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Quantile Regression Methods of Estimating Confidence Intervals 

for WASDE Price Forecasts 

Introduction 

Price volatility causes many agricultural firms to rely on forecasts in decision-making.  

Consequently, the U.S. Department of Agriculture (USDA) devotes substantial resources to 

agricultural situation and outlook programs.  A prominent example of USDA forecasting efforts 

is the WASDE (World Agricultural Supply and Demand Estimates) program, which provides 

monthly forecasts for major crops, both for the U.S. and the world.  WASDE price forecasts 

(unlike all other WASDE estimates) are published in the form of an interval.  Interval forecasts, 

in contrast to point estimates, represent a range of values in which the realized value of the series 

is expected to fall with some pre-specified probability (Diebold, 1998, p. 41).  WASDE price 

forecasts are generated using a balance sheet approach, with published intervals reflecting 

uncertainty associated with prices in the future (Vogel and Bange, 1999).  For example, the 

October 2007 WASDE forecast of the 2007/08 marketing year average farm price was $2.90-

$3.50/bushel for corn, $7.85-$8.85/bushel for soybeans and $5.80-$6.40/bushel for wheat.  

However, the confidence level associated with the published interval is not revealed.  One of the 

challenges in calculating the forecast intervals and specifying an associated confidence level is 

the fact that these are consensus forecasts and cannot be described by a formal statistical model.  

According to Vogel and Bange (1999),  “The process of forecasting price and balance sheet 

items is a complex one involving the interaction of expert judgment, commodity models, and in-

depth research by Department analysts on key domestic and international issues” (p. 10).   

The need for probability and interval forecasting has been repeatedly expressed in the 

agricultural economics literature (e.g., Timm, 1966; Teigen and Bell, 1978; Bessler and Kling, 
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1989; Bessler, 1989).  However, application and analysis of interval and probability forecasts has 

received relatively little attention.  Sanders and Manfredo (2003) examined one-quarter ahead 

WASDE interval forecasts of livestock prices from 1982 through 2002.  They find that actual 

market prices fall in the forecasted ranges a relatively small proportion of the time, about 48% of 

the time for broilers and only 35% of the time for hogs.  Isengildina, Irwin, and Good (2004) 

showed that monthly WASDE interval forecasts of corn and soybean prices during the 1980/81 

through 2001/02 marketing years also had relatively low hit rates (the proportion of time the 

interval contains the subsequent actual price) ranging from 36 to 82% for corn and from 59 to 

89% for soybeans depending on the forecast month.  In addition, actual prices were more likely 

to be above the forecast intervals, suggesting that observed symmetric USDA forecast intervals 

did not reflect the true asymmetry in the distribution of underlying prices.  The authors further 

argue that specific confidence levels should accompany forecast intervals in order to minimize 

confusion and misunderstanding in forecast interpretation.   

While numerous procedures have been proposed to calculate confidence limits for 

forecasts generated by statistical models (e.g., Chatfield, 1993, Prescott and Stengos, 1987; 

Bessler and Kling, 1989), these procedures provide little guidance for forecasts based on a 

combination or a consensus process rather than formal models, as is the case with WASDE 

forecasts.  In reviewing the prediction interval literature, Chatfield (1993) observes that, when 

theoretical formulae are not available or there are doubts about model assumptions, the use of 

empirically-based methods should be considered as a general purpose alternative.  Chatfield also 

notes that the empirical method, “…is attractive in principle, however, it seems to have been 

little used in practice, presumably because of the heavy computational demands (p. 127).”  He 
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suggests that since computational demands have become much less of a burden, this method 

should be re-examined.   

Empirical methods are based on the notion that confidence limits for future forecasts may 

be estimated by evaluating historical forecast errors.  An empirical method was first applied to 

construction of confidence limits for economic forecasts by Williams and Goodman (1971).  

Their approach consisted of splitting the data in two parts and fitting the method or model to the 

first part in order to find forecast errors.  The model was then refitted each year adding an 

additional observation in the first part and increasing the part of the sample used to estimate 

forecast errors.  The key assumption of this method is that future forecast errors belong to 

approximately the same distribution as past forecast errors.1  Williams and Goodman (1971) 

argued that this assumption is less restrictive than the standard assumption that a forecasting 

model describes the series adequately in the future.  Therefore, by accumulating forecast errors 

through time one can obtain an empirical distribution of forecast errors and determine confidence 

limits for future forecasts by using the percentage points of the empirical distribution generated 

from past errors.  The benefit of this method is that it can be applied in a straightforward manner 

to any type of error distribution, including fat-tailed and/or asymmetric distributions.   

Empirical methods of constructing forecast confidence intervals have been used 

successfully in a variety of fields (e.g., Murphy and Winkler, 1977; Stoto, 1983; Keilman, 1990; 

Zarnowitz, 1992; Shlyakhter et al, 1994; Jorgensen and Sjoberg, 2003).  One of the main 

limitations of empirical methods is the heavy data requirement.  That is, a reasonably large 

sample of forecasts is needed to reliably estimate confidence intervals.  Therefore, empirical 

methods have been most widely-used in areas where data limitations are less common, such as 

weather, population, and software development forecasting.  The importance of empirical control 
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of a model’s probability assessments has been also recognized in engineering applications (e.g., 

Mahadevan, 2006).   

 Taylor and Bunn (1999a, 1999b) suggested a new approach to empirical interval 

estimation that overcomes the small sample problem by pooling data across time and forecasting 

horizons and estimating forecast error distributions via quantile regression. The authors develop 

forecast error quantile models that are functions of lead time, k, as suggested by theoretically 

derived variance expressions.  The use of quantile regression avoids the normality and optimality 

assumptions underlying theoretical forecast variance expressions.  Another benefit of this 

approach is that it relaxes the assumption that error distributions for each forecasting month are 

independent, since forecast errors tend to decline from the beginning to the end of the forecasting 

cycle as more information becomes available.   

The purpose of this paper is to investigate the use of quantile regression for estimation of 

empirical confidence limits for WASDE forecasts of corn, soybean, and wheat prices.  WASDE 

price interval forecasts for corn, soybean, and wheat during the period from 1980/81 to 2006/07 

are included in the analysis.  Within each marketing year, 19 monthly forecast updates are 

available for corn and soybeans, and 15 for wheat.  In the first part of the analysis, descriptive 

statistics for published WASDE interval forecasts are presented and discussed. In the second part 

of the analysis, quantile regression models are estimated and evaluated for the entire sample 

period.  Models specifications include forecast horizon and stock/use ratios as independent 

variables. In the third part of the analysis, out-of-sample performance of empirical confidence 

intervals is evaluated, where the first 15 observations (1980/81-1994/95) are used to generate 

confidence limits for the 16th year (1995/96); the first 16 observations are used to generate 

confidence limits for the 17th year (1996/97) and so on.  Statistical significance of the differences 
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of hit rates from a target confidence level is assessed using an unconditional coverage test 

developed by Christoffersen (1998).  The results of this research will provide valuable 

information that can be used to more accurately estimate confidence limits for WASDE price 

interval forecasts.   

