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The Economics of Geological CO, Storage and Leakage
Summary

The economics of CO, capture and storage in relation to the possibility of significant
leakage of CO, from geological reservoirs once this greenhouse gas has been stored
artificially underground will be among the main determinants of whether CCS can
significantly contribute to a deep cut in global CO, emissions. This paper presents an
analysis of the economic and climatic implications of the large-scale use of CCS for
reaching a stringent climate change control target, when geological CO, leakage is
accounted for. The natural scientific uncertainties regarding the rates of possible leakage
of CO, from geological reservoirs are likely to remain large for a long time to come. We
present a qualitative description, a concise analytical inspection, as well as a more
detailed integrated assessment model, proffering insight into the economics of
geological CO, storage and leakage. Our model represents three main CO, emission
reduction options: energy savings, a carbon to non-carbon energy transition and the use
of CCS. We find CCS to remain a valuable option even with CO, leakage of a
few %/yr, well above the maximum seepage rates that we think are likely from a geo-
scientific point of view.

Keywords: Climate Change, Carbon Dioxide Emission Reduction, Technological
Innovation, CO, Capture and Storage (CCS), Geological Leakage

JEL Classification: H21, D58, C61, 033, Q40

The authors acknowledge funding from the EU TranSust.Scan project (no. 022773
under Sixth Framework Programme priority FP6-2004-SSP-4, and its predecessor
TranSust under contract EVG3-2002-00507, see: www.transust.org) that allowed this
analysis of the economics of geological CO2 storage and leakage, as well as the
simulation of the climate change mitigation potential of CCS, with the top-down
integrated assessment model DEMETER. Reyer Gerlagh thanks the Centre for
Advanced Study (CAS) at the Norwegian Academy of Science and Letters in Oslo for
financial, administrative and professional support, and the CAS researchers of the
2005-2006 academic year, amongst whom especially Michael Hoel. Valuable feedback
from many colleagues is much appreciated, especially that of Koen Smekens who
provided the model runs with MARKAL. This paper has also benefited from comments
by the participants of the TranSust.Scan meeting held in Vienna on 9-10 October 2006.
All remaining errors are ours.

Address for correspondence:

Bob van der Zwaan

ECN

Policy Studies Department
P.O. Box 37154

1030 AD Amsterdam

The Netherlands

Phone: +31224564442

Fax: +31204922812

E-mail: vanderzwaan@ecn.nl



2 THE EcoNOMICS OF GEOLOGICAL CO, STORAGE AND LEAKAGE

1. Introduction

A range of options exists suitable for significantly reducing this century current CO, emissions.
Atmospheric concentrations of this greenhouse gas (GHG) well above pre-industrial levels constitute
the main cause for the predicted rise in average surface temperature on Earth and the corresponding
change of the global climate system. Among the many technologies capable of contributing to
stabilizing atmospheric CO, concentrations, thereby mitigating global climatic change, CO, capture
and storage (CCS) has recently received particular attention. The capture of CO, before or after the
combustion of fossil fuels, and its subsequent storage in either geological formations or the ocean, or
its industrial re-use and/or chemical fixation, is today considered as one of the promising means to
start addressing the problem of climate change in the near term.

Still, much is left to be understood about the technical, economic and political dimensions of CCS.
Important questions remain in particular regarding possible environmental externalities and safety
risks associated with the storage of CO, underground (see e.g. Wilson et al., 2003, and IPCC, 2005).
The hazard associated with gradual CO, leakage ranks high among the potential risks of geological
CO, storage, since it could reduce or eliminate the suitability of CCS as climate change mitigation
option, and is therefore the main subject of this article. The Intergovernmental Panel on Climate
Change (IPCC) concludes that observations from engineered and natural analogues as well as
preliminary modelling efforts suggest that the fraction retained in appropriately selected and managed
geological reservoirs is very likely to exceed 99% over 100 years and likely to exceed 99% over 1,000
years (IPCC, 2005). Solid scientific support for these types of statements, however, is until today very
limited. This constitutes no reason, however, for not now analysing the potential climatic and
economic implications of CO, leakage. Do values exist for the CO, leakage rate that are acceptable
from a cost or carbon-cycle point of view? What is the economic penalty incurred from geologically
stored CO, leakage? What is the CO, tax required to stimulate CCS deployment under various leakage
scenarios? This article attempts to answer these kinds of questions.

Below, section 2 concisely introduces the basic economic implications for the wide-spread use of
CCS and climate change mitigation efforts of CO, leakage after this GHG has been stored in
geological reservoirs for emission reduction purposes. Section 3 describes the methodology we use for
our analysis: after a concise recollection of some of the essential features of DEMETER, it is
explained how this top-down integrated assessment model is expanded to reflect both the application
of CCS technology and physical leakage of geologically stored CO,, and subsequently employed to
address the above research questions. Section 4 gives a description of our modelling scenarios and
reports our findings in terms of the importance for climate change control efforts of CO, leakage
phenomena. In section 5 we investigate what the origins may be of what seems to be a discrepancy in

research results regarding the implications of geological CO, leakage obtained with, respectively, top-
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down versus bottom-up energy-economy-environment models. In section 6 we draw our conclusions

and discuss some of the main lessons for policy-making that follow from our analysis.

