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PFSTICIDE USAGE /LW TEE CI-IOICE OF PEST C O ~ O L  ST?L.STEGY: 
A SWITCMISG REGRESSIO?; .k!kI.YSIS 

The adoption of integrated pest management ( IRl)  as a substitute for 

conventional chemical pest management ( C P f )  is an important issue in current 

agricultural and environmental policy. The factors which influence growers' 

decisions to adopt IPH and the effects of IPM adoption on agricultural 

productivity and the intensity of pesticide usage are fundamental questions 

which must be resolved before environmental control strategies can be 

evaluated. The purpose of this paper is to develop a methodology for 

analyzing these issues which is suitable for empirical application, using data 

that can readily be obtained from grower surveys. After describing the 

theoretical model and the procedures for estimting it, we will present an 

example of an application using data on a sample of cotton growers in the San 

Joaquin Valley in California. 

The key to the model is the recognition that the "discrete" choice of 

whether to employ IW or C W  and the "conti~wo~_rs" choice of how much 

pesticides and other agricultural inputs to apply are interrelated. The 

outcome of the one choice affects the outcome of the other, and both flow frolii 

a single underlying profit maximization decision on the part of the gtoiier. 

This linkage between discrete and continuous choices shapes both the 

formulation of the theoretical model and the statistical procedure which is 

used to estimate the model. It also provides a way of unifying two separate 

stra:ids of literature on IW--the literati~re on neaw technolog\, adoption in 

agriculture [for a survey, see Feder, Just, and Zilberman ( 11, ~hich tends 



to focus exclusively on the discrete choices, and the literature on pesticide 

itemand functions [see, for example, Miranowski ( 11 which tends to focus 

exclusively on the continuous choices. To be sure, the empirical mathematical 

programming models of grower behavior [for example, Musser and Stanoulis 

(1981) and Kaiser and Robinson (l979)] explicitly recognize the discrete/ 

contintious nature of the choices faced by growers. But these are normative 

rather than positive analyses, and there is a serious problem in validating 

theiit. \%at is needed is a positive, statistical model of discrete/continuous 

choices which is capable of being validated by data on actual grower 

behavior. This is provided by the model developed in this paper. 

The literature on statistical techniques for estimating switching 

regression models emerged somewhat ahead of the literature on microeconomic 

models of discrete/continuous choices. The basic statistical techniques were 

worked out by Amemiya ( ), Heckman (1979 and 1980), and Lee and Trost 

(1978); another type of estimation methodology which we will also consider was 

developed by Tsur (1983a, b). Early examples of theoretical microeconomic 

models of simultaneous discrete/continuous choices include Just and Zilberman 

(1979) and Just, Zilberman, and Rausser (1980) on the production side and 

Novshek and Sonnenschein (19791 and Lancaster (1976 and 1979) on the consumer 

demand side. However, these are deterministic, rather that stochastic, models 

of micro behavior. Stochastic models combining utility- or production- 

theoretic inodels of discrete/continuous choices with switching regression 

estir:;ation techrtiques were developed by Hanemann (1978 and 1984) and Dubin and 

b1:Fa"ilen (1984) for constuner choices and by Tluncan (1980) and Ilane~nann and 

'i'siir (3982 and 1984) for producer choices. The preseiit model is finnly in 

this lltter tradition. 



The paper is organized as follows: Section I1 outlines the theoretical 

nodel of discrete/continuous choices by growers. Section 111 describes some 

alternative estimation techniques. The model is applied to data on cotton 

growers in the San Joaquin Valley in section IV. Section V contains the 

conclusions, including a discussion of the empirical results and suggestions 

for how this type of model can he applied to other data sets in order to 

evaluate the consequences of alternative environmental control policies. 

11. Model Specification 

In this section, we develop a model of a grower's decisions on whether to 

use I@! or CPM and how much pesticides to apply which is suitable for 

empirical estimation. The model is tailored to the specific limitations of 

data that are available to us--constraints which might arise in other data 

sets on pesticide usage. However, in order to place the model in a broader 

context and indicate how one could proceed if a more complete data set were 

available, we present, first, a somewhat more general decision model and then 

specialize it to the data at hand. 

