized to sum to one and used as the

vector of probability masses to resample the states in a nonparametric bootstrap

manner. In this case the combinations of elements in qit that have a better fit are

more likely to be chosen for the next iteration. In addition, GA resampling allows for
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”mutations”, i.e. perturbation of the state space up to a chosen degree to improve

the global search for the optimal path and avoid the local maxima.

Data

The data used for the study are quarterly time-series from 1989 to 2006. The relevant

data have been collected from the Cotton and Wool Yearbook and Cotton and Wool

Outlook published by the USDA Economic Research Service. The futures data is used

for the cotton futures contracts traded at the New York Board of Trade (NYBOT)

through the ICE (IntercontinentalExchange (NYSE: ICE)). Both monthly average

futures prices and volume traded have been collected from the Commodity Research

Bureau.

Expected Results

At the time of this writing we have run the simulations while correcting model speci-

fication and improving the estimation algorithm in terms of efficiency. The proposed

method is designed to provide an optimal prediction for unobserved components of

the model (price expectations and basis) by using all the information available in the

market at any given moment. For each period t the estimation algorithm will gener-

ate the simulated distributions of the subjectively expected futures and spot prices.

Using bootstrap techniques we will construct the distribution for the deviation of

these two expectations and compute the appropriate point estimate of the basis. In

order to justify the assumptions we made for the persistency of the forecast error

generated by using the subjective expectations, we will test the hypothesis of the null

difference between p̃t and f̃t using the simulated distributions for such expectations.

The results of two other tests will be provided to measure the forecast power of the
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model, both for the out-of-sample forecast and in comparison with the conventional

methods such as moving average smoothing.
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