2. Climate change, CCS and CO; leakage

The presence of oil, natural gas, and CO, trapped in geological formations implies that in
sedimentary basins impermeable cap-rocks are available with sufficient quality to confine fluids and
gases for long periods of time. Evidence from natural systems demonstrates that reservoir seals exist
that are able to contain fossil fuels and CO, underground over time scales of millions of years. Still, it
is imaginable that CO, artificially stored underground slowly leaks from its geological medium and
gradually migrates to the aboveground environment. Especially for storage options other than depleted
oil and gas fields, such as aquifers and coal seams, aspects of long-term storage effectiveness are
uncertain. Also, a large number of sites exist where one might have expected to find oil or natural gas,
but where no such resources proved available, potentially as a result of an insufficient quality of
geological cap-rock material. At many places on Earth large quantities of oil and natural gas may once
have been stored underground, but that, in the absence of appropriate containment layers, eventually
seeped away to be absorbed in the aboveground biosphere or atmosphere. Hence, it may not be
guaranteed that the formations employed for artificial CO, storage retain integrity forever, possibly for
depleted oil and natural gas fields, but especially for other geological reservoirs.

Examples abound showing that not only fossil fuels like oil and natural gas but also CO, can
remain trapped in underground reservoirs for very long periods of times. Currently exploited oil and
natural gas fields, often ‘polluted’ with CO,, are known to be millions of years old, during which
period these pockets of sequestered fossil fuels have retained their storage integrity. The CO, used in
Texas for enhanced oil recovery originates from large naturally stored volumes of CO, that have been
present in the local terrestrial crust for at least millennia. The large volume of CO, trapped
underground in the Pisgah Anticline (Mississippi) is thought to have been created in Late Cretaceous
times, more than 65 million years ago. Given these examples, and since oil and natural gas fields have
a proven containment integrity record for millions of years, there is good reason to believe that CO,
can also be stored artificially without noteworthy leakage, at least in depleted oil and natural gas
fields, for time frames compatible with the natural CO, cycle. This would render CCS with geological
CO, storage fit for contributing to controlling global climate change. While there seems thus little
doubt that the long-term secure storage underground of a gas like CO, is feasible in many locations
and geological formations, no full certainty exists, as there are also plenty examples of natural CO,
leakage from the geological underground, notably around volcanic activity. Fossil fuels, however
abundant in comparison to some other natural resources, are still relatively rare and certainly limited
from a broader resource perspective. They are only found at sites with specific geological features,

including the presence of an appropriate cap-rock that prevents the confined oil or natural gas from
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dissipating. Most likely, during the Earth’s history, in many more places fossil fuels once
accumulated, but seeped away and dissolved in oceans and the atmosphere as a result of unfavourable
geologic containment conditions. Many fossil-fuel-retaining reservoirs that existed long ago, or past
oil and natural gas fields in statu nascendi, have probably disappeared over time (Deffeyes, 2005).
This observation confirms that leakage back into the atmosphere of artificially stored CO, is a
phenomenon that deserves attention and should be studied when contemplating the storage of CO,
underground for climate change reduction purposes (see e.g. also Kharaka et al., 2006).

The indicative figures for possible CO, leakage from the IPCC (2005) suggest that for carefully
selected CO, storage sites annual leakage rates are very likely to remain below 0.1%/yr. It could prove
difficult, however, to select CO, storage sites guaranteed characterised by such low leakage rates, let
alone by 100% storage efficiency. Even while the geosciences leave most of the large physical CO,
leakage rate uncertainties for the moment unresolved, one may ask already now what the leakage rates
are that can still be considered acceptable from at least an economic or climate control point of view.
It may well be that in terms of the relative costs of CCS implementation or the lead times involved
with the carbon cycle and global climate change, CO, leakage rates are allowed that are considerably
higher. Also, if more severe limitations exist than expected with respect to our CO, storage site
selection capabilities, or management proves insufficient during storage operation, leakage rates of
0.1%/yr or even 1%/yr cannot be totally excluded. The relevance of such high rates for energy
scenario analysis and the economics of climate change assessments should therefore be researched.
Also for other reasons, as will be clarified in section 4, we thus investigate three scenarios with (time-
independent) leakage of CO, from geological storage, in which the leakage rate amounts to 0.5%/yr,
1%/yr and 2%/yr, respectively.

Under imperfect storage conditions, CO, migration times are likely to vary significantly according
to the storage option considered, and depend on the characteristics of the formation of the site
specified (see, for example, NITG, 2007). The leakage time frame that characterises each option, and
the compatibility of that time frame with climate change policy targets as well as features of the
natural carbon cycle, is determinant for the option’s suitability to mitigate, postpone, or preclude
climate change. A back-of-the-envelope calculation readily demonstrates that a 1%/yr CO, leakage
rate is probably not acceptable from a global climate point of view, while a 0.1%/yr rate may perhaps
be. For a storage option with a 1%/yr leakage rate, a given quantity of geologically stored CO, will
have reduced to 37% of that amount after 100 years, whereas 90% of that quantity is still stored
underground after a century for a storage medium characterised by a 0.1%/yr leakage rate. Given that
climate change is a problem stretching over the forthcoming couple of centuries, one may conclude
that in the 1%/yr leakage case CCS becomes a clearly ineffective emissions abatement option. If a
0.1%/yr leakage rate applies, however, a large share of the geologically stored CO, remains

sequestered even after the time frame of several centuries, so that CCS retains much of its value as
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climate change management technology. This simple observation is confirmed by more refined
economic analyses of climate change, as in Ha-Duong and Keith (2003).