The grower's decision variables are pest control strategy, represented by 

a binary variable T, where T = 1 indicates use of IPM and T = 2 indicates use 

of CPM; the quantity of pesticides applied per acre, x; and the quantity of 

all other nonpesticides per acre, represented by the vector z. There is a 

production function which depends, in principle, on the type of pest control 

strategy: y = flx, z; TI, where y is the output of cotton per acre. Let the 

price of cotton be p, the cost of pesticides w ,  and the cost of nonpesticide 

inputs q. For the sake of generality, we allow for the possibility of other 

fixed costs associated with the use of the two technolo~ies represented by 



k(T). Given that the growers acreage is A, which is taken as exogenous to the 

iilodel, his profit is 

n = n(x, z, T; p, w, q, A) r [pf(x, z; T) - wx - q z ]  A - k ( T ) .  (1) 

The groiier selects (x, y, T) so as to maximize profits (1). This generates a 

set of per-acre input demand functions, 

z = hz(p, w, q, A); 

a pest control strategy decision function, 

T 
T = h (p, w, q, A); ( 4 )  

a per-acre output supply function, 

T y = hY(p, w, q, A) E f[hx(p, w, q, A), hZ(p, w, q,  A); h (P, we q, A)]; ( 5 )  

and a (maximized) total profit function, 

z T n[hx(p, w, q, A), h (p, w, q,  A), h (P, w, q,  A); P, w, q* 

By Hotelling's lemma, 



Observe that this optimization simultaneously embodies a continuous and a 

discrete choice; the continuous choice is the level of pesticide and other 

inputs while the discrete choice is the selection of a pest control strategy. 

Moreover, the continuous and discrete choices are interdependent and both flow 

from a single, underlying profit maximization. For example, the amount of 

pesticides to be applied depends on which pest control strategy is adopted and 

vice versa. 

In order to illuminate this interdependence, it is convenient to think 

of the maximization of (I) as occurring in two stages. Suppose that the 

grower has decided to adopt IPM (T = 1). Conditional on this decision, his 

per-acre production function may be written as: yl = f l (x ,  2) = f(x, 2; 11, 

where the subscript "1" indicates output conditional on T = 1, and his profit 

is 

The levels of pesticide and other input usage conditional on the decision to 

adopt IPM are determined by maximizing (8). This yields the conditional input 

demand functions, 

= hfx(p, w, q ) ;  

the conditional output supply function, 

2 
y 1 1  = hx(p, w, q )  flfh:(p, w ,  q ) ,  hl(p, w, q ) ] ;  



and the conditional (maximi zed) prof it ftmction, 

Note that these functions possess the standard properties; in particular, they 

satisfy Hotelling's lenrma--hx(p, w, q) A = anl(p, w, q, A)/ayetc. 1 

Suppose, alternatively, that the grower has decided to adopt CPbl (T = 2). In 

- a similar manner, we can define a conditional production function, y2 - 

f2(xl z )  f(x, z; 2); a conditional profit function analogous to (8); 

conditional profit-maximizing input demand functions, xZ = hz(p, w, q)  and 

z2  = $(p, w, q); a conditional profit-maximizing output supply function, 

y2 = h2fp, w, q ) ;  and a conditional maximized profit function, n2 = n2(p, 

w, q, A).  

All of these conditional functions represent the grower's continuous 

choices conditional on his discrete choice. They can be related to his 

discrete choice and to the unconditional decision functions ( 2 ) - ( 6 )  as follows: 

T T = h (p, w, q, A) = 
2, otherwise 

a = n(p, w, q,  A) = max fnl(p, W, 9, A),  n2f.p, WI q,  A)] (14) 

w, q) if nl(p, w9 4, A) L rZ(p, W, Y *  A) 

X x = ti (p, w, q,  A) = (151 

h;(P, w, q),  otherwise 



i h;(p, w, q) if nl(p, W, 4, A) 2 n2(p, W, 9, A) 

Z z = h (p, w, q, A) = . 
1 itZ(p, W, q), otherwise 
i. 2 

h{(p, w, q) if nl(p, w, 9,  A) 2 n2(p9 W) 99 A) 

y = hY(p, w, q, A) = (17) 
h$(p, W, q), otherwise. 