 

Data 

Corn, soybean, and wheat interval price forecasts in WASDE reports are released 

monthly by the USDA, usually between the 9th and 12th of the month.  The first price forecast for 

a marketing year is released in May preceding the U.S. marketing year (September through 

August for corn and soybeans and June through May for wheat).  Estimates are typically 

finalized by August (for wheat), October (for corn) and November (for soybeans) of the 

following marketing year.  Thus, 19 forecast updates of soybean, 18 forecast updates of corn and 

16 forecast updates of wheat prices are generated in the WASDE forecasting cycle each 

marketing year.  While the forecasts are published in the form of an interval, the probability with 

which the realized price is expected to fall within the forecast interval is not specified.  

 Descriptive statistics for WASDE interval price forecasts for corn, soybeans, and wheat 

over the 1980/81 through 2006/07 marketing years are presented in Tables 1-3.2  During the 

study period, the first (May prior to harvest) forecast intervals averaged $0.39/bushel for corn, 

$1.27/bushel for soybeans, and $0.46/bushel for wheat.  In relative terms, May forecast intervals 

for wheat were the narrowest representing about 14% of the average forecast price, compared to 

17% for corn and 22% for soybeans.3  By November after harvest these average intervals 

narrowed to $0.36/bushel for corn, $0.90/bushel for soybeans, and $0.25/bushel for wheat.  The 

relative magnitude of post-harvest wheat forecast intervals was about half the size of corn and 
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soybean price intervals, with a November average of 7% and 15%, respectively.  These forecast 

intervals usually collapsed to point estimates in May after harvest for wheat and soybeans and in 

August after harvest for corn.  No trends in the magnitude of interval forecasts over time were 

detected.  Thus, intervals in the same months did not become smaller (or larger) from the 

beginning to the end of the sample period.   

Interval forecast accuracy is typically described in terms of the hit rate; i.e., the 

proportion of time the forecast interval included the final value.  Tables 1-3 demonstrate that hit 

rates for individual months ranged from 30 to 85 percent for corn, 26 to 81 percent for soybeans, 

and 37 to 89 percent for wheat.  Prior to harvest, hit rates for corn and wheat price forecast 

intervals were lower, both averaging 46 percent, compared to 67 percent for soybeans.  This 

implies that, on average, corn and wheat price interval forecasts prior to harvest contained the 

final price estimate only 46 percent of the time.  After harvest, the hit rates for all commodities 

increased, averaging 71 percent for corn, 65 percent for soybeans, and 67 percent for wheat price 

interval forecasts.  All three commodities demonstrated some very low hit rates late in the 

forecasting cycle.  For example, hit rates for corn price interval forecasts averaged 44 and 48 

percent in August and September after harvest; soybean hit rates averaged 26, 41, and 48 percent 

from May through July after harvest, and wheat hit rates averaged 41 and 37 percent in May and 

June after harvest.  This loss in accuracy late in the forecasting cycle is associated with 

prematurely collapsing forecast intervals to point estimates. 

Another issue is whether forecast intervals accurately reflect the shape of the underlying 

price distribution.  Statistics on the proportion of misses above and below the forecast interval 

reported in Tables 1-3 provide insight on this issue.  If the forecast intervals accurately reflected 

the shape of the underlying price distribution, one would expect equal probability of misses 
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above and below the forecast interval.  Table 2 demonstrates that for soybean price forecast 

intervals the proportion of misses above the interval was 2 times greater than the proportion of 

misses below the interval prior to harvest and 2.9 times greater after harvest.  Furthermore, the 

magnitude of misses in soybean forecast intervals tended to be much greater on the upside then 

the downside, averaging $0.71/bushel and $0.28/bushel, respectively, prior to harvest and 

$0.17/bushel and $0.10/bushel, respectively, after harvest.  The other two commodities do not 

exhibit such persistent tendencies. 

An important basic assumption of empirical approaches to estimating confidence limits is 

that the distribution of forecast errors remains stable over time.  Previous studies (e.g., Stoto, 

1983; Smith and Sincich, 1988) have evaluated this assumption and found that the distribution of 

population forecast errors remained relatively stable over time and data on past forecast errors 

provided very useful predictions of future forecast errors.  In the present study the validity of this 

assumption for corn, soybean and wheat price forecast errors is tested by dividing the sample in 

two parts, from 1980/81 through 1994/95 and from 1995/96 through 2006/07 and examining 

whether the first two moments of forecast error distributions differed between two sub-periods.  

Results of this analysis are presented in Tables 4-6.  Analysis was conducted for both unit errors, 

calculated as the difference between the final (November for corn and soybeans and September 

for wheat) estimate and the midpoint of the forecast interval, and percentage errors, calculated as 

the difference between the final (November for corn and soybeans and September for wheat) 

estimate and the midpoint of the forecast interval divided by the midpoint of the forecast interval.  

Independent sample t-tests showed no statistically significant difference at the 1% level in mean 

forecast errors for each forecasting month between the two sub-periods (except July and August 

after harvest in corn, and May and June prior to harvest in wheat).  Levene’s F-statistic showed 
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no statistically significant difference in forecast error variances at the 1% level for each 

forecasting month between the two sub-periods (except May and June prior to harvest in wheat).  

This evidence suggests that forecast error distributions of monthly WASDE corn, soybean, and 

wheat price forecasts were generally stable over time.  Even though in most of the cases results 

were consistent across both types of errors, percentage errors demonstrate smaller differences 

between two sub-periods.  The use of percentage errors may be preferred to unit errors when 

mean price levels change (as they did for all three commodities after 2006).  In this case, 

intervals based on unit errors will be understated relative to intervals based on percentage errors.  

Therefore, the remainder of this paper uses percentage errors to calculate empirical forecast 

intervals. 

The evidence presented in this section describes several major concerns regarding 

WASDE interval forecasts of corn, soybeans, and wheat prices: 1) these intervals are 

characterized by relatively low hit rates; 2) in soybeans, symmetric forecast intervals do not 

accurately reflect the shape of the underlying price distribution; and 3) confidence levels 

associated with these forecast intervals are not specified.  The remainder of this paper applies 

quantile regression to calculation of empirical confidence limits for WASDE price forecast 

intervals. 

 

Quantile Regression Models 

Quantile regression was developed by Koenker and Bassett (1978) as an extension of the 

linear model for estimating rates of change in not just the mean but all parts of the distribution of 

a response variable.  Consider the simple case of the constant only model 0t ty eβ= + , where 0β  

is a constant parameter and te  is an i.i.d. random error term.  Koenker and Basset note that the τth 
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quantile of ty  can be derived from a sample of observations, as the solution 0 ( )β τ  to the 

following minimization problem: 
0 0

0 0 0min (1 )
t t

t t
t y t y

y y
β β

β τ β τ β
≥ <

⎡ ⎤
− + − −⎢ ⎥

⎢ ⎥⎣ ⎦
∑ ∑ .  This 

minimization problem, as a means for finding the τth sample quantile, readily extends for the 

more general case where ty  is a linear function of explanatory variables (X).  The estimates are 

semi-parametric in the sense that no parametric distributional form is assumed for the random 

part of the model, although a parametric form is assumed for the deterministic part of the model.  