Leakage of CO, from underground storage may be subject to change over time. A few
observations can be made about the long-term evolution of the mean leakage rate. First, one may
assume that injection occurs arbitrarily distributed across a large collection of heterogeneous
reservoirs, about which we know virtually nothing, in terms of possible CO, leakage, before actually
operating them as storage sites. In other words, we start employing storage reservoirs more or less
randomly, without precise prior knowledge about the potential range of their associated CO, leakage
rate (as in Pacala, 2002). In this case, in the long run the average leakage rate decreases, because the
fraction of CO, remaining in less leaky reservoirs increases. Second, at some point it may be possible
to develop prior understanding of what the approximate leakage rate values are of specific potential
geological storage sites, e.g. through detailed modelling exercises of the behaviour and interaction of
CO, with its surrounding geological material (as in Hepple and Benson, 2002). If the quantity of CO,
we plan to store underground becomes large, and the limited capacity of each single reservoir
necessitates the use of a growing number of storage formations, gradually the probability of selecting
less favourable sites (i.e. with higher leakage rate) will increase, as the best sites are used first. In this
case the overall mean CO, leakage rate is likely to progressively augment over time. Third, the reality
may be somewhere in between these two outer cases, and both phenomena may be at work
simultaneously, so that decreasing and increasing average leakage rate tendencies (partly or
completely) level out. Given this latter argument, as well as the large range of leakage rate values we
study in this paper (including, in addition to the above, 0 and co CO, leakage rates), most of which are
considered pessimistic by the IPCC (2005) from a natural scientific viewpoint, we abstract from CO,
leakage time-variability.

CO, leakage lowers the value of CCS as climate mitigation option below the level of the CO, tax.
If we store one unit of CO, at /=0 and the leakage rate is A, an amount equal to Ae "' leaks back to the
atmosphere at any given time ¢. Given a real interest rate » and CO, tax 7, — the shadow price for

atmospheric CO, emissions — the net present value (NPV) of cumulative future CO, leakage is:

NPVleakage =T, = gﬂ“e—(“—l)lrtdt . (1)

If, for convenience, we assume that CO, taxes increase exponentially at rate g, we find:

A

. 2
/1+r—g70 (2)

o0
r, =1y [ ATTE Nt =
0
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Alternatively, the integrated carbon-mitigation NPV represented by the implementation of CCS, z¢cs,
equals 7 — 7;, with 7 the NPV of the CO, tax. For zero leakage, equation (2) implies that fossil fuel
combustion combined with CCS deployment (assuming 100% capture efficiency) should be fully
exempt from the CO, tax, while, hypothetically, for infinite leakage the application of CCS does not
imply a reduction of the imposed CO, tax (and consequently, as CCS is a costly technology, it will not
be used). Another special case is when atmospheric CO, uptake is modelled as an exhaustible
resource, e.g. when a ceiling is set to the total cumulative amount of emitted CO,. In this case, the CO,
tax will follow the Hotelling rule, and its growth rate will equal the real interest rate, such that 7,=1,

(Hotelling, 1931). That is, for any positive CO, leakage, >0, CCS has no net benefit.

3. DEMETER with CCS and leakage

To perform our analysis we use a top-down energy-economy-environment model. We recently
developed a long-term dynamic top-down model of the global economy that simulates the use of fossil
fuels, non-fossil energy, and an energy technology decarbonising fossil fuels through CCS (Gerlagh
and van der Zwaan, 2006). This model, including a basic climate module and generic production and
consumption behavior, is an extension of DEMETER that previously has been instrumental in our
study of several climate policy queries (see van der Zwaan et al., 2002; Gerlagh and van der Zwaan,
2003; Gerlagh and van der Zwaan, 2004; Gerlagh et al., 2004; van der Zwaan and Gerlagh, 2006).
DEMETER contributes to bridging research of endogenous growth (such as Bovenberg and Smulders,
1996, and Chakravorty et al., 1997) with top-down integrated assessment analyses of the economics of
climate change (e.g. Buonanno et al., 2003, and Goulder and Mathai, 2000). While DEMETER fits in
the tradition of models like DICE (Nordhaus, 2002), it is more elaborate especially in technological
detail than this reduced-form top-down formulation of the problem of climate change. DEMETER
shares the endogenization of technical change through learning curves with bottom-up models as
developed by Messner (1997), reported in e.g. Naki¢enovi¢ et al. (2001) and used in a series of
engineering energy systems models (such as in Smekens and van der Zwaan, 2006). In this sense,
DEMETER is fundamentally hybrid and, because of its endogenous cost definition, fit for analysing
long-term energy technology cost dynamics and deriving practical insight for climate policy making
(Jaccard et al., 2003).