If stochastic terms are added to the various conditional functions, (13)-(17) 

will be recognized as a set of switching regression equations, and they can be 

estimated by the statistical tecllniques recently developed for use with such 

regression models. 

In our case, however, the available data on input prices, particularly 

for nonpesticide inputs, are somewhat limited; this forces us to take a 

slightly different tack. In effect, the system (13)-(17) represents a 

solution to the underlying profit maximization of the form, 

max Imax n(x, z, T; p, w, q, A)}. 
T x,z 

As an alternative, we can seek a solution to the underlying profit 

maximization of the form, 

~nax lmax Imax n(x, z, T; p, w, q,  A)}]. 
z T x  

The Kaxi-iiations within the square brackets in (19) are conditional on the 

level of nonpesticide inputs, z .  Since w e  h3ve better data on the quantities 



of these nonpesticide inputs than on their prices, it is convenient to derive 

the discrete choice decision function for T and the continuous choice decision 

function for x by focusing on the inner maximizations in (19). 

Accordingly, niaximization of (8) with respect to x for fixed z yields a 

conditional profit-maximizing demand function for pesticide inputs, 

conditional on both the quantity of nonpesticide inputs and the adoption of - 
IkW, of the form xl = $(p, w, z), a conditional output supply function, yl = - - 
hY(p, w, z), and a conditional maximized profit function, nl = nl(p, w, L 
z, A), analogous to (91, (111, and (12) above. Similarly, conditional on the 

quantity of nonpesticide inputs and the adoption of CPM, we obtain a profit- 
-x 

maximizing input demand function x2 = h2(p, w, z) output supply function, 

y2 = %(p, w, z), and profit function n2 = m2(p, W, Z, A). The solution to 

the inner maximizations in (19) can then be written in the form 

-T T = h (p, w, 2, A) = 
2, otherwise 

- - - 
%I = ~ ( p ,  w, Z, A) = max [nl(p, W, 21 A), xZ(p, wp z7 A) 1 

" - 
z) if nl(p, W, ZI A) L -iiZ(p> W> Zf A) 

-x x = h (p, w, z, A) = (22) 

z), otherwise 



The system (20)-(231, rather than (13)-(171, generates the switching 

regression model that we propose to estimate here. 

In particular, we assume that the conditional production functions 

underlying (8)  have the form 

for some functions G .(z), j = 1, 2. In our empirical work, we will employ 
3 

the following specification 

where z = (zl, ..., zM) are the nonpesticide inputs and s = (sl, ..., sL) is 
a vector of observable grower characteristics, such as education and farming 

experience, which, in effect, shift the intercept of the conditional 

production functions. Using (241, the maximization of (8) with respect to x 

yields 



- 
IT. = ~.(p, W, Z, A) = [py. - WX. - q z l  A - k(j) 

3 3 J J 

r [py .  - w x . ] A  - F .  j = 1, 2 
J 3 3 

where F. k(j) + q z A, j = 1, 2. In order to simplify (281, we substitute 
3 

(26) and (27) and make use of the fact that, for the Cobb-Douglas formulation 

in (241, the share of pesticide input costs in total revenues is a. 
3 

to obtain 

In order to generate a statistical model, we need to add some stochastic 

elements to (261, (271, and (29). We introduce six stochastic terms, ul, 

u2, u3, u4, ql, and q2 into the conditional input demand, output supply, and 

profit E~zctions as follows 



These random terms may be thought of as representing errors of measurement, 

unobservable or omitted variables, and random errors in the grower's 

optimization process. Actually, the two terms, ql and rt2, are not needed 

separately; we only need their difference, us E n1 - 02, since we do not 

observe irl and n 2  directly but only the sign of their difference. 

