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The Planting Real Option in Cash
Rent Valuation

Xiaodong Du, David A. Hennessy

After entering into farmland rental contracts in the fall, a tenant farmer has the planting

flexibility to choose between corn and soybeans. Failure to account for this switching

option will bias estimates of what farmers should pay to rent land. Applying contin-

gent claims analysis methods, this study explicitly derives the real option value function.

Comparative statics with respect to the volatilities of underlying state variables and their

correlations are derived and discussed. Dynamic hedging deltas in this real option con-

text are also developed. Monte Carlo simulation results show that the average cash rent

valuation for the real option approach is 11% higher than that for the conventional net

present value (NPV) method. The simulated dynamic hedging deltas are shown to differ

from the ones implied by the NPV method.

Key words: cash rent, delta hedging, Monte Carlo simulation, multivariate GARCH, real

option, Ricardian rent.

JEL classification: C5, G1, Q1.
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Cropland rental rates have adjusted substantially over the period 2005-08 (Edwards and Smith

2007). This has largely been due to price shifts arising from demand for corn as an ethanol plant

feedstock. Landlords and tenants have needed to re-evaluate their willingness to pay and accept

rents in this new environment. The goal of this paper is to provided a better understanding of

willingness to pay for rented cropland.

In the United States, tenant farmers generally rent cropland in the fall to prepare for spring

planting. Cash rent is an important feature of midwestern crop production. In Iowa, as an

example, about 40% of cropland is rented under cash rental agreements. Our contention is that

the fall to spring time gap is important for how cash renters value access to land. The basis cash

rent calculation method suggested by farm management textbooks (e.g., Calkins and DiPietre

1983, p. 394; Olson 2004, p. 285; Kay, Edwards, and Duffy 2004, p. 359) is the so-called

tenant’s residual approach. The method is to derive a residual, or Ricardian rent, for land by

deducting operating costs from crop revenue based on estimated yields, prices, and operating

expenses. After taking into account planting decisions faced by a farmer who chooses between

corn and soybeans, the traditional net present value (NPV) method calculates the present value

of expected corn cash flows and also the present value of expected soybeans cash flows. The

maximum value of this pair of present values is then used to determine cash rent. The major

drawback of the conventional NPV method as applied to cash rent valuation is that it ignores

the option to choose what to plant. Thus, it underestimates what farmers should be willing to

pay for rental land.

Like other investment decisions, farmer’s production intentions with rented land share three

distinct features of real options, as described in Dixit and Pindyck (1994). One is irreversibility.

Once the crop has been planted, related sunk costs cannot be fully recovered. Another is

uncertainty. Profit uncertainty is due to stochastic output, as well as time-varying input and

output prices. The third feature is leeway in timing. After entering into a farmland rental
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agreement, a tenant farmer has an extensive margin flexibility to “switch” between corn and

soybeans for the next crop year. He also has an intensive margin flexibility concerning the level

of inputs to apply at planting. And these options mature at the planting time.

The impacts of irreversibility, uncertainty and the choice of timing on investment project

decisions and valuation have been widely recognized and applied to various investment problems

in agriculture. For example, Musshoff and Hirschauer (2008) apply the dynamic programming

and simulation methods to sales contracting decision problems facing German grain farmers.

Odening, Mußhoff, and Balmann (2005) calculate investment triggers and option values when

accounting for the value of waiting for an investment in hog fattening in Germany. Tzouramani

and Mattas (2004) employ the real option approach to better assess investment opportunities

when compared with the NPV approach. Luong and Tauer (2006) model Vietnamese coffee

growers’ entry and exit decisions as real options. The most relevant application to our work is

Marcus and Modest (1984). They applied continuous time option pricing methods to solve a

farmer’s optimal production decision problem. Crop futures prices are used as the stochastic

state variables that characterize the uncertainty faced by farmers.

The value of a tenant farmer’s potential planting flexibility, which should be reflected in cash

rent determination, is largely driven by volatile input and output prices. Failure to account

for option values will bias estimates of what farmers should pay to rent land. The literature

of farmland cash rent determination is surprisingly limited and the embedded real option com-

ponent is largely ignored. Kurkalova, Burkart, and Secchi (2004), for example, estimate the

cash rental rate as a function of the corn yield in the Upper Mississippi River Basin in 1997.

Dhuyvetter and Kastens (2002) use an accounting approach to model cash rents. Lence and

Mishra (2003) and Goodwin, Mishra, and Ortalo-Magné (2004) develop regressions of cash rents

against crop revenues and government payments in order to understand the role of government

interventions. Du, Hennessy, and Edwards (2007) employ a variable profit function Ricardian
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rent approach to analyze the determinants of cash rents using Iowa county-level panel data.

None of these seeks to model planting time flexibility.

Contrary to the traditional NPV method, in this study, we explicitly derive the value of

the switching and input intensity options. Using historical cash and futures prices, as well as

experimental production data, we evaluate the option, i.e., flexibility, value by Monte Carlo

methods. One contribution of our work to the literature on cash rent will be to identify the

importance of the switching option in cash rent determination.

Futures hedging provides tenant farmers with an important instrument for reducing the

risk of adverse price changes. There is a considerable body of research on the subject of the

optimal futures hedge (e.g., Rolfo 1980; Newbery and Stiglitz 1981; Anderson and Danthine

1983; Moschini and Lapan 1995). Typically, the producer’s hedging activities are assumed

to start at a known planting decision date. Farmers protect the established long position of

a known quantity with an appropriately chosen short position in the corresponding futures

contracts. Thus the dynamic hedging strategy represented by delta measures only involves

the certain planted crop and its corresponding futures market. In this study, a tenant farmer

has the flexibility before planting to switch between intentions to plant corn and soybeans for

the next crop year. As far as we know, this has not been allowed for before. In light of this

flexibility, the deltas he uses to hedge against input and output price uncertainty should differ

from the ones implied by traditional methods. Our second contribution to the literature is to

explicitly derive the hedging deltas for underlying random market prices. These delta measures

are also quantified by simulation methods.

The paper proceeds as follows. First, a conceptual model of real option valuation is de-

veloped. Comparative statics of the real option with respect to volatilities and correlation of

underlying state variables are derived and discussed. We also derive the optimal hedging deltas.

Second, an empirical Monte Carlo simulation method is described. Estimation and simulation
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methods for input and output prices, crop yields, and price bases are presented. The estimation

focuses on the option’s contribution to cash rent, and also on optimum hedging decisions. The

final section concludes with a brief discussion.

Conceptual Model

In Iowa, corn is typically planted between April 20 and May 10 each year. The best planting

time for soybeans is from May 15 to June 1. Crops are harvested from October to November of

the same year. After signing farmland rental contracts, typically in August the previous year,

a tenant farmer makes planting and input choice decisions in April. When making planting

decisions, farmers observe and use price information from the futures contracts expiring right

after harvest time to formulate harvest price expectations. When deciding what can be paid for

rented land, farmers will use futures prices to establish what they may plant, how intensively

they will farm, and the value of what they will reap. On the Chicago Board of Trade (CBOT),

the December contract for corn and the November contract for soybeans are the first available

futures contracts after harvest time. The time line is as follows:

Apr. May Jun. Oct.

Planting Corn

Planting Soybean Harvest

T0 T1 T2

Aug.

Signing Contract

Nov.

FS Maturity

Dec.