In a preceding article with DEMETER (Gerlagh and van der Zwaan, 2006) we analysed the types
of economic instruments that can be used to address the problem of climate change, as well as the
incentives available to induce technical change towards physical emission reduction options like CCS,
in a way similar to the work by Fischer and Newell (2004). We observed that an increasing number of
existing bottom-up models are today able to simulate the deployment of CCS technologies (see e.g.
Riahi et al., 2004, and Smekens and van der Zwaan, 2006), but that only few top-down models are

available that incorporate CCS opportunities. The novelty of our analysis was to present a top-down
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model that includes CCS and a rich endogenous technological cost reduction representation through
the simulation of learning curves. Because we modelled a more detailed specification of energy supply
— in the new version of DEMETER we distinguish between energy savings, a switch from fossil fuels
to non-carbon energy sources, and the decarbonisation of fossil fuels e.g. through CCS — our work
extended that by Ha-Duong and Keith (2003), who incorporated CCS in their top-down DIAM model,
and Keller et al. (2003), who included CCS in the top-down RICE model. We included a CCS supply
curve with non-constant marginal costs, whereas Ha-Duong and Keith (2003) and Keller et a/. (2003)
mainly focus on the economic value of CCS, including CO, leakage, as an additional abatement option
with fixed marginal costs, in an inter-temporal emission reduction scheme. In this paper we again use
our updated version of DEMETER, and further expand it to reflect the phenomenon of CO, leakage.

DEMETER models a representative infinitely-living consumer who maximizes welfare under a set
of equilibrium conditions and a range of (infer alia climate change) constraints. Solving the program
involves the quantification of a combination of policy instruments and calculation of dynamic time-
paths for a series of economic and energy-specific variables that lead to an optimal aggregated and
discounted overall welfare. The climate change dynamics used are as in DICE, involving a multi-layer
system with an atmosphere and upper- and lower-ocean stratum (Nordhaus and Boyer 2000). As
DEMETER has been used in a few papers already, that include extensive accounts of the adopted
simulation characteristics, we restrict ourselves here to a concise presentation of its main features only,
mostly as related to CCS. We refer in particular to Gerlagh et al. (2004) for an extensive general
description of the model and to Gerlagh and van der Zwaan (2006) for more details on the
specification of CCS.”

To summarize briefly, there are four representative producers and corresponding sectors, denoted
by superscripts j = C, F, N, CCS, for the producer of the final good, the producer of energy based on
fossil-fuel technology, respectively carbon-free technology, and the producer of CCS technology.
Output of the final good sector is denoted by Y. This good is used for consumption C, investments /
in all four sectors, operation & maintenance M in both energy sectors and the application of CCS
technology to the fossil energy sector. Our distinction between investments costs and operation &
maintenance costs is in line with most bottom-up energy system models. Fossil-fuel energy is
demanded by the final good sector and supplied by the fossil-fuel energy sector. Likewise, carbon-free
energy is demanded by the final good sector and supplied by the carbon-free energy sector. The fossil-
fuel sector demands CCS technology from the CCS sector when CO, taxes are levied. The price of
fossil-fuel energy consists of three parts: energy production costs (I and M), costs of applying CCS

and CO, taxes. The representative producer maximizes the NPV of its cash flow.

2 A full description of the model is also available from the authors.
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There is a public agent that sets taxes to CO, emissions and subsidies to non-carbon energy, both
serving to reduce CO, emissions. When the agent imposes a CO,; tax, one of the possible reactions is a
reduction in overall energy consumption. Producers can also shift from fossil-fuel to carbon-free

energy, or, alternatively, decarbonize fossil-based energy production through the application of CCS.

CO, emissions Em, are proportional to the carbon content Sf of fossil fuels. The variable CCSR,

represents the share of CO, emissions captured through CCS technology application. The relation

between CO, emissions and fossil-fuel energy use thus becomes:

Em, =&’ (1- CCSR)Y, . 3)

Since there is today no scientific guarantee that CO, stored underground will not once start leaking
back into the atmosphere, we have expanded DEMETER to account for possible CO, leakage
phenomena, implying the simulation of an additional future source of CO, emissions as fraction of the
geologically stored stock of CO, at any give point in time.

The CO, capture and storage process is described through an effort variable O, assumed to be a
second-order polynomial function depending on the share of CO, captured and stored (see equation 4).
As all economic activity is described per vintage, we distinguish between latest and older vintages:
tildes on top of variables refer to the most recent vintage installed (see e.g. for the fossil-fuel use Y7} ).
The parameter x describes the increase in marginal costs when a higher share of fossil fuels is
decarbonized. For k=0, in one period, costs of CCS are linear and marginal costs are constant. For
k=1, marginal costs double when the share of fossil fuels to which CCS is applied increases from
almost nothing to all fossil fuels being used. This specification constitutes an important extension of
the work by Ha-Duong and Keith (2003) and Keller et al. (2003). In DEMETER, the low-cost CCS
options are used first, when CO, taxes are low, while more expensive CCS alternatives are added to
the set of applied CCS technologies under higher CO, taxes: these higher taxes justify the more
elevated expenses and effort per unit of reduced CO, emissions. CCS technology is only implemented
in response to CO, taxes. Under constant investment and maintenance prices, the share of fossil-fuel
energy from which CO; is captured and stored is assumed to be linear in the CO, tax.