The conditional quantiles denoted by ( )yQ Xτ are the inverse of the conditional cumulative 

distribution function of the response variable, 1( )yF Xτ− , where [0,1]τ ∈  denotes the quantiles 

(Koenker and Machado, 1999).  As an example, for τ=0.90, (0.90 )yQ X  is the 90th percentile of 

the distribution of y conditional on the values of X.  An approximation of the full probability 

distribution can be produced from the quantile estimates corresponding to a range of values of τ 

(0< τ<1).  For symmetric distributions, the 0.50 quantile (or median) is equal to the mean μ. 

 Taylor and Bunn (1999a, 1999b) suggested the use of quantile regressions for generating 

prediction intervals of forecasts based on exponential smoothing.  The authors show that quantile 

regressions where fit errors Qt are expressed as a function of forecast lead time k are consistent 

with theoretical forecast variance formulas.  Assuming lead time k corresponds to the forecast 

error series for k-step ahead forecasts, the following quantile regression for a given level of τ is 

specified: 

(1) 2
0 1 2( )t tQ k kτ β β β ε= + + + . 



 10

In the present application, k is substituted for its reverse, FM, the forecast month from the 

beginning to the end of the forecast cycle (1 through 16 for corn and soybeans and 1 through 14 

for wheat, as shown in Tables 1-3),4 

 (2)   2
0 1 2( )t tQ FM FMτ β β β ε= + + + . 

Additionally, while Taylor and Bunn rely on fit errors as a proxy for post sample errors; our 

study uses observed forecast errors as the dependent variable in quantile regressions.  Following 

Taylor and Bunn, standard errors were estimated by bootstrap resampling in order to correct for 

heteroscedasticity.  Bootstrap resampling used the XY-pair method with 100 replications and 

samples the same size as the original data.   

Calculation of empirical confidence intervals using quantile regression requires 

specification of target confidence levels (τ).  As mentioned in the data section, confidence levels 

associated with published WASDE interval price forecasts are not specified.  Isengildina, Irwin, 

and Good (2004) conducted a survey of USDA officials involved in compiling WASDE corn and 

soybean price interval forecasts inquiring about the confidence levels associated with published 

forecasts.  Analyst responses were variable across respondents (by as much as 30% in the 

beginning of the season) and over the forecasting cycle (from 65% in May prior to harvest to 

95% in April after harvest).  The average confidence level prior to harvest was 81% for corn and 

78% for soybeans; the average confidence level after harvest was 91% for corn and 87% for 

soybeans.  Based on this information, and assuming that wheat analysts provide interval 

forecasts for similar confidence levels, the present study uses an 80% confidence level prior to 

harvest and a 90% confidence level after harvest.  Equation (2), was used to generate upper 

(τ=0.90) and lower (τ=0.10) bounds of the 80% confidence interval and upper (τ=0.95) and 
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lower (τ=0.05) bounds of the 90% confidence interval pre- and post- harvest, respectively, for 

each commodity.  All quantile regressions were estimated using Eviews econometric software. 

 

In-Sample Results 

Table 7 presents quantile regression results for τ=0.05, 0.10, 0.90, and 0.95 for corn, 

soybeans and wheat over 1980/81 through 2006/07 marketing years.  Estimated coefficients 

indicate the distance from the forecast midpoint to a particular point of the error distribution.  For 

example, the construction of an 80% confidence interval will include calculation of τ=0.10 and 

τ=0.90.  Thus, its value in May prior to harvest (FM=1) for corn for τ=0.10 is -

0.212+0.020*1+0*1^2 = -0.19, and for τ=0.90 is 0.274-0.029*1+0.001*1^2 = 0.25.  This result 

means that 19% of the forecast midpoint should be subtracted and 25% of the midpoint should be 

added to the midpoint to construct an 80% confidence interval.  For a 3.40$/bu. average price, 

the estimated interval would be $2.75 - $4.25/bu.  

The quantile regression approach offers the benefit of pooling data across months and 

years, and thus substantially increasing the statistical power of the empirical approach.  

Specifically, quantile regressions estimated over the 1980/81 through 2006/07 marketing years 

uses 513 for corn observations, while standard empirical methods would use only 27 

observations (one per marketing year and forecast horizon) to estimate distributions of forecast 

errors.  The interpretation of the pseudo R-squared is similar to the interpretation of the 

traditional R-squared.  Results indicate that using only forecast month as an explanatory variable 

explains from 29% to 38% percent of the variation in identified quantiles of corn forecast errors, 

from 27% to 37% of the variation in identified quantiles of soybean forecast errors, and from 

37% to 53% of the variation in identified quantiles of wheat forecast errors. 
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One of the benefits of quantile regression approach is that other factors that impact 

forecast error distribution may be included in the analysis.  Economic theory indicates that the 

size of the forecast error in each marketing year may be related to the “tightness” of underlying 

supply and demand conditions.  These supply and demand conditions are often summarized in 

the stocks/use ratio (e.g., Westcott and Hoffman, 1999).  For example, historical stocks/use ratio 

estimates during the period of study for corn ranged from 5% in 1995 to 66% in 1985.  It may be 

hypothesized that during the periods of low stocks/use ratios, forecast errors may be larger than 

during the periods of high stocks/use ratios.  This hypothesis is tested using an omitted variable 

test, which examines whether the additional variable makes a significant contribution to 

explaining the variation in the dependent variable.  The null hypothesis of the omitted variable 

test is that the additional regressor is not significant.  This test is performed by computing a QLR 

test of the null hypothesis (Koenker and Machado, 1999).  The results of the omitted variable 

tests presented in table 8 demonstrate that the stocks/use ratio makes a significant contribution to 

explaining the variation in forecast error only for the upper quantiles in corn and the lower 

quantiles in soybeans and the lowest quantile in wheat.   

Figures 1-3 show the estimated coefficients and their 95% confidence bounds for corn, 

soybean and wheat forecast errors, respectively.  These figures indicate that stocks/use ratios 

have a very limited impact on the shape of the forecast error distributions.  The fact that the 

coefficients on FM and FM2 differ across different quantiles demonstrates that the tails of the 

error distributions are changing faster than their center as we move through the forecasting cycle.  

This argument may be tested formally by comparing estimated slopes at different points of 

distribution.  Koenker and Bassett (1982) proposed to use the Wald test to analyze slope 

equality.  Results of the slope equality tests presented in table 8 indicate that the slope 



 13

coefficients differ across quantiles, thus conditional quantiles are not identical and quantile 

regression provides estimates superior to estimation procedures that assume that forecast errors 

are i.i.d.  

Figures 1-3 also suggest that the right tail of the error distributions appears slightly longer 

than the left, which was also noted in the data section.  This observation is consistent with theory 

as spot prices of storable commodities are expected to have highly skewed distributions with a 

long tail toward high prices (Williams and Wright, p. 105).  Asymmetry in forecast error 

distributions reflects the inability of symmetric intervals published by USDA to reflect the 

asymmetric distribution of the underlying commodity prices.  Conditional symmetry across 

quantiles is formally tested using Newey and Powell (1987) test:   

(3) ( ) (1 ) (1/ 2)
2

β τ β τ β+ −
=  

The test computes a Wald statistic of whether the two sets of coefficients for symmetric quantiles 

around the median will equal the value of the coefficients at the median.  The null hypothesis for 

this test is that the distribution is symmetric.  The results of the symmetry tests across 

τ=0.05,0.95  and τ=0.10, 0.90 presented in table 8 demonstrate significant evidence of 

asymmetry in soybean and wheat forecast errors, but not in corn forecast errors.  Thus, empirical 

confidence intervals calculated using quantile regression approach should be able to reflect the 

asymmetry of the underlying commodity prices. 