FC Maturity

where T0 is the time when a tenant farmer signs the farmland rental contract, T1 is the time

when the planting and input intensity decisions are made, and T2 is the harvest time. In

addition, time t ∈ [T0, T2] is the continuous time indicator.
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NPV vs. Real Option Methods

The traditional NPV approach assumes that a tenant farmer makes the planting decision when

agreeing on the cash rent. When corn and soybeans are the crops that may be chosen, a tenant

farmer compares expected corn profit, Et(πC) = Et[ET1(πC)], with that of soybeans, Et(πS) =

Et[ET1(πS)]. Et[·] denotes the expectation operator conditional on information available at

time t under the risk-neutral measure. Expectations ET1(πC) and ET1(πS) are expected harvest

time corn and soybean profits at planting time T1. The present value of Et(πC) and Et(πS) are

obtained from discounting the expected profits back to the decision-making time t by risk-free

rate r. In the standard NPV approach to rent determination, the planting choice is implicitly

assumed to have been made with certainty by time t where t < T1.
1 A tenant farmer plants the

crop with higher present value of expected profit, which is also the amount of cash rent paid

out for landowner and is given as

(1) V1 = e−r(T2−t) max {Et(πC), Et(πS)} (Traditional approach)

Contrast this approach with the real option method, in which a tenant farmer is assumed

to have the flexibility to switch between corn and soybeans until the planting time. The

corresponding cash rent valuation taking into account the real option value is

(2) V2 = e−r(T2−t)Et [max(πC , πS)] (Real option approach)

Here, the planting choice is not made until time T1. It’s readily shown that V1 ≤ V2 is true by

1The traditional approach also ignores intensive margin planting time flexibility in input use. It identifies
an expected profit at T0, not allowing for flexibility in waiting for knowledge of FT1 , i (i = C,S) to choose input
levels for each given crop (Oi 1961).
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Jensen’s inequality. Also, at maturity, the real option payoff is

(3) ET1 {max(πC , πS)} −max {ET1(πC), ET1(πS)}

with the strike price being max {ET1(πC), ET1(πS)}. In general, the smaller the difference

between corn and soybean expected profits, the higher the real option premium will be. The

switching option will have little value if the profit from one crop is almost certain to dominate

those from all other crops.

Real Option Valuation

This section considers the production decision of a tenant farmer facing input and output price

uncertainty. Applying contingent claim analysis, we derive a closed-form solution for switching

option valuation.

Production Decision

First, let’s consider the production decision of a tenant farmer. We make the standard assump-

tions that markets are competitive and frictionless. There are perfectly competitive markets

for corn, soybeans, and nitrogen fertilizer. Tenant farmers are price takers who can borrow and

lend at the constant riskless rate r. Capital markets are assumed to be open all the time so that

a portfolio can be continuously rebalanced. Furthermore, we assume non-stochastic outputs for

corn and soybeans in this section.

At planting time T1, a tenant farmer is assumed to solve the following expected profit

maximization problem when making the production and input choice decision:

(4) max

{
max

yC

[FT1,CyC −KC(yC , W )] , max
yS

[FT1,SyS −KS(yS, W )]

}
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where yi (i = C, S, the same hereafter) are the decision choice variables, denoting expected

outputs of corn and soybeans, respectively. The FT1,i’s are expected output prices of harvest

time T2 represented by planting time T1 prices of futures contracts that mature at harvest

time T2. To promote concise notation, futures maturity date T2 has been suppressed. We also

simplify by ignoring futures basis in this section. The Ki’s are the corn and soybean production

cost function. The input price vector is W .

For analytical convenience, we assume that the cost function for soybean production follows

the output homogeneous and input price separable form:

(5) KS(yS, W ) = yφS

S kS(W )

where φS is the elasticity of scale parameter. The expected profit for soybean at planting time

takes the form

(6) πS(FT1,S, W ) = ϕSF δS
T1,S

where ϕS = (1 − 1
φS

) [φSkS(W )]
− 1

φS−1 and δS = φS

φS−1
. By the property of profit function

convexity, δS > 1.2

For corn production, nitrogen fertilizer is the second most expensive input after farmland

cost. Natural gas is the primary raw material in producing ammonia for nitrogen fertilizer. The

volatile natural gas price largely affects nitrogen’s production capacity and price. For simplicity,

we assume an actively traded futures or forward market for nitrogen fertilizer. We also assume

that all nitrogen fertilizer is applied at planting. A Cobb-Douglas cost function KC(yC , W ) is

2Observe that inserting the time T0 futures price into πS , rather than the time T1 price, will generally lead
to an understatement of profit. This is due to an application of Jensen’s inequality since πS is convex in prices
and FT1,S is random from the viewpoint of T0. So the traditional approach is likely to undervalue Ricardian
rent for more than one reason.
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also assumed for corn production:

(7) KC(yC , W ) = yφC

C F λ
T1,NkC(W )

where φC is the elasticity of scale parameter, FT1,N is the planting time price of an assumed

nitrogen futures or forward contract that matures at planting time T1, and λ is the demand

elasticity of nitrogen fertilizer.3 The planting time expected profit function for corn is 4

(8) πC(FT1,C , FT1,N , W ) = ϕCF δC
T1,CF δN

T1,N

where ϕC = (1− 1
φC

) [φCkC(W )]
− 1

φC−1 , δC = φC

φC−1
, and δN = − λ

φC−1
. By the property of profit

function convexity, δC > 1.

These are the inputs that enter equations (1) and (2).

Valuation of the Crops

This is the environment in which we identify the value of the crops as V C and V S. Given

expected profit functions for crop production at planting time T1, the crop present values at any

time t before planting can be derived using the contingent claim analysis methods developed

in Black and Scholes (1973), Merton (1973, 1977), and Dixit and Pindyck (1994). Given a

dynamically complete market for a contingent claim on the profits from the crop and using

futures contract markets on the commodities, a tenant farmer may form a hedged portfolio to

eliminate systemic risk and earn the risk-free rate of return instantaneously.

Assume that expected corn and soybean prices at harvest time T2, Ft,C , Ft,S, and nitrogen

3While corn requires nitrogen for adequate growth and grain production, soybean generally receives little
or no nitrogen.

4Bear in mind that FT1,C and FT1,S are planting time T1 prices of harvest time T2 maturity contracts. The
nitrogen contract used has planting maturity, and not harvest maturity, as planting maturity is what is needed
for hedging.
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fertilizer price at planting time T1, Ft,N , follow geometric Brownian motions as

(9)
dFt,i

Ft,i

= µFt,i
dt + σFt,i

dzi i = C, S,N.

over t ∈ [T0, T1] where µFt,i
is the instantaneous expected rate of return, σ2

Ft,i
is the volatility of

the expected prices, and dzi follows a Wiener process. In addition, ρCS, ρCN , and ρSN denote

the instantaneous correlation between the Wiener processes dzC and dzS, dzC and dzN , dzS

and dzN , respectively.

In the case of soybean, Ft,S is considered to be the only stochastic state variable determining

the value of soybean profit, V S
t (Ft,S), at time t. By applying contingent claim analysis methods,

it is shown in the appendix that the value function V S
t (·) is

(10) V S
t (Ft,S) = ϕS(Ft,S)δS exp

{[
1

2
σ2

Ft,S
δS(δS − 1)− r

]
(T1 − t)

}

The expected corn and nitrogen fertilizer prices, Ft,C and Ft,N , are considered to be the

stochastic state variables driving the changes of corn value. Following Marcus and Modest

(1984), it is shown in the appendix that the value function V C
t (·) is as follows:

V C
t (Ft,C , Ft,N) = ϕCF δC

t,CF δN
t,N exp

{[
1

2
δC(δC − 1)σ2

Ft,C

+
1

2
δN(δN − 1)σ2

Ft,N
+ δCδNσFt,C

σFt,N
ρCN − r

]
(T1 − t)

}
(11)

Notice that

a) the time t present value of crop V i
t (i = C, S) increases with higher expected output prices

Ft,i since
∂V i

t

∂Ft,i
=

δiV
i
t

Ft,i
> 0;

b) the time t present value of corn V C
t decreases with nitrogen fertilizer futures price Ft,N for
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δN < 0 since
∂V C

t

∂Ft,N
=

δNV C
t

Ft,N
< 0;

c) the time t value of the soybean crop goes up with an increase in the volatility of soybean’s

futures price σ2
Ft,S

, as implied by
∂V S

t

∂σ2
Ft,S

= 1
2
δS(δS − 1)V S

t (T1 − t) > 0;

d) higher correlation between corn and nitrogen fertilizer prices ρCN reduces the value of corn

for δCδN < 0 as
∂V C

t

∂ρCN
= δCδNσFt,C

σFt,N
V C

t (T1 − t) < 0.