ccs
ht

The variable is an inverse measure for the level of learning in CCS application. The higher its

value, the lower the cumulative learning, the more effort is required to implement CCS. When CCS
deployment accumulates and thus the amount of emissions avoided increases (equation 5), the
resulting (installation and operation) experience, X-°, leads to an enhancement of related knowledge,
and a corresponding decrease in the cost parameter htCCS (equation 6). In this equation, S and 4
are constant technology parameters describing the learning curve for CCS. When experience X<

accumulates, CCS options become cheaper, and, for constant CO, taxes, more CCS technology is
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CcCS
t

applied. Investments, one period before, are proportional to effort O; (equation 7), and so are

maintenance costs (equation 8). Parameters ¢““ and b““® define investment and maintenance flows
required for one unit of effort OF*. In every period, CCS maintenance costs are summed over all

vintages (equation 9). Parameter ¢ denotes the share of vintage capital depreciated per period.

S =S (CCSR, + )3 CCSRY)e[ Y], “
XS§5 = xCS 4 CCSR,eF T ©
RS =14 (1= d )Xy 0
65 =08 1, ©
M[CCS — Q[CCS /bCCS. 7
MES =(1-MEP + M5 ©

Like with its previous versions, DEMETER has been calibrated extensively to reflect as closely as
possible the global economy and energy system. For more details about the calibration procedure we
refer to our earlier publications (van der Zwaan et al., 2002; Gerlagh and van der Zwaan, 2003;
Gerlagh and van der Zwaan, 2004; Gerlagh et al., 2004). The extent to which CCS technology can
contribute to GHG emission control and atmospheric CO, concentration stabilization will, to a large
extent, be determined by its cost. Our assumptions regarding the cost ranges of CCS are described in
Gerlagh and van der Zwaan (2006). In brief, we suppose a series of different CCS options is available,
with prices from low to relatively high levels. In the first modelling period we assume that the initial
installation of CCS technology can be economically feasible at marginal costs of around 10 $/tC
avoided. At the high-cost end, when one nears the point of equipping all fossil-fuel electricity
generation with CCS, we presume that marginal costs are as high as 150 $/tC avoided. This high-cost
value corresponds to the average of the typical cost ranges as provided by the IPCC (2005). For
comparison, Ha-Duong and Keith (2003) assume constant initial marginal CCS costs of 75 $/tC, while
Keller et al. (2003) assume constant initial costs of 100 $/tC. As for the prospected cost reduction
potential of CCS technology we follow the current learning curve literature and adopt a value of 10%
for the corresponding learning rate (IEA/OECD, 2000; McDonald and Schrattenholzer; 2001 Rubin et
al., 2004). We assume that the above CCS cost estimates and cost reduction potential are applicable

for an initial level of cumulative experience with installed CCS capacity of X*©° =20 MtC/yr.

4. Simulation results

We define 6 scenarios allowing us to analyse the significance of CO, leakage for climate change
policy making. The first of these is a benchmark (business-as-usual) scenario that involves no

constraint on CO, emissions. The other 5 scenarios reflect cases in which a CO, stabilization target is
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reached through the introduction of a climate policy instrument. In each of these 5 scenarios we have
opted for imposing a stringent climate control target, that is, of 450 ppmv atmospheric CO,
concentration, while they differ in the assumed CO, leakage rate. In all 5 climate-constrained
scenarios the timing and extent of the implementation of new energy technologies, as well as those of
the corresponding CO, emission reductions, are calculated through the welfare maximization program

as described in section 3.

BAU: No climate change policy is implemented, and hence no tax on CO, emissions is applied.
Energy consumption and CO, emissions thus increase steadily over the entire 21% century.

S00: A climate stabilization target of 450 ppmv is reached through a tax on CO, emissions, while
geological CCS is characterized by a 0 % leakage rate.

S05: A climate stabilization target of 450 ppmv is reached through a tax on CO, emissions, while
geological CCS is characterized by a 0.5 % leakage rate.

S10: A climate stabilization target of 450 ppmv is reached through a tax on CO, emissions, while
geological CCS is characterized by a 1.0 % leakage rate.

S20: A climate stabilization target of 450 ppmv is reached through a tax on CO, emissions, while
geological CCS is characterized by a 2.0 % leakage rate.

S99: A climate stabilization target of 450 ppmv is reached through a tax on CO, emissions, but no

CCS option is available, e.g. as a result of an unacceptably high leakage rate.

To cross-check the consistency of our model we first define 5 different climate stabilization
scenarios, of 450, 475, 500, 525 and 550 ppmv respectively, and inspect the CO, emission profiles
corresponding to these atmospheric CO, concentration targets. Indeed, as can be seen from Figure 1,
DEMETER generates for each of these targets the CO, emission profiles as reported in the scientific
climate policy and carbon cycle literature (see e.g. Wigley et al., 1996). Figure 2 shows the CO,
emission profile when a climate stabilization target of 450 ppmv only is adopted. As expected, the
emission profile is essentially the same irrespective of the leakage rate by which the CCS mitigation
option is characterised, as demonstrated by the S00, S05, S10, S20 and S99 curves. Only small
emission differences occur by the end of the century between scenarios with different leakage rates, as
a result of timing issues, programming horizon cut-off effects, and the economic trade-off between
reaching a given stringent climate goal and implementing costly but climate-friendly energy

technologies.
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FIGURE 1. CO; emissions (GtC/yr) for various FIGURE 2. CO; emissions (GtC/yr) for various
concentration stabilization targets. leakage scenarios (450 ppmyv target).