 

Out-of-Sample Results 

Results presented in the previous section indicate that quantile regression is a potentially 

powerful tool for generating empirical confidence intervals for WASDE corn, soybean and 

wheat price forecasts.  The use of quantile regression may help resolve the problems currently 
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associated with WASDE corn, soybean and wheat price forecasts, namely, low hit rates, inability 

to reflect asymmetry of underlying price distributions, and unspecified confidence levels.  In 

order to assess the potential of the quantile regression approach to improve upon published 

WASDE price forecasts, out-of-sample performance is evaluated, where the first 15 observations 

(1980/81-1994/ 95) were used to generate confidence limits for the 16th year (1995/96); the first 

16 observations were used to generate confidence limits for the 17th year (1996/97) and so on.  

The target confidence level prior to harvest is 80% and after harvest is 90%.  The accuracy of the 

out of sample performance is evaluated using hit rates and an unconditional coverage test 

described below.  

Hit rates describe the proportion of times forecast intervals contain the final or “true” 

value (yt) and may be defined as an indicator variable, k
tI , 

(4) 
[ ]
[ ]

/ /

/ /

1, if ( ), ( )
0, if ( ), ( )

t t k t kk
t

t t k t k

y l u
I

y l u
α α
α α

⎧ ∈⎪= ⎨ ∉⎪⎩
 

where [ ]/ /( ), ( )t k t kl uα α  are the lower and upper limits of the interval forecast for yt made at time 

k with confidence level α.  The closer the hit rate to the stated confidence level, the more 

accurate is the forecast.  Forecast coverage is based on the expectation of the indicator 

variable, k
tI  and examines whether the proportion of times the forecast interval includes the true 

value is equal to the target (stated) confidence level.  Thus, forecast coverage may be examined 

by testing the hypothesis H0: E( k
tI )=α  against H1: E( k

tI )≠α.  If H0 is not rejected and the 

interval hit rate is equal to the stated confidence level, forecasts are said to be calibrated.  Since 

the indicator variable k
tI  has a binomial distribution (Christoffersen, 1998), the likelihood 

function under the null hypothesis is, 
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  (5)    
0 1( ) (1 )n nL α α α= − .  

where L is a likelihood function.  Under the alternative hypothesis, the likelihood function is,  

(6) 
0 1( ) (1 )n nL p p p= −  

where n1 and n0 are the number of times an interval was “hit” (1) or “missed” (0) in the indicator 

sequence k
tI .  Then, forecast coverage may be tested via the likelihood ratio test, 

(7)                         2( )2 ln (1)
ˆ( )

asy

c
LLR
L p
α χ

⎛ ⎞
= − →⎜ ⎟

⎝ ⎠
  

where 1 0 1ˆ /( )p n n n= +  is the maximum likelihood estimator of p.  This test is described by 

Christoffersen (1998) as an unconditional coverage test.5 

Results of the accuracy tests for out-of-sample forecast intervals computed using quantile 

regression are shown in tables 9-11.  As was observed in Tables 1-3 for the entire sample, 

published forecasts had relatively low hit rates in the prediction sub-sample, 1995/96 through 

2006/07 although significant improvement in forecast accuracy was observed in corn price 

forecast intervals after harvest.  The hit rates for published intervals averaged 53% for corn, 67% 

for soybeans, and 44% for wheat prior to harvest.  Empirical confidence intervals had much 

higher hit rates averaging 75%-78% for corn, 80%-82% for soybeans and 53%-56% for wheat 

prior to harvest.  These hit rates were statistically different from the target confidence level of 

80% in 4 out of 30 cases, or about 13% of the time.  For comparison, published intervals’ hit 

rates were statistically different from the assumed target level in 9 out of 15 cases, or 60% of the 

time.  After harvest the hit rates for published intervals averaged 79% for corn, 56% for 

soybeans, and 71% for wheat.  After harvest hit rates for empirical confidence intervals averaged 

83% - 92% for corn, 83% - 84%% for soybeans, and 92% for wheat.  These hit rates were 

statistically different from the target level of 90% in 6 out of 66 cases, or about 9% of the time.  



 16

Published confidence intervals’ hit rates were statistically different from the assumed target level 

in 12 out of 33 cases, or 40% of the time. Overall, these results demonstrate a dramatic 

improvement in accuracy for empirical confidence intervals relative to published intervals. 

 

Conclusions 

WASDE price forecasts (unlike all other WASDE estimates) are published in the form of 

an interval to reflect uncertainty associated with prices in the future.  Several major concerns 

regarding WASDE forecast intervals of corn, soybeans, and wheat prices include: 1) forecast 

intervals have relatively low hit rates; 2) forecast intervals do not necessarily reflect the shape of 

the underlying price distribution; and 3) confidence levels associated with these forecast intervals 

are not specified.  One of the challenges in calculating WASDE price forecast intervals and 

specifying an associated confidence level is the fact that these are consensus forecasts and cannot 

be described by a formal statistical model.  Such forecasts cannot use the confidence interval 

formulas derived for statistical models, but may instead rely on empirically-based methods. 

The basic empirical method was first introduced by Williams and Goodman (1971), and 

is based on the notion that by accumulating forecast errors through time one can obtain an 

empirical distribution of forecast errors.  One of the main limitations of the empirical method is 

the heavy data requirement for forecast error distribution estimation.  Recently, this limitation 

has become less of an issue as Taylor and Bunn (1999a, 1999b) suggested a new approach to 

empirical interval estimation that overcomes the small sample problem by pooling data across 

time and forecasting horizons and estimating forecast error distributions. The authors then 

develop forecast error quantile models that are functions of lead time, k, as suggested by 

theoretically derived variance expressions.  This paper explores the use of quantile regression for 
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estimation of empirical confidence limits for WASDE forecasts of corn, soybean, and wheat 

prices. 

Following Taylor and Bunn, quantile regressions for corn, soybean, and wheat forecast 

errors over 1980/81 through 2006/07 were specified as a function of forecast lead time measured 

as the forecast month from the beginning to the end of the forecasting cycle.  The estimated 

coefficients indicate the distance from the forecast midpoint to a particular point of error 

distribution.  One of the benefits of quantile regression approach is that other factors that impact 

forecast error distribution may be included in analysis.  This study hypothesized that during the 

periods of low stocks/use ratios, which reflect the underlying supply and demand conditions, 

forecast errors may be larger than during the periods of high stocks/use ratios.  However, very 

little impact of stocks/use variable on the forecast error distributions was found. 

The tests of the equality of slopes on the estimated coefficients demonstrated that slope 

coefficients differed across quantiles.  This finding reflects the fact that the tails of the error 

distributions are changing faster than centers moving through the forecasting cycle.  This study 

also tested symmetry in error distributions and found that soybean and wheat forecast error 

distributions were asymmetric with long right tails.  This finding is consistent with theory as spot 

prices of storable commodities are expected to have highly skewed distributions with a long tail 

toward high prices (Williams and Wright, p. 105).  Thus, empirical confidence intervals 

calculated using quantile regression approach should be able to reflect the asymmetry of the 

underlying commodity prices 

The quantile regression approach to calculating forecast intervals was evaluated based on 

out-of-sample performance, where the first 15 observations (1980/81-1994/ 95) were used to 

generate confidence limits for the 16th year (1995/96); the first 16 observations were used to 
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generate confidence limits for the 17th year (1996/97) and so on.  Empirical confidence intervals 

averaged 75%-78% for corn, 80%-82% for soybeans and 53%-56% for wheat prior to harvest.  