Value of the Switching Option

The option of choosing between corn and soybeans is equivalent to an option to exchange one

risky asset for another. Values of the crops are assumed to be the two assets to be exchanged.

Following Margrabe (1978), in the appendix the value of the switching option is shown as

Π
(
V C , V S, t

)
= V C

t Φ(d1)− V S
t Φ(d2) ≥ 0

d1 =
ln(V C

t /V S
t ) + 1

2
σ2

V (T1 − t)

σV

√
T1 − t

; d2 = d1 − σV

√
T1 − t

σ2
V = δ2

Cσ2
Ft,C

+ δ2
Sσ2

Ft,S
+ δ2

Nσ2
Ft,N

+2δCδNσFt,C
σFt,N

ρCN − 2δCδSσFt,C
σFt,S

ρCS − 2δSδNσFt,S
σFt,N

ρSN

=

(
δC δS −δN

)


σ2
Ft,C

σFt,C ,Ft,S
σFt,C ,Ft,N

σFt,C ,Ft,S
σ2

Ft,S
σFt,S ,Ft,N

σFt,C ,Ft,N
σFt,S ,Ft,N

σ2
Ft,N




δC

δS

−δN

 ≥ 0(12)

where σFt,C ,Ft,S
= σFt,C

σFt,S
ρCS is the covariance between Ft,C and Ft,S, and σFt,C ,Ft,N

as well as

σFt,S ,Ft,N
are similarly defined. The cdf of standard normal distribution is Φ(·).

Comparative Statics of the Switching Option

The comparative statics of the switching option with respect to volatilities of the underlying

price variables, also called the option Vegas, measure how much the option price would change
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when the volatility of the underlying state variable changes. They can be derived as follows

i. effect of a change in σFt,C
:

∂Π

∂σFt,C

= V C
t Φ(d1)

A︷ ︸︸ ︷[
δC(δC − 1)σFt,C

+ δCδNσFt,N
ρCN

]
(T1 − t)

+V C
t φ(d1)

(
δ2
CσFt,C

+ δCδNσFt,N
ρCN − δCδSσFt,S

ρCS

)︸ ︷︷ ︸
B

√
T1 − t

σV

(13)

where φ(·) is the pdf of standard normal distribution. Note that if δC ≈ 1 and ρCN ≈ 0, then

term A in (13) is approximately 0. But term B could be negative if δCσFt,C
< δSσFt,S

ρCS, so

that the whole expression can have negative value.

ii. effect of a change in σFt,S
:

∂Π

∂σFt,S

= V S
t Φ(d2)

A′︷ ︸︸ ︷[
δS(δS − 1)σFt,S

]
(T1 − t)

+V S
t φ(d2)

(
δ2
SσFt,S

− δSδNσFt,N
ρSN − δSδCσFt,S

ρCS

)︸ ︷︷ ︸
B′

√
T1 − t

σV

A sufficient condition for a positive overall effect is δSσFt,S
> δNσFt,N

ρSN + δCσFt,S
ρCS given

that δS > 1. If δS ≈ 1, then A′ ≈ 0, but B′ could be negative. So a negative overall effect

cannot be precluded.

iii. effect of a change in σFt,N
:

∂Π

∂σFt,N

= V C
t Φ(d1)

A′′︷ ︸︸ ︷[
δN(δN − 1)σFt,N

+ δCδNσFt,C
ρCN

]
(T1 − t)

+V C
t φ(d1)

(
δ2
NσFt,N

− δCδNσFt,C
ρCN − δSδNσFt,S

ρSN

)︸ ︷︷ ︸
B′′

√
T1 − t

σV
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Also note that if δN ≈ 1 and ρCN ≈ 0, then A′′ ≈ 0, but B′′ could be negative if δNσFt,N
<

δNσFt,S
ρSN .

The results indicate that the effects of changes in the volatility of the state variables, σFt,C
,

σFt,S
, and σFt,N

, on the option value are, in general, ambiguous. The standard result that an

increase in the volatility of the underlying state variable increases the option value doesn’t hold

here. The sign of the Vega depends on the correlation between the underlying state variables,

as well as the relative magnitudes of their volatilities.

In addition, the partial derivative of the switching option with respect to correlation between

underlying price variables can be derived as:

iv. effect of a change in ρCS:

(14)
∂Π

∂ρCS

= −V C
t φ(d1)δCδSσFt,C

σFt,S

√
T1 − t

σV

< 0

Intuitively, given price volatility σFt,C
and σFt,S

, a higher correlation between corn and soybean

prices makes them move up and down more closely. A tenant farmer is less likely to change

crop choice and thus the switching option has less value to him.

v. effect of a change in ρCN :

∂Π

∂ρCN

= V C
t δCδNσFt,C

σFt,N

[
Φ(d1)(T1 − t) + φ(d1)

√
T1 − t/σV

]
< 0 as δC > 0 > δN .

Given corn and nitrogen price volatilities, σFt,C
and σFt,N

, a higher correlation between the

input and output prices, ρCN , leads to more stabilized value of corn and in turn reduces the

value of the option to exchange the crops.
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vi. effect of a change in ρSN :

∂Π

∂ρSN

= −V C
t φ(d1)δSδNσFt,S

σFt,N

√
T1 − t/σV > 0 as δS > 0 > δN .

In this case, the value of σ2
V in (12) increases with the correlation between soybeans and

nitrogen fertilizer, ρSN , i.e., the underlying volatility of the exchange option increases with the

correlation. Hence, an increase in ρSN leads to a higher option value. These results indicate

that under certain parameter conditions, a change in the correlation between vibration of state

variables unambiguously changes the value of the switching option.

Optimal Hedging Strategy

A tenant farmer has the option to choose between corn and soybeans after signing a farmland

rental contract in August. This flexibility will also affect his hedging decision. Taking into

account the real option value, a tenant farmer hedges the value

(15) Vt = e−r(T2−t)Et

[
max

(
V C

T1
, V S

T1

)]
= V C

t Φ(d1)−V S
t Φ(d2)+V S

t = V C
t Φ(d1)+V S

t [1−Φ(d2)]

where d1 and d2 are as defined in (12). Note that both Φ(d1) and [1− Φ(d2)] are in the range

of [0, 1], and they add up to a number greater than one because Φ(d2) < Φ(d1). The “excess

probability” characterizes the switching option as it establishes that the value under flexibility

exceeds the average of values absent flexibility.

