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Estimation of Efficiency with the Stochastic Frontier Cost Function and 

Heteroscedasticity: A Monte Carlo Study 

 

 

Abstract 

 

The objective of this article is to address heteroscedasticity in the stochastic frontier cost 

function using aggregated data and verify it using a Monte Carlo study. We find that 

when the translog form of a stochastic frontier cost function with aggregated data is 

estimated, all explanatory variables can inversely affect the variation of error terms. Our 

Monte Carlo study shows that heteroscedasticity is only significant in the random effect 

and the unexplained error term not in the inefficiency error term. Also, it does not cause 

biases, which is quite opposite of previous research. These are because our model is 

approximately defined by first order Taylor series around zero inefficiency area. But, 

disregarding heteroscedasticity causes the average inefficiency to be overestimated 

when the variation of inefficiency term dominates the other error terms. 

 



Estimation of Efficiency with the Stochastic Frontier Cost Function and 

Heteroscedasticity: A Monte Carlo Study 

 

Introduction 

Since the advent of Farrell (1957) efficiency indexes using a deterministic frontier 

function, efficiency measurements have been consistently developed by researchers 

over all industry. Aigner, Lovell, and Schmidt (1977) brought about the possibility that 

deviations from the frontier may arise because of random factors and provided the 

disturbance term as the sum of symmetric normal and half-normal random variables. 

Meeusen and van den Broeck (1977) also introduced the composed error which 

distinguishes inefficiency from a statistical disturbance of randomness. Jondrow et al. 

(1982) suggested estimating inefficiency component for each observation with the 

stochastic frontier model so that rankings among observations were possible.  

In terms of addressing heteroscedasticity, Caudill and Ford (1993) found the biases in 

the frontier estimation due to heteroscedasticity of a one-sided error and later Caudill, 

Ford, and Gropper (1995) found that the rankings of firms by efficiency measures were 

significantly affected by the correction for heteroscedasticity. These were followed by 

the suggestion from Schmidt (1986) that a one-sided error can be associated with factors 



under the control of the firm while the random component can be associated with 

factors outside the control of the firm. Since firm-level data are used in the frontier 

function and firms vary widely in size, size-related heteroscedasticity is involved in a 

one-sided error. On the contrary, concerned with heteroscedasticity only in a one-sided 

error, Hadri (1999) suggested heteroscedasticity of both error terms with the same data 

of Caudill, Ford, and Gropper (1995).  

On the other hand, Dickens (1990) showed that aggregated data caused 

heteroscedasticity with the size of group. This result can lead that small firms are less 

efficient while large firms are more efficient when the frontier (average) cost function 

with aggregated data is estimated because the variation is decreasing as the size of 

group increases. This can also induce the discussion that economies of size is also 

affected by heteroscedasticity.  

A translog cost function and maximum likelihood estimation (MLE) are widely used 

in previous research. Since the joint distribution of a symmetric normal and a truncated 

normal had been first derived by Weinstein (1964), Aigner et al. (1977) and Greene 

(1980) described a method of estimating the frontier production model using a translog 

functional form and MLE. 



This paper is about addressing heteroscedasticity using the translog form of a 

stochastic frontier cost function with aggregated data and examining average efficiency 

measurement for both cases. We specify the aggregated model from the disaggregated 

model and take a natural log in order to use a translog cost function. To make the 

equation be simplified, first order Taylor series around the frontier area is applied. Then, 

we can see heteroscedasticity on error terms. A Monte Carlo study enables to verify it 

and compare efficiency measurement in the presence of heteroskedasticity with that of 

disregarding heteroskedasticity. 

 

Theory 

Consider the following disaggregated model: 

(1)  ,,...,1,,...,1,)( JjniwuC jijjijij ==++= Xβ   
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where ijC  is the cost of the ith output in the jth firm, X  is a vector of explanatory 

variables including input prices and output, β  is a vector of unknown parameters to be 

estimated, ju  is the random effect of the jth firm, ijw  is the unexplained portion of 

the cost of ith output in the jth firm.  



In a stochastic frontier cost function, the inefficiency is considered as the deviations 

from the frontier so that a one-sided error term is needed to represent that. Thus a 

stochastic frontier cost function can be defined as   

(2)   ,)( jijjijij vwuC +++= Xβ ),0(~ 2

vj Ndiiv σ , 0),cov( =jj vu ,  
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where jv  is the inefficiency and a one-sided error with πσ 2)( vvE =  and 

)21()var( 2 πσ −= vv . Especially, πσ 2v  is known as average inefficiency 

measurement by Aigner et al. (1977). 