To simplify the notation, it will be convenient to rewrite (26'1,  (27 ' ) ,  and 

(30)  a s  



where i.'' contains all the nonstochastic tenns on the right-hand side of (30) and 

si.nilarly for  vx and py. Thus, niaking use of (251, 
1 1 

and 

-I 

Accordingly, taking logarithms, the statistical switching regression nay be 

2, otherwise . 



The model is closed by specifying a joint distribution for u 5 (ul, u2, 

u3, u4, us). In our application, we will assume that u is independently 

and identically distributed (i.i.d.1 across observations as multivariate 

normal with mean zero and some variance-covariance matrix C 5 {a. .). 
11 

Accordingly, the parameters to be estimated are B E (al, a2, til1, . . . , 
€I €I2) and the 6iL, tiz1, - - -  r Y1l, -.., YlM> Y219 . . - 9  Y z ~  1, 

elements of C. 

Two features of this model are worth commenting on. First, we have 

allowed attributes of the grower to influence the production functions, and we 

have left open the possibility that their influence differs according to the 

type of pest control strategy. One hypothesis we propose to test is that 

61% = ti29. for all il--i.e., the effect of grower characteristics, such as age 

or farming experience, on the output levels attained by the grower is the same - 
regardless of which pest control strategy he adopts. Similarly, one can 

test the hypothesis that the other components of the production function--8, 

a, or they 's--are the same across pest control strategies. In this way, we kl 

can pnpoint how the difference in pest control strategy affects agricultt~ral 

productivity. Second, it will be shown in the next section that four 

off-diagonal elements of C (namely, a12, oI4 ,  cZ3, and cZ3) are not 



identifiable and cannot be estinated; all of the other elements of C are, in 

principle, estimable. The presence of covariance terms such as a13, "15. 

and aX5 allows for the possibility that tlnobservable factors (such as 

umeasured grower characteristics) that influence a grower's output levels 

also affect his input choices and his decision to adopt IPM versus CBf;  we can 

also test the hypothesis that these cross-effects are zero. Thus, the model 

(35) allows for considerable flexibility in modeling observed groker behavior. 

111. Estimation 

Given observations on a sample of N growers of whom N1 adopt IPM and 

N2 E N - F: adopt CPM, the log-likelihood f~mction for the model (35) is 1 

X 
1 lnx. - p  

I li 
q B ,  C) = b 



Y lny. - u .  
1 11 

+ ('35 - '13 '15) 1 2 
0-L 

and for i = N1 + 1, ..., N 

where p . . E o. . / (u .  . o . .)Ii2,  b (z I ,  z2; p )  is the density function of 
1 3  1J 11 3 5  

a standard bivariate normal with correlation coefficient p, and a(.)  is 

tlie stazdard normal cunlt~lative distribution function. Observe that the 

tens s 12' '14' '23' and uS4 (01 o12, pl4, pz3, and pj4) do not appear in the 



likelihood function (37a, b) ;  therefore, they are not identifiable from the ob 

ser\ed data. One approach to estimation is to maximize (36) directly with 

respect to B and the remaining elements of C.  Followitig the argument of 

hnemiya ( ), it can he shown that the maximum likelihood estimator (hILE) is 

consistent and asjmptotically normal and efficient. In practice, however, the 

norm1 equations may have multiple roots and, unless one starts from an 

initial consistent estimator, there is no guarantee of convergence to the 

global maximum. Moreover, because (37-3, b)  is extremely nonlinear in the 

parameters, it is often computationally burdensome to obtain the .%E 

directly. Also, in small samples there is no guarantee that one will obtain 

an estimate of C which is finite or positive definite [for a technical 

explanation, see Tsur (1983b) 1. 