To get an idea of the hedging scheme that can be used in this real option context, we derive

the dynamic delta measure of the underlying assets, corn, soybeans, and nitrogen fertilizer
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prices. The deltas with respect to corn, soybeans, and nitrogen prices are

∆C = Φ(d1)δCV C
t /Ft,C(16)

∆S = [1− Φ(d2)]δSV S
t /Ft,S

∆N = Φ(d1)δNV C
t /Ft,N

The above measures indicate that using delta hedging of the value of Vt involves maintaining the

position of ∆C in corn futures contracts, ∆S in soybean futures contracts, and ∆N in assumed

nitrogen fertilizer futures contracts. Since the value he is hedging for is a weighted average of

corn and soybean crop values, the optimal hedging strategy is different from the one with a

certain crop decision at the contract signing data T0.

Empirical Model

Using monthly average corn and soybean futures prices, local cash prices, and crop production

data collected from controlled experiments, we apply Monte Carlo methods to value the real

option. Income uncertainty faced by a tenant farmer comes from four sets of random variables.

These are output prices, input prices, crop yields, and price bases. A fundamental feature of

these random variables is that they are correlated. For example, the corn price is correlated

with the soybean price, the nitrogen fertilizer price, corn and soybean yields, and also corn

and soybean price bases. All prices, yields, and bases are treated as random variables in our

simulation. As indicated in table 1, we explicitly model the correlation between corn, soybean,

and nitrogen fertilizer prices in a trivariate Student-t distribution. Corn and soybean price bases

are modeled as bivariate normal variables. Because of computational difficulties, we don’t take

into account the correlations between output prices and crop yields.
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Under the assumption of risk neutrality, the Monte Carlo method involves evaluating the

cash rent implied by the NPV and real option approaches at planting time T1, then discounting

back at the risk-free rate as given by V1 in (1) and V2 in (2). The corn and soybeans profits are

assumed to be

(17) πT1,C = (FT1,C + BT1,C)yT1,C − FT1,NN −KC πT1,S = (FT1,S + BT1,S)yT1,S −KS

where FT1,i (i = C, S) denotes futures prices at the planting time T1, and FT1,N denotes price

of nitrogen fertilizer at time T1. Amount KC is the corn production cost excluding the cost of

nitrogen fertilizer, KS is soybean production cost, and local corn and soybean bases are BT1,i

(i = C, S). Symbol N denotes the quantity of nitrogen fertilizer input and yT1,i (i = C, S) are

expected yields of corn and soybeans, respectively.

The Monte Carlo simulation consists of the following steps:

a) Based on estimated parameters, simulate sample paths of the underlying state variables, i.e.,

generate n price trajectories of FT1,C , FT1,S, and FT1,N ; generate corresponding local bases

BT1,C and BT1,S, and corn and soybean yields forecasts yT1,C and yT1,S at planting time T1.

b) Applying Iowa annual crop production budget data (Duffy and Smith 1995-2005) for KC and

KS and generated quantities in step (a), get n terminal corn and soybean profits, πi
T1,C , πi

T1,S,

i ∈ {1, 2, ..., n};

c) Take average of the discounted final option values under the NPV and real option approaches

to obtain an estimate of these values at time t as

V̂1(t) = e−rt(T2−t) max

{
1

n

n∑
i=1

(πi
T1,C),

1

n

n∑
i=1

(πi
T1,S)

}

V̂2(t) = e−rt(T2−t) 1

n

n∑
i=1

max
(
πi

T1,C , πi
T1,S

)
(18)
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As shown in table 2, in step (a) price series FT1,C , FT1,S, and FT1,N are random draws from

multivariate t(Σ̂, ν̂), where Σ̂ and ν̂ are the variance-covariance matrix and degree of freedom

parameters of the distribution. These are estimated from the multivariate Generalized Autore-

gressive Conditional Heteroskedastic (MGARCH) model. The typical multivariate normality

assumption is considered to be unrealistic (Hong 1988) because the kurtosis of most financial

asset returns is larger than 3. They have more extreme values than those implied by the normal

distribution. For this reason, the multivariate Student-t distribution is a natural alternative

in which as the degree of freedom parameter ν tent to zero, the tails of the density become

thicker.5

The expected corn and soybean yields are obtained from ordinary least squares (OLS) esti-

mates of experimental data. Yield random variations are re-sampled from regression residuals

by the bootstrap method. Corn and soybean bases at harvest time are drawn from a bivariate

normal distribution with mean B̄ and variance-covariance matrix Σ̂B, where the parameters

are obtained from historical bases data. The estimation and simulation methods for each of

these parameters is now discussed in greater detail.

Price Simulation

Corn and soybean futures prices are highly correlated. Using daily settlement prices of the

nearby futures contracts traded at the Chicago Board of Trade (CBOT), Malliaris and Urrutia

(1996) confirm the strong, statistically significant, long-term interdependence between corn and

soybean futures prices. And their relationship has gone through changes over time because of

changing market conditions, technology innovation, and agricultural policy adjustments (Lin

and Riley 1998).

5Although skewness has been found in some distributions of financial data, designing an appropriate mul-
tivariate distribution for consistent estimation while allowing for skewness and kurtosis properties is still a
challenge.
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Another correlation that needs to be accounted for is that between nitrogen and corn prices.

Adequate nitrogen fertilizer is critical for profitable corn production. In 2006, nitrogen fertilizer

accounted for 56.6% of the 21.3 million tons of chemical fertilizer nutrients applied by U.S.

farmers (Huang 2007). The nitrogen fertilizer price directly relates to the price of natural

gas (methane). During recent years, the correlation between corn and nitrogen fertilizer has

strengthened because more corn is being used as feedstock in corn-based ethanol production.

Further expansion of ethanol production as an alternative energy source will likely strengthen

the price linkage between corn and other energy prices including natural gas. To take into

account the dynamics of correlation structure between corn, soybeans, and nitrogen fertilizer,

we employ a MGARCH model. This model simultaneously estimates the mean and conditional

variance-covariance matrix of corn, soybeans, and nitrogen fertilizer prices, and we jointly draw

the sample paths of prices from the estimated multivariate distribution.

Among several different MGARCH formulations proposed in the literature, the VECH and

the BEKK parameterization are the two most popular ones. The acronym BEKK refers to the

unpublished work by Baba et al. (1990). The VECH parameterization is quite flexible, as it

allows every element of the conditional variance-covariance matrix to be a function of every

element of the lagged conditional variance-covariance matrix as well as products of lagged

residuals. But it cannot guarantee that the variance-covariance matrix is positive semi-definite,

and it requires a large number of estimated parameters. In a trivariate system, a total of 78

parameters need to be estimated. By contrast, the structure of the BEKK model guarantees

that the estimated variance-covariance matrix is positive semi-definite, and it considerably

reduces the number of parameters to be estimated. In addition, it allows for time-varying

correlation among variables. In this study, the BEKK model proposed in Engle and Kroner

(1995) is employed.

Consider a (3 × 1) vector stochastic process {Rt}, where Rt are period-to-period changes
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in the logarithm of corn and soybean futures prices, and nitrogen fertilizer price is given as

Rt = (rt,C rt,S rt,N)′ =
(
ln

Ft,C

Ft−1,C
ln

Ft,S

Ft−1,S
ln

Ft,N

Ft−1,N

)′
. With a vector of parameters θ,

the model of Rt is written as

(19) 100Rt = µ + εt εt = H
1/2
t (θ)zt

where µt = (µC µS µN)′ is the conditional mean vector and H
1/2
t (θ) is a (3 × 3) positive

semi-definite matrix. Furthermore, we assume that (3× 1) random vector zt has the following

first two moments: E(zt) = 0, var(zt) = I3, where I3 denotes the (3× 1) identity matrix.