When being added over all outputs within each firm, a (total) stochastic frontier cost 

function can be derived as 
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where jn  is the number of output in the jth firm.  

Assuming cost functions for each firm have same explanatory variables, a (total) 

stochastic frontier cost function can be also expressed as  
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where jTC  is the total cost for the jth firm, and the dot is the common notation to 

denote that the variable has been averaged over the corresponding index; outputs in this 



case. Here, we can see that aggregated data cause heteroscedasticity with outputs on 

error terms when the (total) stochastic frontier cost function is estimated. 

A translog cost function can be usually used due to several conveniences such as 

including multiple outputs, calculating elasticities easily, adjusting heteroscedasticity 

and etc. Let’s take a natural log for the equation (4) and first order Talyor series of 

( )
jjjj vwu +++ ..)(ln Xβ  around the mean of random errors and the frontier of 

inefficiency error such as 0=ju , 0. =jw and 0=jv  gives us following model:  
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explanatory variables also affect heteroscedasticity on error terms. In other words, the 

variance of all error terms is inversely affected by all squares of explanatory terms.  

When letting vwe += , the density function by Weinstein(1964) is known as  
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where 222

vw σσσ += , wv σσλ = , *f  and *F  are the standard probability density 

function and the standard cumulative density function, respectively. Here, λ  is an 

indicator of the relative variability of error terms. As Aigner et al. (1977) mentioned it, 

02 →λ  means 02 →vσ  and/or ∞→2

wσ , i.e. that inefficiency error is dominated by 

random error.  



The log-likelihood function with heteroscedasticity in equation (5) can be expressed 

as 

(7)   ∑∑
==





















=

J

j j

jj

j

j

j

J

j

jj

e
F

e
fef

1

**

1

2
ln))(ln(

σ

λ

σσ
 

where ( )
jjj

j

j vwue ++= .

.)(

1

Xβ
, 2

2
2

.)(

1
v

j

w
u

j

j
n

σ
σ

σσ ++









=

Xβ
, 

jwu

v
j

n22

2

σσ
σ

λ
+

= . 

This enables to use maximum likelihood estimation with heteroscedasticity for the 

stochastic frontier cost function. 

 

Data and procedures 

A Monte Carlo study can be used to examine heteroscedasticity of a stochastic frontier 

cost function on error terms. Based on equation (2), our true model is assumed as   

(8)   
jijjijij vwurC +++= .  

where 
ijr  is the input price of the ith output in the jth firm, the others are the same as 

previously defined.  

Aggregation over all outputs will derive following model:   
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Taking a natural log and first order Taylor series around the mean of random errors 

and the frontier of inefficiency error result in the following model:  
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So, our stochastic frontier cost function can be defined as  
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where heteroscedasticity is incorporated into the variances by assuming 
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)4,12(~ Nr ij . The means of output is around 8.89 and the variance of that is around 112. 

we assumed that there exist lots of small firms and a few of large firms.
1
  

In order to see the changes in a relative variability of error terms, we have two 

indicators ( 1≈λ and 2≈λ ), i.e. first one has the same variability and the last has more 

variability in the inefficiency error, so that we can see how much the average 

inefficiency changes as the variability of inefficiency increases. 

Using NLMIXED in SAS with 100 samples of 100 observations, the stochastic 

frontier cost function with heteroscedasticity and without heteroscedasticity is estimated. 

Outcomes are first compared with expected values to see how much the model is 

different from the true model and then compared each other with and without 

heteroscedasticity.  

                                                 
1
 The SAS code for output is int(5*exp(rannor(12345)))+1. 



Results 

Table 1 and Table 2 show the estimation results for the stochastic frontier cost function 

with 100 samples of 100 observations. We estimated s'β  for the frontier function and 

s'δ  for variance equation, and variances and average inefficiencies. Second column 

has expected values for each parameter. Third column is the results with restricting 

heteroscedasticity and fourth column is the results without heterescedasticity.  

Overall, the estimated parameters are close to the expected values except the intercept 

and the v1δ . For the intercept, it is interpreted as remainders by first order Taylor series. 

For the v1δ , maximum value was imposed to be 0.1 because of the convergence. Later, it 

affects the variance of the inefficiency error to be smaller than what we expected.  