As an alternative, one can employ the two-stage estimation procedure 

originated by Heckman (1976) and Lee and Trost (1978). The first stage is 

lnaximum likelihood estimation of the probit model for the discrete choice of 

pest control technology. From (35a), the likelihood function for this probit 

=ode1 is 

Unlike conve~ltional probit models, this model is nonlinear in the parameters-- 

see (%)--and, in principle, it pennits one to obtain a separate estimate of 

'55. Direct maximization of ( 3 8 )  will yield estimates of u S 5  and all 

the elenents i n  B, which we denote o S 5  and B. However, these estimates ignore 

the infor~r,atio~-i about f? trtiich is contained in the dztta on the contiii~lol~s 



choices--the levels of pesticide input and output supply. This information is 

incorporated in the second stage rshich is based on the observation that 

where 

and 

where o( ' )  is the standard normal density. Accordingly, we can set up the 

following regression models: 



x lnx. = p .  + Q  
I 11 15 'f + Wli (433) 

X lnx. = u .  - o  
1 21 25 'f + W 2 i  (40b) 

A ,-. 
In order to fit these regressions, we make use of the estimates B and oS5 

h 
obtained from the first s ige. ~et? be the estimate of u: constructed using 3, 

1 
A + " - 

and let hi and hi be the estimates of if and X: constructed usingq 
1 1 

4 
and oS5. Before proceeding to fit the regression model, we need to take 

account of the cross-equation coefficient restrictions implicit in (92)  and 

(33). Observe that (32) and (33) contain the same explanatory variables 

and differ only in their constant term and in the coefficient of ln(w/p). We 

can deal with the latter problem (but not the former) by replacing the depend- - 
ent variable in (40c, d) with in yi Z In yi + In (pi/wi). Then, for 

i = 1, ..., N1, we run the following regression 



t 
i 
r l ~ l x . "  I ; ; l , o , s l i  ,..., I ~ i ,  zli, ..., ZMi, 1n 1 

i \ 

1 - , . . In Mi' 

The mapping from the coefficients co, ..., c ~ + ~ + ~  to the underlying 

coefficients in ( 3 2 )  and ( 3 3 )  is as follo~ds 



For i = N + 1, . . . , N we run a regression similar to (41) except that we 1 
- + 

substitute -Xi for X i  as the last regressor variable. The coefficients for 

this regression will be denoted do, 4, ..., dL+5f+4, they are related to the 
underlying coefficients in (32) and ( 3 3 )  in a manner analogous to (42a-el-- 

- for example, dL+M+2 = 1/(1 - a2), dL+sf+3 = oZ5, and dL+?.1+4 - "45. Since 

both of these regressions are linear in the coefficients, we can employ 

ordinary least squares (OLS). Denote the resulting coefficient estimates by 
I 1 I I 

'0' ''.' %+~+4 and do, ..., d ~ + ~ + 4  . The relations in (42a-e) can be 
used to obtain estimates of the underlying coefficients in the model. For 

example, 

I - C2 - %+2 
- ' I y11 - - , etc., 
'L+M+~ C~+;ct+2 

I I I 

and, similarly, for a2, 621, yZ1, etc. However, the coefficients O1 and O2 are 

overidentifieci since, from (42a), we obtain two separate estimates of them; 

for 8 we have 

and 



, t % I I 

and, simi larly, for 02. From c ~ + ~ ~ + ~  and c~+!~+~, xe obtain u and u35 and, 
1 5  

t , 
simi1a1-1 for oz5 and Estimates of the other identifiable elements of C - -  

t I ! , 1 

ull, u13, ojj, u22, uZ4, and a14--can be obtained from the regression residuals 

of (41) along the llries indicated by Lee and Trost (1978, p. 361 and 362). 

Lee and Trost prove that these estimates are consistent but not 

efficient. hforeover, the variance-covariance rnatrix for the estimates 
I 1 I , 

Co' "" CL+>f+4 and do' - - %+>i+4 
generated by the OLS regressions 

-+ A -  
is incorrect because the regressors included estimated variables ( A ~ ,  Ail. 