The BEKK(1,1) parameterization is given as

(20) H t+1 = C′C + A′εtε
′
tA + B′HtB

The individual elements of the C, A, and B matrices are

C =


c11 0 0

c21 c22 c23

c31 c32 c33

 A =


a11 a12 a13

a21 a22 a23

a31 a32 a33

 B =


b11 b12 b13

b21 b22 b23

b31 b32 b33


Therefore, the parameter vector θ includes the estimated matrices elements of C, A, and B

with twenty-four parameters to be estimated.

We use monthly average prices for the corn December futures contract and soybean Novem-

ber futures contract as traded on the CBOT. We use the producer price index (PPI) for nitrogen

fertilizer. Monthly PPI data are obtained from the website of the Bureau of Labor Statistics,

U.S. Department of Labor over the time frame January 1976 to August 2005. To eliminate the

maturity effect, which refers to increasing futures price volatility as the contract approaches
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expiration, we switch over to the next maturing futures contracts in the expiration month. This

means that data from the maturity month for each contract are not used in our estimation.

The three original price data series are shown in figure 1. The original data series are trans-

formed to the return series by evaluating period-to-period changes in the logarithm of prices

and then multiplying by 100. Figure 2 shows the resulting time series without multiplication.

Table 3 presents the summary of descriptive statistics of the three transformed price series,

100(rt,C rt,S rt,N). Sample mean, median, maximum, minimum, standard deviation, skew-

ness, kurtosis, unit root tests and ARCH effect test statistics and corresponding P values are

also reported in table 3.

We applied the Augmented Dickey-Fuller (ADF) test (Greene 2003, p. 643) and KPSS test

(Kwiatkowski et al. 1992) for the presence of a unit root on all three return series. The null

hypothesis of the ADF test is that the series contains a unit root, and the alterative is that the

series is level stationary. The KPSS test, in contrast to the ADF test, takes stationarity as the

null hypothesis. We include both a constant and lag one first difference term for the tests. The

lags of the first difference are included to account for possible serial autocorrelation. From the

results in table 3, the null hypothesis of the ADF test is rejected at the 1% significance level.

In the KPSS test, we fail to reject the null hypothesis for all three series. The results indicate

that all three return series are stationary.

The LM test for the existence of autoregressive conditional heteroskedasticity suggested by

Engle (1982) shows that all three have significant ARCH effects. The distributional properties

of the three data series generally appear non-normal as indicated by sample skewness and

kurtosis values. In addition, compared with the multivariate normal distribution assumption of

zt, the multivariate Student-t distribution assumption provides a better fit of data with lower

Akaike information criterion (AIC) and Bayesian information criterion (BIC) values. So we

choose multivariate Student-t as the conditional distribution for the error term in the BEKK
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model.

The estimation results of the MGARCH model with BEKK parameterization and degree of

freedom parameter ν̂ for the Student-t distribution are reported in table 4. Figure 3 presents

the in-sample dynamic conditional correlations among the three return series implied by the

estimated conditional variance-covariance matrix of BEKK model. Figure 3 shows the evolution

of the conditional correlation among three time series. On average, the correlation between

corn and soybeans, corn and nitrogen, and soybeans and nitrogen are about 0.46, 0.05 and

0.02, respectively.

The price simulation method used in this study is an extension to the multivariate setting

of Myers and Hanson (1993). One-step-ahead forecasts of variance-covariance matrices are

recursively generated by the BEKK model, given as

(21) Ĥ t+1 = Ĉ′Ĉ + Â′εtε
′
tÂ + B̂′HtB̂

where Ĉ, Â, and B̂ are estimated model parameters, εt is the error from the last observation

in the sample used to estimate the MGARCH model, and Ht is the time t sample variance-

covariance matrix. Thus, the log futures price of corn, soybean, and nitrogen fertilizer prices

at time t + 1, represented by a (3× 1) vector f̂ t+1, are calculated as

(22) f̂ t+1 = ft +

√
ν̂ − 2

ν̂
ĥt+1et+1

where et+1 is a random draw from standardized multivariate t-distribution with estimated

degree of freedom parameter ν̂, and ĥt+1 is the Cholesky factorization (Greene 2003, p. 832)

of the estimated Ĥ t+1 matrix.

Similarly, two or more steps-ahead forecasts of variance-covariance matrices and log prices

f̂ t+i (i ≥ 2, 3, ...,m) at time t + i, where m is the number of periods between t and T1, are
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simulated as

Ĥ t+i = Ĉ′Ĉ + Â′εt+i−1ε
′
t+i−1Â + B̂′Ht+i−1B̂

f̂ t+i = ft+i−1 +

√
ν̂ − 2

ν̂
ĥt+iet+i(23)

in which the variables and parameters are defined similar to (22).

To evaluate the switching option in our case, T0 is August the prior year, the option maturity

time T1 is April of the crop year, and thus the number of periods for maturity time, m, is equal

to 7. The process represented by (21), (22), and (23) results in one realization of the terminal

log prices f̂ i
T , i ∈ 1, 2, ..., n. The total number of simulations is n, which is chosen to be 5,000

in this study. The terminal log prices are then converted to one realization of terminal prices

of F i
T1,C , F i

T1,S, and F i
T1,N , by taking the antilog. Under the risk-neutral measure, the average

terminal futures prices of corn and soybean should not have drift. In order to correct for the

drifts in simulated price series, following Myers and Hanson (1993), we multiply the individual

simulated corn (soybean) prices by the initial futures price at T0, and then divide the results

by the average of the simulated corn (soybean) price.

Yield and Basis Simulation

Corn and soybean yields can differ by soil quality, climate, and many other natural factors.

In this study, local controlled experimental production data enable us to model corn yield as

a function of time and the input quantity of nitrogen fertilizer, and also soybean yield as a

function of time only. The appropriate distribution for yield variation is still subject to debate.

The Beta distribution is popular because of the common view that crop yield distributions can

be skewed (Nelson and Preckel 1989). Just and Weninger (1999) find empirical support for

normally distributed crop yields, while Ker and Goodwin (2000) prefer non-parametric yield
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density estimation. Ker and Coble (2003) point out that sufficient yield data are lacking to

accept or reject various reasonable parametric distribution models. Without exploring this issue

further here, we apply nonparametric density estimation methods for corn and soybean yields

and resample the variation from the residuals of OLS regression.

In this study, crop production data are from controlled experiments conducted at Iowa

State University’s Research and Demonstration Farm located in Floyd County, Iowa, from

1979 to 2003 (Mallarino, Ortiz-Torres, and Pecinovsky 2004). The data are collected under

5 rotations, 〈C〉, 〈CS〉, 〈CCS〉, 〈CCCS〉, and 〈S〉, where 〈CCCS〉 is to be read as the corn-

corn-corn-soybeans rotation. Four nitrogen application levels, 0 lb/ac, 80 lb/ac, 160 lb/ac, and

240 lb/ac were applied. Each combination of rotation and nitrogen level are replicated three

times in a year. To make corn and soybean yields comparable for our simulation purposes,

we choose the second corn yield data in 〈CCS〉 rotation and the soybean yield data in 〈CS〉

rotation for estimation. In doing so, both corn and soybeans under estimation are planted after

a soybeans-corn crop sequence and the corresponding yields data should be comparable.

The independent variables included in the OLS regression of corn and soybean yields are

chosen by AIC and BIC model selection criteria. The regression results are shown in table 5.

All explanatory variables are significant at the 5% level except that the time variable, year,

is only marginally significant in the case of corn.6 The Lagrange Multiplier (LM) test for

heteroskedasticity is applied on the OLS residuals and the test statistics for corn and soybeans

are 6 and 2.87, respectively. The P values of 0.20 for corn and 0.24 for soybeans indicate no

sign of heteroskedasticity in either regression equation.