Figure 3 depicts the cumulative amount of geologically stored CO,; resulting from CCS activities
as a function of time, under the 450 ppmv climate stabilization target and the different CO, leakage
rates in the scenarios as defined above. Clearly, if geological CCS is not subject to undesirable leakage
effects, as is simulated for the 21" century in scenario S00, the cumulative quantity of geologically
stored CO, increases steadily, and monotonically, reaching globally an integrated amount of over
120 GtC in 2100. On the other hand, if no CCS option is applied, as a result of the absence of the
necessary incentives (as in BAU) or since CCS proves to generate unacceptably high leakage rates
(like in S99), DEMETER model-runs correctly generate the zero-storage line shown in Figure 3.
When geological CO; storage is imperfect and provokes a non-negligible but limited level of average
leakage, predefined in DEMETER as a constant rate with a value below some threshold (above which
CO, leakage is judged to become unacceptably high), the cumulative geological CO, storage curve
lowers with respect to that of scenario S00: the amount of CO, stored underground during this century
reaches approximately 80, 60 and 50 GtC for leakage rates of 0.5, 1.0 and 2.0 %/yr (in scenarios S05,
S10 and S20) respectively. In Figure 4 the geological CO, seepage process is plotted against time for
the different leakage scenarios with the 450 ppmv climate stabilization target. Naturally, the S20
scenario, with a leakage rate increasing to almost 1 GtC/yr in 2100, tops the S10 and SO5 scenarios
that simulate leakage rates reaching about 0.6 and 0.4 GtC/yr respectively by the end of the century.
The other three scenarios, as can be seen in Figure 4, involve no CO, seepage: SO0 since the CO,

leakage rate of installed CCS capacity is zero, S99 and BAU because no CCS technology is deployed.
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As demonstrated in our previous analyses with DEMETER, the adoption of an appropriate policy
instrument is indispensable for reaching any climate stabilization target and the realization of the
geological storage of CO,, and CO, taxation proves to be both particularly effective and efficient
(Gerlagh and van der Zwaan, 2006). Figure 5 shows the time-dependence of the CO, tax that
DEMETER calculates to be the optimal path to achieve a 450 ppmv climate stabilization target under
varying assumptions regarding the CO, leakage rate associated with CCS technology application. In
all 5 climate management scenarios, the CO, tax increases almost exponentially during the first half of
the 21% century, but levels off after about 2050 to hover around a plateau between 100 and 250 US$/tC
depending on the leakage scenario under consideration. The ranking between S00, S05, S10 and S20,
in order of increasing tax levels, can be understood by realizing that higher taxation is required when
CCS is characterised by more leakage of CO,, since under accrued seepage less climate mitigation
potential is available through CCS, necessitating stronger policy incentives. It proves that when CCS
is excluded from the set of climate mitigation options as a result of exorbitantly large leakage
phenomena, the long-term tax level, now destined to stimulate the deployment of non-carbon energy

resources other than CCS, falls in the middle of the calculated range at a little over 150 US$/tC.
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FIGURE 5. CO; tax (US$/tC) for various leakage FIGURE 6. Share of CO; tax to CCS (%) for various
scenarios (450 ppmv target). leakage scenarios (450 ppmv target).
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DEMETER internalizes energy technology learning-by-doing by assigning additional investments
to those (essentially non-carbon) energy resources that possess potential for significant future cost
reductions through learning processes, and it employs the CO, tax to bring in line the private objective
of profit maximization and the social objective of minimizing dynamic costs. Because both CCS
technologies and renewables are assumed to possess cost reduction potential, simulated in DEMETER
via learning curves, for each the marginal social costs of deployment fall short of the marginal private
costs. Figure 6 shows the time-dependence of the share of the CO, tax that can be claimed back for
avoided CO, emissions after an investment in CCS application. This Figure shows that DEMETER
generates the expected outcome, in that the internal ranking between S00, S05, S10 and S20
corresponds to, respectively, a decreasing share of the total CO, tax given back after CCS investments.
This is understandable, as the social value of CCS decreases when the leakage rate becomes higher.
Apart from modelling initiation phenomena — DEMETER generates a zero tax-to-CCS share in 2005
as a result of simulation start-off assumptions — when there is no CO, leakage, DEMETER calculates
that CCS receives an average of 80% exemption of the CO, tax, while a substitution of renewables for
fossil fuels would generate a full 100% CO, tax reduction. Even if CCS is characterised by zero CO,
leakage, renewables still receive a higher share of the CO, tax revenues, as their costs are expected to
decrease faster through learning processes. Typically, for the simulated CO, leakage rates, we find that
the tax-to-CCS share remains between 30% and 70% for most of the century with an average of some
50%. Through equation (2) these numbers can be understood by realizing that in DEMETER the
interest rate is about 5%/yr and the CO, tax growth rate about 3%/yr: in the long run a leakage rate of
2%/yr then still results in 7; being approximately 50%, as confirmed by Figure 6. As depicted in this
Figure, only during the 2™ half of the century a small deviation of the expected tax-to-CCS share is
found for scenario S10: apparently the balancing of investment capital (derived from the recycling of
CO, tax revenues) between CCS and renewable energy technology is more delicate when the leakage
rate amounts to approximately 1.0%/yr. But otherwise the results described in this section grosso

modo confirm what we expected beforehand from our initial CCS analysis.