These hit rates were statistically different from the target confidence level of 80% in 4 out of 30 

cases, or about 13% of the time.  After harvest hit rates for empirical confidence intervals 

averaged 83% - 92% for corn, 83% - 84%% for soybeans, and 92% for wheat.  These hit rates 

were statistically different from the target level of 90% in 6 out of 66 cases, or about 9% of the 

time.  Overall, these results demonstrate a dramatic improvement in accuracy for empirical 

confidence intervals relative to published intervals. 

Overall, this study demonstrates how quantile regression may be used to construct 

empirical confidence intervals for WASDE corn, soybean, and wheat price forecasts.  The 

findings suggest that empirical confidence intervals calculated using quantile regressions may 

significantly improve the accuracy of WASDE corn, soybean, and wheat price forecasts.  The 

results of this study may be extended to calculation of confidence intervals for price forecasts 

associated with other WASDE commodities.  Furthermore, quantile regression approach to 

calculating empirical confidence intervals discussed in this study may be used to generate 

confidence intervals for non-price WASDE categories, such as export forecasts, that are not 

currently published in interval form.   
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Table 1. Descriptive and Accuracy Statistics for WASDE Corn Price Interval Forecasts, 1980/81-2006/07 Marketing Years.

Mean Forecast Average Minimum Maximum Hit Misses Misses Avg. Miss Avg. Miss
Price ($/bu.) Interval ($/bu.) Interval ($/bu.) Interval ($/bu.) Rate (%) Below (%) Above (%) Below ($/bu.) Above ($/bu.)

Prior to harvest
   1 (May) 2.29 0.39 0.20 0.60 37 19 44 0.27 0.24
   2 (June) 2.31 0.39 0.20 0.60 30 26 44 0.23 0.22
   3 (July) 2.35 0.39 0.20 0.50 44 22 33 0.26 0.19
   4 (August) 2.39 0.38 0.20 0.50 56 26 19 0.15 0.22
   5 (September) 2.39 0.37 0.20 0.50 56 26 19 0.14 0.23
   6 (October) 2.38 0.37 0.20 0.40 56 22 22 0.11 0.13
      Average 2.35 0.38 0.20 0.52 46 23 30 0.19 0.21
After harvest
   7 (November) 2.38 0.36 0.20 0.40 74 11 15 0.18 0.13
   8 (December) 2.37 0.34 0.20 0.40 81 7 11 0.15 0.14
   9 (January) 2.38 0.30 0.15 0.40 85 7 7 0.10 0.20
   10 (February) 2.38 0.25 0.15 0.40 81 7 11 0.10 0.10
   11 (March) 2.38 0.20 0.10 0.40 74 11 15 0.05 0.06
   12 (April) 2.39 0.14 0.00 0.30 74 11 15 0.04 0.06
   13 (May) 2.39 0.10 0.00 0.25 70 19 11 0.06 0.05
   14 (June) 2.38 0.07 0.00 0.20 70 19 11 0.05 0.05
   15 (July) 2.38 0.04 0.00 0.10 74 19 7 0.04 0.06
   16 (August) 2.38 0.01 0.00 0.10 44 30 26 0.03 0.03
   17 (September) 2.38 0.00 0.00 0.10 48 30 22 0.02 0.02
       Average 2.38 0.17 0.07 0.28 71 15 14 0.07 0.08

Note: Mean forecast price is calculated by averaging the midpoints of forecast intervals.  Hit rate is the proportion of times the interval contained the 
final (November) estimate.  Misses above and below describe cases when the final estimate fell above or below the forecast interval.

Month of 
Forecasting Cycle
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Table 2. Descriptive Accuracy Statistics for WASDE Soybean Price Interval Forecasts, 1980/81-2006/07 Marketing Years.

Mean Forecast Average Minimum Maximum Hit Misses Misses Avg. Miss Avg. Miss
Price ($/bu.) Interval ($/bu.) Interval ($/bu.) Interval ($/bu.) Rate (%) Below (%) Above (%) Below ($/bu.) Above ($/bu.)

Prior to harvest

   1 (May) 5.72 1.27 0.40 2.50 52 19 30 0.31 0.71
   2 (June) 5.73 1.22 0.40 2.50 56 15 30 0.36 0.71
   3 (July) 5.77 1.19 0.30 2.50 67 7 26 0.29 0.70
   4 (August) 5.89 1.19 0.30 2.50 81 4 15 0.05 0.91
   5 (September) 5.96 1.07 0.30 2.50 78 7 15 0.39 0.79
   6 (October) 5.93 0.97 0.30 2.50 70 11 19 0.30 0.44
      Average 5.83 1.15 0.33 2.50 67 10 22 0.28 0.71

After harvest

   7 (November) 5.93 0.90 0.30 2.50 70 11 19 0.35 0.39
   8 (December) 5.94 0.79 0.30 2.50 81 7 11 0.15 0.42
   9 (January) 5.92 0.68 0.20 1.25 78 4 19 0.10 0.20
   10 (February) 5.91 0.59 0.15 1.25 81 0 19 0.00 0.19
   11 (March) 5.89 0.44 0.15 1.00 81 0 19 0.00 0.17
   12 (April) 5.91 0.26 0.00 0.50 78 4 19 0.06 0.14
   13 (May) 5.93 0.00 0.00 0.00 26 22 52 0.11 0.09
   14 (June) 5.94 0.00 0.00 0.00 41 15 44 0.14 0.08
   15 (July) 5.95 0.00 0.00 0.00 48 15 37 0.09 0.06
   16 (August) 5.63 0.00 0.00 0.00 63 15 22 0.05 0.04
   17 (September) 5.95 0.00 0.00 0.00 67 11 22 0.01 0.03
       Average 5.90 0.33 0.10 0.82 65 9 26 0.10 0.17

Note: Mean forecast price is calculated by averaging the midpoints of forecast intervals.  Hit rate is the proportion of times the interval contained the 
final (November) estimate.  Misses above and below describe cases when the final estimate fell above or below the forecast interval.

Month of 
Forecasting Cycle
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Table 3. Descriptive Accuracy Statistics for WASDE Wheat Price Interval Forecasts, 1980/81-2006/07 Marketing Years.

Mean Forecast Average Minimum Maximum Hit Misses Misses Avg. Miss Avg. Miss
Price ($/bu.) Interval ($/bu.) Interval ($/bu.) Interval ($/bu.) Rate (%) Below (%) Above (%) Below ($/bu.) Above ($/bu.)