Figure 4 illustrates the nonparametric kernel density estimations of corn and soybean yield

residuals after OLS. We resample yield variations using the bootstrapping method (Efron 1979),

6Note that when nitrogen fertilizer levels exceed 128 lb/ac, the marginal effect of time is positive. Typical
nitrogen rates are 160-200 lb/ac in northern Iowa (Iowa State University Extension 2004). This suggests that
technical change has been biased in favor of nitrogen use.

23



i.e., drawing yield variation randomly with replacement from the set of OLS regression residuals.

These random draws are then added to mean yield forecasting of OLS regression.

In order to match with the crop yields specifically estimated from experimental data for

Floyd County, we also simulate local crop price bases using statistics from historical data

for that county. The basis is computed by subtracting the futures price from the monthly

average cash price received by farmers. Historical local cash prices are represented by monthly

average (November for corn and October for soybeans) cash prices quoted in North Central

Iowa from 1985 to 2005. The data are reported in the “Daily Historical Grain Report” by the

Iowa Department of Agriculture and Land Stewardship. For historical futures prices, we use

settlement prices on November 3rd (October 3rd) or nearest trading date for corn (soybeans)

each year.

The simulated price basis of corn and soybeans are jointly simulated as follows:

(24) B̂ = B̄ + Σ̂
1/2

B × e

where B̄ is a (2× 1) vector of historical average bases over the sampling data frame and B̄ =B̄C

B̄S

 =

0.30

0.38

 are used in our simulation; Σ̂B =

 σ̂2
BC

σ̂BCBS

σ̂BCBS
σ̂2

BS

 =

0.0099 0.0039

0.0039 0.0202


is the variance-covariance matrix estimated from the historical bases data; and e is a random

draw from the standard bivariate normal distribution. Finally, the realizations of crop cash

prices are obtained by summing up the generated crop futures prices and price bases. Given

simulated crop cash prices, and nitrogen fertilizer price and crop yields, the optimal quantity

of fertilizer input is obtained from the corn profit maximization problem. The functional forms

estimated in the OLS regression of corn yield shown in table 5 are also used to solve for the

optimal input quantity.
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Simulation Results

Given simulated input, output cash prices, and yield realization, we get expected revenues from

corn and soybeans at planting time T1. The corn and soybean profits are then obtained by sub-

tracting expected crop production costs from simulated revenues. Iowa annual crop production

cost budget data (Duffy and Smith 1995-2005) are used for approximation of the production

costs excluding cash rent costs. Then V̂1(t) and V̂2(t) in (18) are calculated. To quantify the

value of the real option embedded in cash rent valuation, we define %̂Π =
(

V̂2(t)

V̂1(t)
− 1
)
× 100%

as the relative percentage of the switching option value in terms of V̂1(t), where V̂1(t) is the

amount of cash rent determined by the traditional NPV method. The simulated cash rents

evaluated by the NPV and real option methods and the relative real option value from 1995 to

2005 are presented in table 6.

From the simulation results, the average cash rent evaluated by the real option approach

is about 11% higher than that of the traditional NPV method. As corn and soybean profits

get closer, i.e., corn is planted in about 50% of all simulation draws, the option value increases

with a maximum value of 18.46% in 2003. When the profit of one crop dominates the other,

the switching option is not as valuable. This was the case in 2000 and 2005 where in each case

the option premium was less than 5% for our simulation context.

Furthermore, to value the embedded real option in cash rent for 2008, we fix the nitrogen

fertilizer price as of August 2007 at $0.46/lb, corn production costs at $191.47, and soybean

production costs at $146.06 from the 2007 Iowa crop production budget (Duffy and Smith

2007). The corn price is assumed to vary from $3 to $6 and the soybean price is assumed to

be in the range of $6 to $15. The simulation result is shown in figure 5, which is a three-

dimensional ridge diagram summarizing the variation of relative real option value with changes

in corn and soybean prices. The average relative real option value is 8.55%, with ranges from

0% to 23.15%. The typical pattern for the switching option value is that the option tends to
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become more valuable as it gets closer to the money, i.e., the corn and soybean profits are

similar to each other. This is also the time when there is really a planting decision for a tenant

farmer to make. Figure 5, panel b, is the corresponding contour plot of the ridge diagram. It

represents level sets of the ridge diagram surface by plotting constant option value slices on

corn and soybean price axes. The contour plot shows that the highest real option values are

achieved along a line in the middle. Also the option iso-value curves are almost straight lines.

Fixing the corn futures price as of August 2007 at $4.2/bu and soybeans futures price at

$8.6/bu, we simulate the effect of correlation changes on the real option value for 2008. The

results are presented in table 7. In the base scenario, about 11% of the cash rent paid out by

a tenant farmer is estimated to be the embedded real option component. The results of other

cases indicate that the switching option value decreases with the increase of the correlation

between corn and soybeans, as well as that between corn and nitrogen fertilizer, but increases

with higher correlation between soybeans and nitrogen fertilizer. The sensitivities are small

and confirm our comparative statics results in the conceptual model.

To simulate the hedging strategy in the context of the real option framework, we apply the

standard finite differencing approach to compute the deltas with respect to corn and soybean

prices (Jäckel 2002, p. 140). In this approach, a base value of the cash rent including the real

option component, V̂2(T0), is determined by an initial simulation. Then we re-simulate the cash

rent with an increase in the price of corn (soybeans). The delta measure for that price is the

difference between two simulated values divided by the price increase, shown as

4̂i =
∂V̂2(T0)

∂FT1,i

≈ V̂2(FT1,i +4FT1,i)− V̂2(FT1,i)

4FT1,i

i = C, S.

Assuming that the corn price varies from $3 to $6, the soybean price is in the range of $6 to $15,

and the upshifts of corn and soybeans price are chosen to be one twentieth of the corresponding
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price ranges. To reduce the simulation variances, the deltas are averaged over 100 simulations.

The resulting deltas for each price grid point for corn and soybeans are shown in panel a of

figures 6 and 7, respectively.

The deltas for corn are in the range of [0, 176.09] with an average of 94.41, and the deltas

for soybeans are from 0 to 53.99 with an average of 23.94. It is clear that the deltas for both

corn and soybeans vary continuously and form continuous planes over the price ranges. The

deltas for corn and soybeans implied by the conventional NPV methods are shown in panel

b of figures 6 and 7, respectively. Under the NPV assumption, a tenant farmer only hedges

against a single price risk since it is assumed that he makes the planting decision when signing

the rental contract. As indicated in panel b of figures 6 and 7, the hedging deltas for corn

and soybeans jump from zero to a constant level after the points where expected profit of corn

equals that of soybeans.

Discussion

Iowa state-level crop planting data collected by the National Agricultural Statistical Service

(NASS) show that from 1995 to 2007, the annual change in crop planting acreage is about

1-3%. The biggest change, at 7%, happened in 2007 because of strong demand for ethanol

production. The planting acreage has largely remained at 55% for corn and 45% for soybeans.

Although it may not be reasonable to make inference on an individual farmer’s choice based

only on aggregate data, these facts may still indicate that the real option value may not be as

big as our simulation results suggest.

Farmers’ planting choice is limited by rotation effects, plant diseases and other technology

limitations. Rotation benefits for the plant environment have been known for a long time.

Continuous corn is known to suffer potential yield losses when compared with rotated corn.

Furthermore, corn root worm is primarily a problem for continuous corn. There are also eco-
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nomic benefits from the use of rotations. For example, rotations provide a farmer with revenue

diversification. In addition, a fixed amount of machinery and limited planting time make farm-

ers disposed to planting half corn and half soybeans. But the profit maximization assumption

and the model in this study provide a solid starting point to further understand cash rent

valuation as well as farmers’ crop planting and hedging decisions.