5. Top-down versus bottom-up modelling

The question addressed above with a top-down energy-economy-environment model can also be
analysed with a bottom-up energy system model. It proves that results obtained with these two
complementary approaches differ non-negligibly. As an example we here compare the top-down
model DEMETER with the bottom-up model MARKAL, demonstrate that we obtain diverging results
with these two models in terms of the economics of CO, leakage, and investigate how these different

findings should be interpreted and can be understood.
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Like DEMETER, MARKAL was recently expanded to account for the simulation of CCS
technology. The new MARKAL version not only includes a representation of a range of CO, capture
technologies and storage options, but also reflects environmental externalities induced by geological
CO, storage and leakage of CO, from underground storage formations, as described in, respectively,
Smekens and van der Zwaan (2006) and van der Zwaan and Smekens (2006). With both DEMETER
and MARKAL we find that, even under a CO, leakage rate of 0.5%/yr (or lower), CCS develops
significantly during the 21* century and as such contributes substantially to mitigating global climate
change. If the CO, leakage rate is as high as 1%/yr, however, with MARKAL CCS disappears almost
entirely from the fossil-based power sector except for a small contribution by 2100 (see Figure 1 in
van der Zwaan and Smekens, 2006). With DEMETER, on the other hand, 40-50% of all new capacity
of fossil fuel energy production is equipped with CCS during the latter half of this century irrespective
of a CO; leakage rate as high as 1%/yr (or even more). In a DEMETER-MARKAL comparison,
0.5%/yr CO, leakage proves to be the breaking-point beyond which modelling results start to
fundamentally differ from each other. Similarly, for MARKAL the amount of geologically stored CO,
integrated over all sectors (that is, fossil-based power production, biomass-based power production,
hydrogen production and industry) is decimated when adopting in our simulations a leakage rate of
1%/yr instead of 0.5%/yr (typically to about a quarter of the original quantity stored), while for
DEMETER this amount is only reduced by a fraction (of around 20%). As we saw above, with
DEMETER even under a leakage rate of up to 2%/yr still significant economic interest exists to invest
in CCS. For MARKAL, on the other hand, under such a high leakage rate CCS technology fully
disappears from the modelling solution.

There are several reasons for the differences found between these DEMETER and MARKAL
findings. First, of course, the differences are most profound if with MARKAL we only inspect the
fossil-based power sector: the resulting order-of-magnitude discrepancy can at least partly be
understood because DEMETER by principle simulates the entire energy economy rather than only part
of it. But even when we view MARKAL’s entire energy system, a sizeable discrepancy remains. A
second reason therefore is that in DEMETER the cost difference between CCS technology applied to
the use of fossil fuels, on the one hand, and the generic renewable energy resource, on the other hand,
is relatively large, at least during the first part of the century when learning has not yet yielded
significant technology cost reductions. This implies that even as the climate mitigation potential of
CCS is somewhat reduced as a result of non-negligible CO, leakage, economic interest still exists to
deploy CCS, since renewables remain still a relatively costly alternative. In MARKAL, on the
contrary, this cost-dichotomy between CCS and renewables is smaller, rendering model outcomes
more sensitive to CO, leakage phenomena, so that under significant leakage CCS may even vanish
from the calculated scenarios altogether. As third reason, related to the previous point, we observe that

MARKAL simulates a very large range of different energy technologies (unlike the three stylistic ones
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modelled in DEMETER) that taken together imply a relatively smooth ranking in terms of costs
between different non-carbon energy technologies. In other words, if the unit cost of avoiding CO,
emissions through CCS increases as a result of CO, leakage, readily another technology is available
that avoids these emissions at competitive prices, thereby obviating the need for CCS application. In
MARKAL apparently at leakage rates above 0.5%/yr CCS decidedly loses economic competitiveness
in comparison to other CO, mitigation options.

There is yet a fourth explanation that connects to the theory as described in Section 2. Our
intuition is that the difference between the interest rate and the CO, tax growth rate, » — g, is smaller in
MARKAL than it is in DEMETER. According to equations (1) and (2) this would imply that the NPV
of CO, leakage, 7, (or, alternatively, 7 — 7¢cs, 1.€. the NPV of the CO, tax minus the integrated carbon-
mitigation value represented by CCS), is larger for MARKAL than it is for DEMETER, and the NPV
of CO, leakage more sensitive to the leakage rate A. The reason for » — g being smaller in the former is
that MARKAL treats the atmospheric CO, uptake as an exhaustible resource, and thus sets a ceiling to
the total cumulative amount of CO, that can be emitted during the 21% century. Consequently, the CO,
tax in MARKAL follows more closely the Hotelling rule.’ On the other hand, MARKAL plans over a
finite horizon and there is no leakage considered for the stored CO, at the end of the simulation period.
This feature helps explaining why CCS becomes relatively more profitable in later periods. In general,
however, for any substantial positive leakage, A>0, CCS in MARKAL more quickly looses its net
benefit. Indeed, Figure 7 shows that the CO, tax as calculated by MARKAL and DEMETER under a
stringent climate constraint behaves pretty much the same until the middle of the century. From
around 2050 differences in these tax paths start to occur: while CO, taxes in DEMETER level off
during the 2™ half of the century to values close to 200$/tC, in MARKAL they continue to increase
exponentially to reach values about four times higher by the end of the simulation horizon. Quod erat
demonstrandum.