Following the suggestions of Greene (19831, we can employ i?hitefs (1980) 

heteroscedasticity-consistznt estimator of this variance-covariance matrix 

which is readily computed from the regression residuals. However, this does 

not give us standard errors for the estimates of all, a13, u33, uZ2, uZ4, and - 
(144 which may be needed testing hypotheses on C. Accordingly, following the 

suggestion of Lee and Trost, we can take the estimates B' and C t  and use them 

as starting values for a direct maximization of the likelihood function (36). 

Since they are consist.>nt, a single Newton-Raphson iteration will provide 

estimates of B and C which have the same asymptotic distribution as the 

global biLE. Thus, these so-called two-step maximum likelihood estimates are 

consistent and asymptotically normal and efficient, and their variance- 

covariance rnatrix is consistently estimated by the information matrix. 

A third approach to estimating the switching regression model (35) 

involves the application of the Fl.1 algorithm of Dempster, Laird, and 

Rubin (1977). The extension of the EzZ estimator to switching regressions is 

descrikd din detail in Tsur (1983a); here we provide only a brief smary. 

For this purpose, it is convenient to introduce some ne'n' notation and remite 

(35) as, for i = 1, . . ., K ,  



* 
Yli if YSi 2 0 

Yli = [ * 
not observed otherwise 

* 
y2i = r * t  observed if YSi 2 0 

YZi, otherwise 

( not observed otherwise 
* 

not observed if YSi 2 0 

* 
Yqi, otherwise 

( 0% otherwise. 



* * * * * 
In effect, YI 5 In xI, Y = In x2, Y = In yl, Y = In y and Y5 I An. In 2 - 3 - 4 - 2 * * * * 
the terminology of Dempster, Laird, and Rubin, the variables Yi I (Y YZi, Yji, li' * * 
, Ysi) are the "coinplete" data; they are not observed directly, but only 

indirectly throilgh the observed or "incomplete" data Y. 5 (Yli, Y ., Y3i, Yqi, YSi). 
1 21 

The logarithm of the joint density of the complete data is 

N 
1*(0, P) = i log L*(Y~~B, B) 

i=l 

X X Y Y W  
where 1. E (uli, uZi, uli, uZi, pi ) . The algorithm involves a sequence of 

1 

iterations, each iteration consisting of two steps. At the K + 1st iteration, 

given parameter andhCK, in the E-step one computes the 

expectation of the log-likelihood function for the complete data conditional - on the 
observed data 

^K ^K - 9 f? 7 
Q@, rla , i i = tF*(0, BIIY~, ..., yN. F, iK] 

e 

(46)  

h K + l  %K+l which solve and in the M-step one finds 0 , 

max Q(0, c 1BK, CK) . 
B ,c 

The algorithm is started with same initial set of parameter estimates, and the 

iteration of E- and M-steps is continued until a convergence criterion is 

sa t i s f i ed .  I)e::~pster, I.aird, and Rubin prove that these iterations converge to 

a root oE tile normal ec!i~:itions for mtuiqizing the log-likelihood function 



( 3 6 ) .  Thus, the EM algorithm provides an alternative procedure for obtaining 

the >LLE which avoids some of the coiiiputational difficulties associated ~ i t h  

direct maximization of (36). 

In performing the E-step, we observe that 

- 
iK, ;?and rK 1 f pi I J ~ ~ Y ~ ;  iK, ZK( . Thus, Lor example, 

- 



AxK . r-. 
where . 1s (32) evaluated using the coefficient estimates aK,  and 11 

similarly forGXK 2 i and'GK, %here ,),+(a) z @(a)/:(-a), and ~-(a) I 

- K -K a .  The fomIul3s for YSi and Yli are similar to (48) and (49). The 
'K . formula for Y is 
5 i 