First, looking at the parameters from the variance equation indicates that there exists 

heteroscedasticity in the translog form of the stochastic frontier cost function with 

aggregated data as expected. 

Second, comparing the results with heteroscedasticity and without heteroscedasticity 

informs that there are almost no biases in the stochastic frontier cost function, which is 

quite opposite of previous research. This is because of first order Taylor series around 

zero inefficiency area so that the inefficiency is assumed to be almost zero. It is like 

heteroscedasticity in ordinary least square.  



Third, let’s focus on the average inefficiency( πσ /2v ) in table 1 and table 2. In 

table 1, both of the average inefficiency are almost same while in table 2, the average 

inefficiency without heteroscedasticity is 2 times bigger than that with 

heteroscedasticity. In other words, as the variability of the inefficiency error increases 

and dominates the random errors, the average inefficiency is overestimated when 

disregarding heteroscedasticity. 

 

Conclusions 

In the frontier estimation, the translog form with aggregated data is mostly used and 

outputs are usually included in the variance equation to see whether heteroscedasticity 

exists or not. Theoretically, the variation of the (total) stochastic frontier cost function 

with aggregated data increases as the output increases. When the translog form of the 

stochastic frontier cost function is estimated, all explanatory variables can inversely 

affect on the error terms. Our Monte Carlo study shows that heteroscedasticity is 

significant in the random effect and the unexplained error term while it is insignificant 

in the inefficiency error term. Also, it does not cause biases, which is quite opposite of 

previous research. This is because our model is approximately defined by first order 

Taylor series around zero inefficiency area. Most importantly, disregarding 



heteroscedasticity causes the average inefficiency to be overestimated when the 

variance of inefficiency term dominates the other error terms. 

 Using first order Taylor series around the mean of inefficiency error might be more 

close to the previous research. Then, the relationship between the inefficiency 

measurement for each observation and output level with heteroscedasticity and without 

heteroscedasticity will give us more interesting findings. These will be for the future 

research. 



Table 1. Estimation Results with 100 Samples of 100 Observations ( 1≈λ ) 

Parameters 
Expected 

Value 

MLE  w/ 

Heteroscedasticity 

MLE  w/o 

Heteroscedasticity 

0β  0 
0.41984 

(0.04464) 

0.41584 

(0.04804) 

1β  1 
  0.87401*** 

(0.01783) 

  0.87530*** 

(0.01927) 

2β  1 
  1.00068*** 

(0.00152) 

  1.00168*** 

(0.00160) 

u1δ  1 
  1.76610*** 

(0.05038) 
 

w1δ  1 
0.83868* 

(0.25499) 
 

v1δ  1 
0.02115

a
 

(0.00426) 
 

2

wu+σ  0.01 
0.01860 

(0.00036) 

0.01848 

(0.00035) 

2

vσ  0.01 
0.00021 

(0.00003) 

0.00020 

(0.00004) 

πσ /2v  0.079 0.01179 0.01139 

Note: Standard deviations are reported in parentheses. Asterisk(*), double asterisk(**), and triple 

asterisk(***) denote significance on average at 10%, 5%, and 1%, respectively. 

a
 imposed between 0 and 0.1 because of convergence.



Table 2. Estimation Results with 100 Samples of 100 Observations ( 2≈λ ) 

Parameters 
Expected 

Value 

MLE  w/ 

Heteroscedasticity 

MLE  w/o 

Heteroscedasticity 

0β  0 
0.75872 

(0.05613) 

0.77062 

(0.06032) 

1β  1 
  0.77906*** 

(0.02247) 

  0.77073*** 

(0.02403) 

2β  1 
  1.00010*** 

(0.00198) 

  1.00070*** 

(0.00205) 

u1δ  1 
  3.78227*** 

(0.08685) 
 

w1δ  1 
0.75843* 

(0.31322) 
 

v1δ  1 
0.00726

 a
 

(0.00483) 
 

2

wu+σ  0.01 
0.03233 

(0.00051) 

0.03195 

(0.00052) 

2

vσ  0.04 
0.00030 

(0.00003) 

0.00064 

(0.00005) 

πσ /2v  0.159 0.01380 0.02015 

Note: Standard deviations are reported in parentheses. Asterisk(*), double asterisk(**), and triple 

asterisk(***) denote significance on average at 10%, 5%, and 1%, respectively. 

a
 imposed between 0 and 0.1 because of convergence.
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