Prior to harvest

   1 (May) 3.31 0.46 0.20 0.70 41 33 26 0.19 0.40
   2 (June) 3.32 0.46 0.20 0.70 37 37 26 0.15 0.32
   3 (July) 3.28 0.44 0.20 0.60 59 22 19 0.07 0.33
      Average 3.30 0.45 0.20 0.67 46 31 23 0.14 0.35

After harvest
   4 (August) 3.30 0.43 0.20 0.60 67 15 19 0.07 0.19
   5 (September) 3.30 0.36 0.20 0.60 74 7 19 0.09 0.15
   6 (October) 3.33 0.31 0.15 0.60 78 7 15 0.12 0.12
   7 (November) 3.34 0.25 0.10 0.40 67 15 19 0.10 0.06
   8 (December) 3.34 0.21 0.10 0.30 70 15 15 0.06 0.05
   9 (January) 3.34 0.17 0.10 0.30 70 15 15 0.04 0.03
   10 (February) 3.34 0.12 0.10 0.20 70 15 15 0.03 0.03
   11 (March) 3.33 0.10 0.00 0.20 78 7 15 0.04 0.03
   12 (April) 3.33 0.07 0.00 0.20 67 11 22 0.03 0.03
   13 (May) 3.34 0.00 0.00 0.05 41 33 26 0.03 0.03
   14 (June) 3.34 0.00 0.00 0.00 37 37 26 0.03 0.03
      Average 3.33 0.18 0.09 0.31 65 16 19 0.06 0.07

Note: Mean forecast price is calculated by averaging the midpoints of forecast intervals.  Hit rate is the proportion of times the interval contained the final 
(November) estimate.  Misses above and below describe cases when the final estimate fell above or below the forecast interval.

Month of  
Forecasting Cycle
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1980/81-
1994/95

1995/96-
2005/06

1980/81-
1994/95

1995/96-
2005/06

1980/81-
1994/95

1995/96-
2005/06

1980/81-
1994/95

1995/96-
2005/06

Mean Mean t -test Variance Variance Mean Mean t -test Variance Variance
Prior to harvest

   1 (May) 0.08 0.09 -0.05 0.15 0.16 0.02 0.05 0.05 0.02 0.03 0.03 0.11
   2 (June) 0.08 0.04 0.28 0.15 0.15 0.07 0.05 0.02 0.38 0.03 0.02 0.36
   3 (July) -0.02 0.07 -0.67 0.12 0.11 0.08 0.00 0.04 -0.70 0.02 0.02 0.02
   4 (August) -0.03 0.00 -0.26 0.05 0.14 2.32 -0.01 0.01 -0.35 0.01 0.02 3.07 *

   5 (September) -0.04 0.01 -0.49 0.05 0.11 1.15 -0.01 0.01 -0.39 0.01 0.02 1.59
   6 (October) -0.04 0.03 -0.69 0.04 0.06 0.30 -0.01 0.01 -0.54 0.01 0.01 0.28
After harvest

   7 (November) -0.03 0.03 -0.83 0.05 0.02 1.99 0.00 0.02 -0.54 0.01 0.00 1.00
   8 (December) -0.02 0.03 -0.79 0.04 0.01 0.81 0.00 0.02 -0.57 0.01 0.00 0.45
   9 (January) -0.01 -0.01 -0.07 0.03 0.01 1.38 0.00 0.00 0.14 0.00 0.00 1.22
   10 (February) -0.01 -0.01 0.05 0.02 0.01 0.83 0.00 0.00 0.25 0.00 0.00 0.71
   11 (March) 0.00 -0.02 0.46 0.01 0.01 0.41 0.00 -0.01 0.69 0.00 0.00 0.61
   12 (April) -0.01 -0.03 0.71 0.01 0.00 0.18 0.00 -0.01 0.95 0.00 0.00 0.08
   13 (May) -0.01 -0.02 0.35 0.00 0.00 0.00 0.00 -0.01 0.50 0.00 0.00 0.00
   14 (June) -0.01 -0.01 0.18 0.00 0.00 0.00 0.00 0.00 0.35 0.00 0.00 0.00
   15 (July) -0.02 0.01 -2.07 ** 0.00 0.00 0.27 -0.01 0.00 -1.99 * 0.00 0.00 0.02
   16 (August) -0.01 0.01 -2.31 ** 0.00 0.00 0.48 0.00 0.00 -2.47 ** 0.00 0.00 0.13

Table 4. Comparison of the First Two Moments of Unit and Percentage Error Distributions for WASDE Corn Price Interval Forecasts, 1980/81-1994/95, 
and 1995/96-2006/07 Marketing Years.

Note: Forecast error is calculated as the unit or percentage difference between the final (November) estimate and the midpoint of the forecast interval. One asterisk 
indicates significance at 10% level, two asterisks indicate significance at 5% level, three asterisks indicate significance at 1% level.

Unit Errors ($/bu) Percentage Errors (%)

Levene's Levene's
   F -statistic    F -statistic

Month of the 
Forecasting 
Cycle Χ Χ

Χ
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1980/81-
1994/95

1995/96-
2005/06

1980/81-
1994/95

1995/96-
2005/06

1980/81-
1994/95

1995/96-
2005/06

1980/81-
1994/95

1995/96-
2005/06

Mean Mean t -test Variance Variance Mean Mean t -test Variance Variance
Prior to harvest
   1 (May) -0.01 0.53 -1.55 0.92 0.61 0.77 0.01 0.10 -1.66 0.02 0.02 0.03
   2 (June) 0.00 0.50 -1.47 0.92 0.58 0.59 0.01 0.10 -1.55 0.02 0.02 0.01
   3 (July) -0.04 0.46 -1.67 0.58 0.62 0.02 0.00 0.09 -1.66 0.02 0.03 0.17
   4 (August) -0.10 0.27 -1.42 0.34 0.60 0.63 -0.01 0.05 -1.24 0.01 0.02 0.99
   5 (September) -0.20 0.22 -1.75 * 0.38 0.38 0.03 -0.02 0.04 -1.35 0.01 0.01 0.43
   6 (October) -0.12 0.20 -1.52 0.38 0.21 0.77 -0.01 0.03 -1.10 0.01 0.01 0.11
After harvest

   7 (November) -0.10 0.18 -1.45 0.33 0.16 0.62 0.00 0.03 -1.08 0.01 0.01 0.16
   8 (December) -0.07 0.12 -1.21 0.18 0.14 0.03 0.00 0.02 -0.92 0.00 0.00 0.13
   9 (January) -0.01 0.08 -0.83 0.07 0.09 0.12 0.00 0.01 -0.60 0.00 0.00 0.40
   10 (February) 0.01 0.09 -0.81 0.05 0.06 0.02 0.01 0.01 -0.61 0.00 0.00 0.13
   11 (March) 0.05 0.08 -0.43 0.03 0.03 0.01 0.01 0.01 -0.28 0.00 0.00 0.02
   12 (April) 0.05 0.04 0.31 0.02 0.02 0.34 0.01 0.01 0.22 0.00 0.00 0.27
   13 (May) 0.03 0.02 0.38 0.01 0.01 0.08 0.01 0.00 0.19 0.00 0.00 0.15
   14 (June) 0.02 0.01 0.31 0.01 0.01 0.09 0.00 0.00 0.06 0.00 0.00 0.16
   15 (July) 0.01 0.00 0.72 0.00 0.01 1.63 0.00 0.00 0.44 0.00 0.00 1.70
   16 (August) 0.01 -0.01 1.77 * 0.00 0.00 1.43 0.00 0.00 1.56 0.00 0.00 1.36

Table 5. Comparison of the First Two Moments of Unit and Percentage Error Distributions for WASDE Soybean Price Interval Forecasts, 1980/81-
1994/95, and 1995/96-2006/07 Marketing Years.