The explanation for the relatively low CO, taxes in DEMETER is that, as a result of optimistic
assumptions regarding the learning potential of renewables, these new technologies fall below the
competitive (fossil-fuel based) break-even price during the 2™ half of the century. In combination with
the assumed natural uptake of part of the atmospheric CO,, this leads to a lowering of the shadow
price of CO, emissions and thus it controls the rise of CO, taxes in the second half of the century. In
MARKAL, on the other hand, while some (often modest) cost reductions are achieved for nearly all
competing energy technologies, a sizeable cost cap between most of the available renewables and
fossil-based energy production (although smaller than simulated in early modelling periods in
DEMETER) remains. In combination with the ceiling on total cumulative allowed emissions, this

necessitates an increase of CO, taxes as time proceeds under tighter emission reduction requirements.

3 Note that MARKAL does not model a unique interest rate, but uses different ones for each end-use sector.
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Figure 7 also shows that for each of the two models slightly higher taxes are needed when CO,

leakage amounts to 1%/yr, rather than 0.5%/yr, for the reasons explained earlier.
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FIGURE 7. Optimal CO; tax (in US$/tC) as calculated by MARKAL and DEMETER under a stringent climate
constraint for two values of the leakage rate (1 and 0.5%/yr).

6. Conclusions

In the version used for this paper, DEMETER simulates three main endogenous mechanisms for

achieving reductions in the total level of CO, emissions:

e saving energy;
e decarbonizing fossil fuel energy supply by either a transition from carbon-intensive to
carbon-poor fossil fuels or an application of CCS technology;

e switching to the use of non-carbon energy sources such as renewables.

Like in our previous work, we confirm that the fear that allowing for the deployment of CCS
might preclude the development of renewables is unjustified. According to our calculations, in order
to reach a stringent climate stabilization target, at least half of the energy system should consist of
renewables by 2100, even if CCS will be extensively promoted. But CCS technology might be a
welcome option to relax the requirements on renewable energy sources and, as it proves in this study,

even so if CCS is characterized by significant leakage of geologically stored CO,. The large-scale
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application of CCS needed for a significantly lower contribution of renewables would, in terms of
climate change control, be consistent with the growing expectation that fossil fuels, and in particular
coal, will continue to be a dominant form of energy supply during the 21% century (see, for example,
Stephens and van der Zwaan, 2005; van der Zwaan, 2005). Expectations from at least the geo-sciences
are that possible CO, leakage from underground storage sites is low enough as to not harm the
prospects for the use of fossil fuels complemented with CCS technology.

The economics of CO, capture and storage in relation to the possibility of significant leakage of
CO, from geological reservoirs once this GHG has been stored artificially underground will be among
the main determinants of whether CCS can soon significantly contribute to realizing the necessary
deep cut in global CO, emissions. The economic implications of CO, leakage associated with large-
scale deployment of CCS have so far only been studied marginally. This paper presents an analysis of
the economic and climatic implications of the wide-spread use of CCS for reaching stringent climate
change control targets, when geological CO, leakage is accounted for. The fact that the natural
scientific uncertainties regarding the rates of possible leakage of CO, from geological reservoirs are
likely to remain large for some time to come does not imply that the corresponding economics cannot
be investigated already today.

This article studies the economic and climatic aspects of CO, leakage from geological storage
media when CCS is applied on a global scale, through a qualitative description, a concise analytical
inspection and more detailed integrated assessment modelling. With a stylistic top-down energy-
environment-economy model representing three main CO, emission reduction options we find that
costly CCS with CO, leakage of even a few %/yr possesses non-negligible economic and climate
control value. We hereby find a higher allowable upper limit than the 0.5%/yr reported recently with
results from detailed bottom-up energy systems modelling, Still, exercises with both types of models
confirm that economically and climatically acceptable leakage rates are probably well above the
maximum seepage rates that we think are likely from a geo-scientific point of view. If one discards the
other possible drawbacks of CO, seepage, among which notably safety risks, one may conclude that
our finding takes away some of the urgency of attempts to natural-scientifically research the precise
levels of possible CO, seepage rates: the geo-sciences may not need to resolve this in order for CCS to
be adopted on a large scale for the mitigation of climate change. At least from the perspective as
investigated in this study, our results thereby seem to somewhat downgrade the need for careful CO,
storage site selection. One of our other main conclusions is that when significant learning-by-doing
cost reduction potential is available for energy technology deployment, and for CCS and renewables in
particular, CO, taxes may not need to exceed a level of approximately 200$/tC, even if there is

relatively large CO, leakage.
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