Similarly, 



and 



iih;.re !,+(a) 5 a Xf(a) - X+(a)', and A-(a) E - a ~-(a) - X-(a)'. The forniulas 
K K K K for -r33i and T~~~ are similar to (Sla, b, e, f) and those for T~~~ and T~~~ are 

similar to (52 a, b, e, f ) .  By virtue of the non-identifiability of these terms, 

we set T R K K - K 
lZi = T~~~ = T~~~ - T~~~ = 0.  Finally, 

The interpretation of (48) and (51) is as follows. For an ob- 
* 

servation i for which Y . = 1, we actttally observe Y . since, in this case, 
51 11' * 

Yli = f .  Therefore, our expectation of Y given the observed Y . is 11' li 11 
K K 

simply Y . and all the terms T ~ ~ ~ ,  T ~ ,  etc., become zero. However, 11 * * 
if Y5i = 0, we do not observe Y . In this case our expectation of Y . 11' 11 
conditional on the fact that it is not observed is given by (48b), and our 

2 expectation of uli, uli u3i, etc., is given by (Slb, d, etc.). This 
* * 

is how we "fill in" the missing values of Y . and similarly with YZi, 11' * 
Y3i, etc. Ke end up with a full set of N observations or filled-in values for - 

* * 
all f l v c  variables Yli, ..., '5i. 



Next, we plug (47) into (46) to obtain 

N N 
Q B , Z  iK,iK = Z log C-1 - - 2 .  c tr 2-l + - p i  I 

1=l 1 

In the M-step, we maximize (54) with respect to 5 and C to obtain 
gK", zK+l. Setting the derivative oE (54) with respect to C equal 

to zero yields 

However, the maximization of (54) with respect to 5 is more complex because, 

while LI . , pZi, p3i, and u are linear in (transforms of) the elements of 11 4i 

B, hi is a nonlinear function of 5.  Hence, at each stage K, an iterative 

solution procedure would be required to perform the M-step with respect to B 

since all the elements of B already appear invli, ..., p4i. We avoid this 

problem by omitting the terms f%i - ) from (55) and maximizing 

U1i, a * - >  L14i with respect to 8 .  In effect, we are estimating filled-in 

versions of equations (44f, g, h, i) and omitting the filled-in version of 

(44j). In order to allow for the cross-equation restrictions on coefficients, 

we proceed in a manner similar to that used in the regression model (41). We 
" 

replace 3. r Pi + in (pi/ui) a n  u i  with pZi p Z  + 
1 1 -* ,,b - K  

In ( ~ ; / l i . ) ,  which is legitimate since (Y2i - uZi) = (YZi - and 
1 

-K similarly for Y4i and psi. Then, for i = 1, ..., N, we have 



where the elements of c a r e  related to the underlying coefficients in B by 

(42a) through (42d). Similarly, for i = 1, ..., N, we have 

Thus, 

Finally, define 



and partition E (and CK) into 

Then, maximization of (54) with respect to (c, dl' when (44 .) is omitted 
3 

yields 

CV N 

Moreover, bet,-s~se of the block-diagonal structure of X and C (recall that 

512 = 514 = 523 = 034 = 01, (58) reduces to 



Thus, the Y-step (59)  reduces to a pair of ordinary least squares regressions 

of \ih'. and Yii on Xi .  ~iven'&'+' and kK+' the ele-i~nts of f,KC1 can be 
C l  

obtained by mahing use of (433, b), etc. Rote that we ohtair, trjo separate 

I'Y+l estimates of a.l and siinilarly for 01(Z+l--see (43c, d). 

To sumarize, at the K + 1st iteration of the EV algorithm given 

estimates 8 ' K -K " 
and 7: we first fill in the missing values of Yli, . . . , 

= K K Ygi, and T~ using the formulas in (48) through (53). Then we compute 

?K+l from (551, and we run the ordinary least squares regressions of yK and ci 

on X. to obtain the coefficient estimates?K*l and?dK+l, from which we 'di I 

obtain 3K+1 via (43a-d). Upon convergence, we obtain estimates of C and B 

which correspond to the bILE. However, this procedure does not yield a 

variance-covariance matrix for the coefficent estimates. This can be obtained 

by direct evaluation of the information matrix based on the Hessian of the 

log-likelihood function ( 3 6 )  evaluated at the final Dl coefficients. 