Note: Forecast error is calculated as the unit or percentage difference between the final (November) estimate and the midpoint of the forecast interval. One asterisk 
indicates significance at 10% level, two asterisks indicate significance at 5% level, three asterisks indicate significance at 1% level.

Unit Errors ($/bu) Percentage Errors (%)

Levene's Levene's
   F -statistic    F -statistic

Month of the 
Forecasting 
Cycle

Χ Χ

Χ

ΧΧ Χ Χ ΧΧ Χ
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1980/81-
1994/95

1995/96-
2005/06

1980/81-
1994/95

1995/96-
2005/06

1980/81-
1994/95

1995/96-
2005/06

1980/81-
1994/95

1995/96-
2005/06

Mean Mean t -test Variance Variance Mean Mean t -test Variance Variance
Prior to harvest

   1 (May) 0.02 0.03 -0.06 0.11 0.34 5.18 ** 0.01 0.02 -0.10 0.01 0.03 4.60 **

   2 (June) 0.00 0.03 -0.15 0.10 0.26 4.13 * 0.01 0.01 -0.11 0.01 0.02 3.61 *

   3 (July) 0.01 0.12 -0.94 0.07 0.12 2.69 0.01 0.04 -0.72 0.01 0.01 1.72
After harvest

   4 (August) 0.03 0.05 -0.18 0.05 0.08 0.14 0.02 0.01 0.08 0.01 0.01 0.00
   5 (September) 0.02 0.05 -0.38 0.03 0.04 0.11 0.01 0.01 -0.04 0.00 0.00 0.00
   6 (October) 0.01 0.00 0.08 0.02 0.02 0.06 0.01 0.00 0.36 0.00 0.00 0.41
   7 (November) 0.01 -0.01 0.36 0.02 0.01 0.26 0.01 0.00 0.67 0.00 0.00 0.74
   8 (December) 0.00 -0.01 0.46 0.01 0.01 0.29 0.00 0.00 0.79 0.00 0.00 0.17
   9 (January) -0.01 -0.01 -0.05 0.01 0.00 0.33 0.00 0.00 0.37 0.00 0.00 0.59
   10 (February) -0.01 -0.01 -0.06 0.00 0.00 0.55 0.00 0.00 0.39 0.00 0.00 0.70
   11 (March) 0.01 0.00 0.66 0.00 0.00 0.07 0.00 0.00 1.03 0.00 0.00 0.33
   12 (April) 0.01 -0.01 1.51 0.00 0.00 0.27 0.01 0.00 1.89 0.00 0.00 1.05
   13 (May) 0.00 0.00 0.44 0.00 0.00 0.46 0.00 0.00 0.72 0.00 0.00 1.23
   14 (June) 0.00 0.00 0.41 0.00 0.00 0.50 0.00 0.00 0.67 0.00 0.00 1.28

Percentage Errors (%)

Table 6. Comparison of the First Two Moments of Unit and Percentage Error Distributions for WASDE Wheat Price Interval Forecasts, 1980/81-1994/95, and 1995/96-
2006/07 Marketing Years.

Note: Forecast error is calculated as the unit or percentage difference between the final (November) estimate and the midpoint of the forecast interval. One asterisk indicates 
significance at 10% level, two asterisks indicate significance at 5% level, three asterisks indicate significance at 1% level.

Levene's
   F -statistic

Levene's
   F -statistic

Unit Errors ($/bu)

Month of the 
Forecasting 
Cycle

Χ ΧΧ Χ ΧΧΧ Χ
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5th 10th 90th 95th

Panel A: Corn
Constant -0.243 -0.212 0.274 0.326

(-13.799) *** (-7.098) *** (10.17) *** (9.881) ***

FM 0.022 0.020 -0.029 -0.030
(7.471) *** (4.471) *** (-6.594) *** (-5.267) ***

FM2 -0.001 0.000 0.001 0.001
(-3.951) *** (-2.955) *** (4.530) *** (3.043) ***

Pseudo R-squared 0.374 0.291 0.344 0.375
Adjusted R-squared 0.372 0.289 0.341 0.372
Quasi-LR statistic 424.795 348.522 436.133 379.487

Panel B: Soy
Constant -0.241 -0.172 0.270 0.395

(-8.740) *** (-7.781) *** (8.198) *** (4.292) ***

FM 0.026 0.019 -0.028 -0.040
(5.742) *** (5.775) *** (-6.512) *** (-3.005) ***

FM2 -0.001 -0.001 0.001 0.001
(-4.097) *** (-4.459) *** (5.084) *** (2.210) **

Pseudo R-squared 0.334 0.267 0.313 0.367
Adjusted R-squared 0.332 0.265 0.310 0.364
Quasi-LR statistic 365.173 347.122 427.364 410.825

Panel C: Wheat
Constant -0.166 *** -0.141 *** 0.243 *** 0.273 ***

(-12.282) (-12.662) (6.992) (11.587)
FM 0.019 *** 0.017 *** -0.031 *** -0.033 ***

(8.600) (9.839) (-6.170) (-9.170)
FM2 -0.001 *** 0.000 *** 0.001 *** 0.001 ***

(-5.988) (-7.939) (5.463) (7.468)
Pseudo R-squared 0.477 0.381 0.371 0.532

Adjusted R-squared 0.474 0.378 0.369 0.530

Quasi-LR statistic 733.577 634.494 529.355 840.047

Quantiles

Note: FM is month of the forecasting cycle.  Bootstrap t-statistics are in parentheses.  N= 513.  
One asterisk indicates significance at 10% level, two asterisks indicate significance at 5% level, 
three asterisks indicate significance at 1% level.

Table 7.  Quantile Regression Results for Corn, Soybeans, and Wheat, 1980/81-2006/07 
Marketing Years.
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Test/Commodity 5th 10th 90th 95th

Omitted Variable Test a

   Corn 0.452 0.079 11.275 *** 33.192 ***

   Soybeans 10.448 *** 9.570 *** 0.000 0.000
   Wheat 4.472 ** 0.453 0.000 0.000

Slope Equality Test b

   Corn 334.106 *** 337.139 *** 337.139 *** 334.106 ***

   Soybeans 302.232 *** 275.267 *** 275.267 *** 302.232 ***

   Wheat 192.634 *** 243.532 *** 243.532 *** 192.634 ***

Symmetry Test b

   Corn 6.147 2.372 2.372 6.147
   Soybeans 10.103 ** 6.579 * 6.579 * 10.103 **

   Wheat 21.829 *** 10.806 ** 10.806 ** 21.829 ***

Table 8.  Diagnostic Test Results for Quantile Regression Models of Corn, 
Soybean, and Wheat Forecast Errors, 1980/81-2006/07 Marketing Years.