Conclusion

After entering into a rental agreement in the fall, a tenant farmer has the flexibility to switch

between corn and soybeans for the next crop year. This planting flexibility can be treated

as a real option, which should be reflected in cash rent paid out to the landowner. Without

taking into account this real option component, conventional NPV methods underestimate what

farmers should pay for rental land. Furthermore, the dynamic hedging strategy applied by a

tenant farmer is different if he takes planting flexibility into consideration. Applying contingent

claims analysis, this study explicitly derives the value function of the real option. Comparative

statics with respect to the volatilities of underlying state variables and their correlations are

derived and discussed. Dynamic hedging deltas in the context of the real option are also

developed.

Based on the estimation results, we simulate the switching option value by Monte Carlo

methods. The results show that on average, the cash rent valuation by the real option approach

is about 11% higher than that by the traditional NPV method. The option value becomes

higher as corn and soybean profits become closer to each other. Planting flexibility is worth

little if profit from one crop looks as if it will dominate the others. The simulation results of

comparative statics confirms our theoretical derivation. The simulated dynamic hedging deltas

are shown to be different from the ones implied by the NPV method.
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Our research suggests the need for future research in the following areas. First, explicitly

modeling the correlation between crop yield and price would allow more realistic simulations

of real option valuation. A negative correlation between corn price and yield has long been

recognized in Iowa (Babcock and Hennessy 1996), which means that natural movements in price

and yield stabilize farmers’ incomes to a greater extent than in other areas; i.e., the natural

hedge is more effective. Taking this correlation into account would improve the accuracy of our

empirical analysis. Second, to reduce the variation of Monte Carlo simulation results and thus

to reduce the number of simulations required for a given level of accuracy, especially in case of

delta estimates, variance reduction technologies could be applied, such as antithetic sampling,

importance sampling, and moment matching. (see Jäckel 2002, Ch. 10 for a comprehensive

treatment).

Third, in this study, geometric Brownian motion is assumed and used extensively to describe

the dynamic processes of the underlying state variables and the switching option, which is

convenient as a starting point. Other stochastic processes, such as mean reverting processes,

may be explored and tested to better describe the real world decision problem (e.g., Insley

2002; Insley and Rollins 2005). Finally, the existence and magnitude of the real option in

the urban land development context has been tested and investigated (e.g., Cunningham 2006,

2007). Following the lines of an empirical real option pricing model introduced by Quigg (1993),

the existence of a real option component in cash rental rates data can be tested empirically

using local cash rents data (e.g., Edwards and Smith 2007). The data may be decomposed to

statistically test for the real option premium for appropriate years when the profits from corn

and soybeans are comparable.
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Table 1. Correlation Structure in Empirical Model

FT1,C FT1,S FT1,N BT1,C BT1,S yT1,C yT1,S

FT1,C ∗ ∗ ∗ - - - -

FT1,S ∗ ∗ ∗ - - - -

FT1,N ∗ ∗ ∗ - - - -

BT1,C - - - ∗ ∗ - -

BT1,S - - - ∗ ∗ - -

yT1,C - - - - - ∗ ∗
yT1,S - - - - - ∗ ∗

Note: ∗ indicates that the random variation or correlation

is explicitly modeled; − indicates that the correlation is ig-

nored.

Table 2. Schematic for Simulation Methods

MGARCH Model Σ̂, ν̂ Draw FT1,C , FT1,S,FT1,N Costs KC , KS

OLS+Bootstrapping ȳi, ei Draw yields yT1,C , yT1,S

Historical Statistics B̄, Σ̂B Draw basis BT1,C , BT1,S

Option Valuation
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Table 3. Summary Statistics of Period-to-Period Changes in
Log Prices

Corn Soybean Nitrogen Fertilizer

Mean -0.044 0.066 0.258

Median 0.167 0.229 -0.037

Maximum 16.498 23.094 21.969

Minimum -18.344 -22.800 -9.631

Std. dev. 4.032 5.505 3.116

Skewness -0.406 0.154 0.943

Kurtosis 3.403 2.694 7.841

ADF -7.713 (< 0.001) -8.864 (< 0.001) -7.325 (< 0.001)

KPSS 0.030 (> 0.10) 0.042 (> 0.10) 0.063 (> 0.10)

LM test 21.578(0.023) 16.648 (0.034) 25.925 (0.011)

Note: For ADF, KPSS, and LM tests, the first number is the test statistic

and the second is the corresponding P value.
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Table 4. Multivariate GARCH BEKK
Model Estimation Results

Estimates Std. Error t Value P (> |t|)
µ1 0.090 0.188 0.481 0.631

µ2 0.149 0.285 0.493 0.622

µ3 0.118 0.135 0.879 0.380

c11 0.871 0.518 1.681 0.094

c21 -3.418 0.940 -3.638 < 0.001

c31 -0.698 0.695 -1.004 0.316

c22 0.103 4.693 0.022 0.983

c32 0.544 25.822 0.021 0.983

c33 0.585 23.685 0.025 0.980

a11 0.151 0.070 2.162 0.031

a21 -0.119 0.131 -0.909 0.363

a31 -0.025 0.072 -0.352 0.725

a12 0.041 0.053 0.764 0.445

a22 0.301 0.096 3.142 0.002

a32 0.030 0.052 0.574 0.566

a13 -0.046 0.091 -0.507 0.612

a23 0.271 0.163 1.660 0.098

a33 0.503 0.095 5.292 < 0.001

ν 4.346 0.754 5.764

AIC 5792.105

BIC 5900.524
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Table 5. OLS Regression Results for Corn and
Soybean Yields

Estimates Std. Error t Value P (> |t|)
Corn Yield

Nitrogen 0.656 0.115 5.710 < 0.001

Year -1.149 0.606 -1.900 0.061

(Nitrogen)2 -0.002 0.0004 -4.45 < 0.001

Nitrogen× Year 0.009 0.004 2.400 0.018

Intercept 69.185 9.377 7.380 < 0.001

R2 0.6368

Soybean Yield

Year 2.206 0.515 4.280 < 0.001

(Year)2 -0.053 0.019 -2.770 0.007

Intercept 28.324 2.910 9.730 < 0.001

R2 0.3473

Note: When nitrogen fertilizer levels exceed 128 lb/ac, the

marginal effect of time is positive. Typical nitrogen rates are

160-200 lb/ac in northern Iowa.
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Table 7. Simulation Results for Changing Correlations, 2008

Scenario Mean Mean % of Draws Traditional Real % Real

Corn Soybeans Corn Value Option Option

Profit Profit is Grown Value Value

Base Case 314.04 235.39 63.84 314.04 347.95 10.81

ρCS = 0 315.30 236.42 63.74 315.30 352.69 11.86

10% increase in ρCS 313.99 235.17 63.82 313.99 347.23 10.58

20% increase in ρCS 313.78 236.89 64.14 313.78 346.68 10.48

ρCS = 0.80 312.55 237.80 64.72 312.55 344.62 10.26

ρCN = 0 314.69 237.21 63.64 314.69 349.00 10.90

10% increase in ρCN 312.14 237.81 64.36 312.14 345.59 10.72

20% increase in ρCS 314.84 235.77 64.82 314.84 348.38 10.65

ρCN = 0.80 314.00 235.69 64.54 314.00 346.10 10.22

ρSN = 0 314.64 236.92 64.98 314.64 347.85 10.55

10% increase in ρSN 314.03 238.34 63.58 314.03 348.68 11.03

20% increase in ρSN 311.87 236.25 62.58 311.87 346.30 11.04

ρSN = 0.80 313.36 237.45 63.64 313.36 348.61 11.25

Note: In the base case scenario, FT1,C =$4.2/bu, FT1,S =$8.6/bu, FT1,N =$0.46/lb,