IV. Application 

The switching regression model (35) was applied to data on 45 cotton 

growers in the San Joaquin Valley of California in 1974; for a detailed 

description of the data set, see Hall ( ) and Farnsworth (1980). Of the 

growers, 28 employed 1W and 17 employed CPH. The variables and their units 

of measurement are as follows: 

y = output of cotton lint (pounds per acre) 

x = pesticide input (dollars per acre) 

p = output price (dollars per pound) 

k E 1 = pesticide price 

= lahor input (ciollars per acre) 



z Z  = ~nachinery input (dollars per acre) 

7 3  = irrigation input (acre feet per acre) 

z4 = fertilizer input (dollars per acre) 

s1 = education 

sZ = years of farming experience by growers 

A = acres managed by growers 

F1 - F2 = fixed cost of IRf consultant (dollars) 

The coefficients of the model were estimated using the EM procedure 

described above; the resulting estimates are shown on the following two 

tables. Standard errors of the coefficients (from which t statistics were 

calculated) were obtained by evaluating the Hessian of the log-likelihood 

function. 



T.UiiE 

Coefficients Estimated by E"%lgorithw! 

~ 

Coeff ic ient  Coefficient 
(exnlanatory A,- varj able)  ~-!-... - ~ .. - estimate t statistic ~ 

c0 k !in U ,  + 1 a J ( I  - il) -I - 3.7489 
1 (-1.42; 

l r i  1 ln "I I + 
c ~ -  1 -  -12.4121 (-1.88) 

OIL (1 - ul) (education) - 0.4372 (1.44) 

1 - a .  (experience) 0.8744 (2.17) 

Y (1 - ) (labor) 1.2198 (1.90) 

(1 - , A (fertilizer) 0.6862 (1.37) 

1 ( I - 1- (pesticides) 4.9784 (5.51) 

(1 - a. 2 1 -  (education) - 0.4372 (-1.44) 

I c 2 - a. 1- (experience) 2 2 2 0.8744 (2.17) 

~ ~ ~ 

(Cant irriied on nex,t page. ) 



TABLE I--continued. 

~ 

Coeff iciej-it Coefficient 
-x lanatory variable) estimate t statistic 1 2 ; ~  ----_- ~ ~ ~ 

.. 1 . , L , (1 - ) (laborj 2.6795 ( l . G i 3 )  

f 2 2  (1 - a2)-' (nachlricl-p) 2 . 8 i 2 2  (0.14) 

-I  
k z 5  (1 - di) (irrigation) - 0.2045 (-0.35) 

f 2  1 - a. 1 -  (fertilizer) 
2 - 0.7962 (-0.87) 

( 1 - 12)-1 (pesticides) 3.4667 (3.70) 



Coeff ic ienr  (%laitatorv A variable) ~ CoeEficie?t es t ina te  

"11 (education) 

% 2 (experience) 0.2093 

Y l l  ( labor) 0.2919 

f l ~  (machinery) 0.0603 

y13 (irrigation) 0.9741 

y L 4  (fertilizer) 0.1642 

"1 (pesticides) 0.7607 

o (experience) 2 2 0.2522 

y. (machinery) 
i 2 0.8112 

y L 3  (irrigation) -0.059 

- fZ4  (fertilizer) -0,2297 

(Cant inrred on next page. ,l 



(' - .,.? 6 - -uci,i,lcr:t (exr>lanatory _-i_ variatlej _-i_._-i__-i__-i_~_-i_-_-i__-i__-i_._-i__-i__-i__-i__-i__-i_.._-i__-i__-i__-i__-i__-i__-i__-i__-i__-i__-i__-i__-i__-i__-i_._-i_._-i_...-.----- Ccefi ic iei~t  estimate 

' I 2  
(p:;stici<les) C.7115 

"ii SO.  8878 