Quantiles

Notes: a QLR L-statistic for stocks/use variable, b Wald test.  N=513. One asterisk 
indicates significance at 10% level, two asterisks indicate significance at 5% level, 
three asterisks indicate significance at 1% level.
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Hit Hit Hit
Rate (%) Rate (%) Rate (%)

Prior to harvest

   1 (May) 42 8.46 *** 75 0.18 75 0.18
   2 (June) 33 12.26 *** 75 0.18 75 0.18
   3 (July) 50 5.36 ** 83 0.09 75 0.18
   4 (August) 58 2.92 * 75 0.18 75 0.18
   5 (September) 67 1.17 75 0.18 75 0.18
   6 (October) 58 2.92 * 83 0.09 75 0.18
       Average 53 78 75

After harvest

   7 (November) 92 0.04 92 0.04 92 0.04
   8 (December) 92 0.04 100 n/a 92 0.04
   9 (January) 100 n/a 100 n/a 100 n/a
   10 (February) 92 0.04 100 n/a 100 n/a
   11 (March) 92 0.04 100 n/a 92 0.04
   12 (April) 67 4.83 ** 83 0.50 75 2.22
   13 (May) 75 2.22 92 0.04 75 2.22
   14 (June) 75 2.22 75 2.22 67 4.83 **

   15 (July) 83 0.50 83 0.50 75 2.22
   16 (August) 42 16.99 *** 92 0.04 67 4.83 **

   17 (September) 58 8.20 *** 100 n/a 83 0.50
       Average 79 92 83

Table 9.  Accuracy Statistics for Empirical Confidence Intervals for WASDE Corn Price Forecasts, 
1995/96-2006/07 Marketing Years.

Published Intervals

Unconditional
Coverage Test

Month of the 
Forecasting Cycle

Note:  Empirical price forecast intervals were calculated using percentage errors from the 1980/81 marketing 
year forward. Target confidence level is 80% prior to harvest and 90% after harvest.  One asterisk indicates 
significance at 10% level, two asterisks indicate significance at 5% level, three asterisks indicate significance at 
1% level.

Quantile Regression with 
Stocks/Use Intervals

Unconditional
Coverage TestCoverage Test

Quantile Regression 
Intervals

Unconditional
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Hit Hit Hit
Rate (%) Rate (%) Rate (%)

Prior to harvest

   1 (May) 58 2.92 * 83 0.09 83 0.09
   2 (June) 67 1.17 83 0.09 83 0.09
   3 (July) 67 1.17 83 0.09 83 0.09
   4 (August) 75 0.18 92 1.24 92 1.24
   5 (September) 67 1.17 67 1.17 75 0.18
   6 (October) 58 2.92 * 75 0.18 75 0.18
       Average 67 80 82

After harvest

   7 (November) 67 4.83 ** 92 0.04 83 0.50
   8 (December) 75 2.22 83 0.50 75 2.22
   9 (January) 75 2.22 83 0.50 75 2.22
   10 (February) 83 0.50 92 0.04 92 0.04
   11 (March) 83 0.50 92 0.04 92 0.04
   12 (April) 83 0.50 83 0.50 83 0.50
   13 (May) 17 35.66 *** 92 0.04 92 0.04
   14 (June) 25 28.58 *** 92 0.04 83 0.50
   15 (July) 25 28.58 *** 83 0.50 92 0.04
   16 (August) 42 16.99 *** 67 4.83 ** 75 2.22
   17 (September) 42 16.99 *** 67 4.83 *** 67 4.83 ***

       Average 56 84 83

Coverage Test

Month of the 
Forecasting 
Cycle

Quantile Regression 
Intervals

Note:  Empirical price forecast intervals were calculated using percentage errors from the 1980/81 
marketing year forward. Target confidence level is 80% prior to harvest and 90% after harvest.  One 
asterisk indicates significance at 10% level, two asterisks indicate significance at 5% level, three asterisks 
indicate significance at 1% level.

Table 10.  Accuracy Statistics for Empirical Confidence Intervals for WASDE Soybean Price 
Forecasts, 1995/96-2006/07 Marketing Years.

Unconditional
Coverage Test Coverage Test

Unconditional

Published Intervals Quantile Regression with 
Stocks/Use Intervals

Unconditional
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Hit Hit Hit
Rate (%) Rate (%) Rate (%)

Prior to harvest

   1 (May) 33 12.26 *** 42 8.46 *** 50 5.36 **

   2 (June) 33 12.26 *** 50 5.36 ** 42 8.46 ***

   3 (July) 67 1.17 75 0.18 67 1.17
      Average 44 56 53
After harvest
   4 (August) 75 2.22 92 0.04 92 0.04
   5 (September) 83 0.50 100 n/a 100 n/a
   6 (October) 92 0.04 100 n/a 100 n/a
   7 (November) 75 2.22 92 0.04 92 0.04
   8 (December) 75 2.22 83 0.50 83 0.50
   9 (January) 75 2.22 100 n/a 100 n/a
   10 (February) 75 2.22 100 n/a 92 0.04
   11 (March) 83 0.50 92 0.04 92 0.50
   12 (April) 67 4.83 ** 92 0.04 92 0.04
   13 (May) 42 16.99 *** 92 0.04 92 0.04
   14 (June) 42 16.99 *** 67 4.83 ** 83 0.50
       Average 71 92 92

Table 11.  Accuracy Statistics for Empirical Confidence Intervals for WASDE Wheat Price 
Forecasts, 1995/96-2006/07 Marketing Years.

Coverage Test

Quantile Regression 
Intervals

Quantile Regression with 
Stocks/Use Intervals

Unconditional Unconditional Unconditional
Month of the 
Forecasting 
Cycle

Published Intervals

Coverage Test Coverage Test

Note:  Empirical price forecast intervals were calculated using percentage errors from the 1980/81 
marketing year forward. Target confidence level is 80% prior to harvest and 90% after harvest.  One 
asterisk indicates significance at 10% level, two asterisks indicate significance at 5% level, three 
asterisks indicate significance at 1% level.
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Figure 1.  Quantile Regression Estimates with 95% Confidence Bounds for Corn Forecast 
Errors, 1980/81-2006/07 Marketing Years. 
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Figure 2.  Quantile Regression Estimates with 95% Confidence Bounds for Soybean 
Forecast Errors, 1980/81-2006/07 Marketing Years. 
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Figure 3.  Quantile Regression Estimates with 95% Confidence Bounds for Wheat Forecast 
Errors, 1980/81-2006/07 Marketing Years. 
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Endnotes 
 
1 It is worth noting that most theoretical variance expressions are based on the same assumption. 
 
2 Tables 1-2 present descriptive statistics for 17 monthly forecasts of corn and soybean prices 
and Table 3 presents descriptive statistics for 14 monthly forecasts of wheat prices because the 
last “forecast” provides the final estimate for each commodity. 
 
3 Isengildina, Irwin, and Good (2004) provide survey evidence that WASDE price intervals are 
symmetric.  That is, a midpoint is forecast and then an equal interval is added to each side of the 
midpoint. Therefore, the average forecast price is computed in this study by taking an average of 
the midpoint of forecast prices for each month. 
 
4 The last several months (17 and 18 for corn and soybeans and 15 for wheat) were not included 
in the analysis because the errors were usually zero, so the distributions were impossible to 
estimate. 
 
5 Christoffersen (1998) also proposed additional tests that examine interval forecast 
independence and forecast coverage conditional on independence.  However, due to a small 
number of observations, these tests cannot be applied reliably to the prediction part of the sample 
(1995/96-2004/05). 
 