KC =$191.47, KS =$146.06. In addition, over the forecasting period, September in year

t to April of year t + 1, average forecasting of ρCS = 0.51, ρCN = 0.095, ρSN = 0.024.
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Figure 1. Original Price Series, Jan. 1976-Aug. 2005

Figure 2. Transformed Price Series
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Figure 3. Implied Dynamic Conditional Correlations

Figure 4. Kernel Density Estimation of OLS Residuals
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Figure 5. Simulated Relative Real Option Value (a) and
Contour (b), 2008

Figure 6. Delta of Corn Implied by the Real Option (a)
and NPV (b) Methods
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Figure 7. Delta of Soybeans Implied by the Real Option
(a) and NPV (b) Methods
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Appendix

Derivation of Equation (10)

By Itô’s lemma, the value function V S
t (·) follows the following stochastic process:

dV S
t =

(
∂V S

t

∂Ft,S

µFt,S
Ft,S +

∂V S
t

∂t
+

1

2

∂2V S
t

∂F 2
t,S

σ2
Ft,S

F 2
t,S

)
dt +

∂V S
t

∂Ft,S

σFt,S
Ft,SdzS

It satisfies the Black differential equation (Hull 2002, p. 298):

∂V S
t

∂t
+

1

2

∂2V S
t

∂F 2
t,S

σ2
Ft,S

F 2
t,S = rV S

t

with the only non-trivial boundary condition as V S
T1

(FT1,S) = ϕSF δS
T1,S. The unique value func-

tion V S
t (·) satisfying the above partial differential equation and the boundary condition is given

as equation (10). In addition, the value of soybeans profit follows an Itô process as

dV S
t

V S
t

= αSdt + σVS
dzVS

where αS = δSµFt,S
+ r and σVS

dzVS
= δSσFt,S

dzS.
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Derivation of Equation (11)

Applying Itô’s lemma to the two state variables, Ft,C and Ft,N , we get the dynamics of the corn

value as:

dV C
t =

∂V C
t

∂Ft,C

dFt,C +
∂V C

t

∂Ft,N

dFt,N +
∂V C

t

∂t
dt +

1

2

∂2V C
t

∂F 2
t,C

(dFt,C)2 +
1

2

∂2V C
t

∂F 2
t,N

(dFt,N)2

+
∂2V C

t

∂Ft,C∂Ft,N

dFt,CdFt,N

=

(
∂V C

t

∂Ft,C

µFt,C
Ft,C +

∂V C
t

∂Ft,N

µFt,N
Ft,N +

∂V C
t

∂t
+

1

2

∂2V C
t

∂F 2
t,C

σ2
Ft,C

F 2
t,C +

1

2

∂2V C
t

∂F 2
t,N

σ2
Ft,N

F 2
t,N +

∂2V C
t

∂Ft,C∂Ft,N

Ft,CFt,NσFt,C
σFt,N

ρCN

)
dt +

∂V C
t

∂Ft,C

Ft,CσFt,C
dzC +

∂V C
t

∂Ft,N

Ft,NσFt,N
dzN

Following Marcus and Modest (1984), the hedging portfolio includes (1) the claim to the

farmer’s corn profit, (2)
∂V C

t

∂Ft,C
short positions in the corn futures contracts, (3)

∂V C
t

∂Ft,N
short

positions in the assumed nitrogen fertilizer futures contracts, and (4) borrowing the amount of

V C
t at the risk free rate r. By design, the return on this portfolio is instantaneously riskless,

which implies that the valuation function V C
t (·) satisfies the partial differential equation

∂V C
t

∂t
+

1

2

∂2V C
t

∂F 2
t,C

σ2
Ft,C

F 2
t,C +

1

2

∂2V C
t

∂F 2
t,N

σ2
Ft,N

F 2
t,N +

∂2V C
t

∂Ft,C∂Ft,N

Ft,CFt,NσFt,C
σFt,N

ρCN − rV C
t = 0

with the boundary condition V C
T1

(FT1,C , FT1,N) = ϕCF δC
T1,CF δN

T1,N . The value function satisfying

the above partial differential equation and the boundary condition is as equation (11).

The value of corn profit follows a geometric Brownian motion as

dV C
t

V C
t

= αCdt + σVC
dzVC

where αC = δCµFt,C
+ δNµFt,N

+ r, σVC
dzVC

= δCσFt,C
dzC + δNσFt,N

dzN .
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Derivation of Equation (12)

We assume that the option value function Π(·) is linear homogeneous in V C
t and V S

t . Now let

V S
t be the numéraire with price of unity and define the price of V C

t as Vt = V C
t /V S

t . Given (10)

and (11), the relative value also follows geometric Brownian motion. Applying Itô’s lemma, the

dynamics of Vt are given by

dVt

Vt

= µV dt + σV dzV

where µV = αC−αS+δ2
Sσ2

Ft,S
−δCδSσFt,C

σFt,S
ρCS−δSδNσFt,S

σFt,N
ρSN , and σV dzV = δCσFt,C

dzC+

δNσFt,N
dzN − δSσFt,S

dzS.

Now, the option to switch between corn and soybeans is a call option on the value of corn,

with exercise price equal to unity and interest rate equal to zero. Applying the Black-Scholes

formula on this special case, the value of the switching option is given as equation (12).

Derivation of Equation (13)

∂Π

∂σFt,C

=
∂V C

t

∂σFt,C

Φ(d1) + V C
t

∂Φ(d1)

∂d1

∂d1

∂σFt,C

− ∂V S
t

∂σFt,C

Φ(d2)− V S
t

∂Φ(d2)

∂d2

∂d2

∂σFt,C

=
∂V C

t

∂σFt,C

Φ(d1) + V C
t φ(d1)

∂d1

∂σFt,C

− ∂V S
t

∂σFt,C

Φ(d2)− V S
t φ(d2)

(
∂d1

∂σFt,C

− ∂σV

∂σFt,C

√
T1 − t

)
=

∂V C
t

∂σFt,C

Φ(d1) + V S
t φ(d2)

∂σV

∂σFt,C

√
T1 − t

Equation (13) follows. The third equality holds because we have (a) V C
t φ(d1) = V S

t φ(d2);

(b)
∂V S

t

∂σFt,C

= 0.
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Derivation of Equation (14)

∂Π

∂ρCS

=
∂V C

t

∂ρCS

Φ(d1) + V C
t φ(d1)

∂d1

∂ρCS

− ∂V S
t

∂ρCS

Φ(d2)− V S
t φ(d2)

∂d2

∂ρCS

= V C
t φ(d1)

∂σV

∂ρCS

√
T1 − t

Equation (14) follows. The second equality holds because we have (a) V C
t φ(d1) = V S

t φ(d2); (b)

∂V C
t

∂ρCS
=

∂V S
t

∂ρCS
= 0.

Derivation of Equation (16)

∆C =
∂V OP

T0

∂Ft,C

= Φ(d1)
∂V C

t

∂Ft,C

+ φ(d1)V
C
t

∂d1

∂Ft,C

+ [1− Φ(d2)]
∂V S

t

∂Ft,C

− φ(d2)V
S
t

∂d2

∂Ft,C

= Φ(d1)
∂V C

t

∂Ft,C

= Φ(d1)δCV C
t /Ft,C
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