
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


Modeling Dependence in the Design of Whole Farm

Insurance Contract

—A Copula-Based Model Approach

Ying Zhu

Department of Agricultural and Resource Economics

North Carolina State University

yzhu@ncsu.edu

Sujit K. Ghosh

Department of Statistics

North Carolina State University

ghosh@stat.ncsu.edu

Barry K. Goodwin

Department of Agricultural and Resource Economics

North Carolina State University

barry goodwin@ncsu.edu

Selected Paper prepared for presentation at the American Agricultural Economics Association
Annual Meeting, Orlando, Florida, July 27 - 29, 2008

Copryright 2008 by Ying Zhu, Sujit K. Ghosh and Barry K. Goodwin. All rights reserved.
Readers may make verbatim copies of this document for non-commercial purposes by any
means, provided that this copyright notice appears on all such copies.



Modeling Dependence in the Design of Whole Farm Insurance

Contract

—A Copula-Based Model Approach

Ying Zhu, Sujit K. Ghosh, Barry K. Goodwin

Abstract:

The objective of this study is to evaluate and model the risks of corn and soybean production.

This study focuses on the risk of revenue variability that arises from changes in prices, yields

shortfalls or both. There are several models for price and yield risk factors for corn and

soybeans. For instance, yield risks can be modeled by a family of Beta distributions, whereas

price shocks can be modeled by log-normal distributions. In order to develop a multivariate

model that preserves a given set of marginals, a copula approach can be used to characterize

the joint yield and price risk of corn and soybeans, which are usually highly correlated. The

copula approach has been spurred by the recent developments in the whole farm insurance

(WFI), resulting in an increasing need for the modeling of multivariate risk factors and their

interaction. As a part of the study, various copula models are investigated for their suitability

in modeling yield and price risks. Finally, the proposed copula approach is illustrated with

simulated data to calculate the premium rate of the whole farm insurance. Results show

that WFI is superior to crop-specific insurance with premia 36% cheaper than the latter.
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1 Introduction

Federally regulated crop insurance programs have become a major source of subsidies to

U.S. farmers. This program offers protection against risks in agricultural production such as

yield shortfalls, price collapses and revenue losses. Agricultural risk is typically assumed to

originate from the unanticipated movements in prices, yields and revenues. In designing and

rating crop insurance contracts, it is important to understand the distributions of several risk

variables interacting simultaneously, not in isolation of one another. Ignoring dependencies

among risk factors can lead to biased estimates of the risk. For example, in the case of the

natural hedge in which revenue is stabilized because of the negative relationship between

crop yields and prices, if the negative relationship between price and yield is ignored, it will

overestimate the risk of the revenue insurance. Thus, it is important to be able to adequately

model dependence and multivariate outcomes.

The federal crop insurance program currently insures in excess of $70 billion in crops

and livestock commodities, resulting in an increasing need for the modeling of multivariate

risk factors and their interaction. A risk management tool known as crop revenue insurance

protects crop producers from declines in both crop prices and yields. Revenue insurance

products currently presented approximately 50% of U.S. corn and soybean insurance acres

(USDA/RMA). There exists three revenue insurance (RI) programs: Crop Revenue Cov-

erage (CRC), Revenue Assurance (RA) and Group Risk Income Protection (GRIP). These

programs guarantee a certain level of crop revenue for a given crop or for all insurable crops

grown on a farm, rather than just production, and pay an indemnity if revenues fall beneath

the guarantee. This indemnity payment scheme deals with both price and yield risk and

should be better correlated with farm’s need.

One of the problems with pricing revenue insurance contracts is accounting for the de-

pendence structure between the price and yield risks. It is difficult to calculate the premium

rates for the revenue insurance when the joint distribution of two or more random variables

need to be assessed. Many studies have evaluated the revenue risk by considering the degree
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of correlation between yields and prices. The modeling approach ranges from non-parametric

(Goodwin and Ker, 1998) to parametric methods. Cobel, Heifner, and Zuniga (2000) have

investigated these correlations in revenue insurance and found that there is strong correla-

tion between price and farm yield and between farm and national yiled in certain crops and

regions. The procedures utilized in the literature are to generate pairs of random variables

from a given pair of marginals with a known degree of correlation. Spearman’s rank correla-

tion coefficient and Kendall’s tau coefficient are two common measures of correlation which

are invariant to monotone transformations. However, these procedures are limited in that

only the first and second moments are matched (Goodwin and Ker, 2001). Also, these cor-

relation structure measures characterize the dependence over the entire support of the risk

variables, while many issues in risk management focus on the tail areas behavior. Besides the

above limitations, theoretical models of risk management imply that crop-specific revenue

insurance and whole-farm insurance should be derived from the joint probability distribution

of yields and prices of one crop or multiple crops. To know the joint loss probability, the joint

distribution of crop yields and prices must be known. This multidimensional composition

calls for flexible models that can describe the major data properties, such as higher-order

moments, fat tails, co-extreme movement and tail dependence.

The need to model the multivariate distribution of yields and prices and the multivari-

ate dependence structure associated with the copula method motivated this study to use

copula approach. A joint probability distribution uniquely determines all lower dimensional

marginal and conditional distributions. As a result, association between any set of random

variables can be fully described by knowing the multivariate joint distribution. A promising

tool used to study multivariate outcomes is the copula function, which was originated by

Sklar (1959). Most of the related work in copulas was written after 1990s. The basic idea

of a copula is to link the marginal distributions together to form the joint distribution. It

is a parametrically-specified, joint distribution generated from given marginals. The attrac-

tive feature of parametrically specified copulas is that estimation and inference is based on
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standard maximum likelihood procedures, which make it feasible to efficiently estimate the

assumed copula model.

The objective of this study is to model and evaluate multivariate risk factors and their

interaction in corn and soybean production with implications for evaluating the potential for

establishing a combination insurance or whole-farm revenue insurance that would address

the risks of corn and soybean production. The multivariate modeling is based on the copula

approach to reconstruct a multivariate joint distribution of the risks based on a given set of

yields and prices marginal distributions as well as to separate the dependence structure and

the marginal distributions in a multivariate distribution. As a part of this study, various

parametric copula models such as Gaussian copula and t copula are investigated for their

suitability in modeling yield and price risks.

This study focuses on the risk of whole-farm revenue variability that arises from changes

in multi-crop random prices, random yields shortfalls or both. With whole farm coverage,

all acres of farms crops insured in a county rather than an individual crop are covered under

one insurance unit. Since most crop risks are not perfectly correlated (|ρ| < 1), whole farm

insurance (WFI) provides more efficient coverage than insuring each crop with a specific

policy. The rational of WFI is thus to pool all of a farm’s insurable risks into a single policy

that provides coverage at lower rates against the farm’s revenue losses. If a farm grows

two crops, corn and soybeans, an insurance policy based on the farm’s total revenue will be

cheaper than the sum of the premia of crops corn and soybeans for the same expected revenue

(Hennessy et al. 1997). The effects of an increase in dependence between multiplicative risks

on the actuarially fair premium value of an insurance contract are analyzed in this study.

The gains of moving from a combination revenue insurance delivered by crop-specific policies

to WFI are also evaluated in this study.

Based on the copula WFI model approach, the rest of the paper is organized as follows.

Section 2 explores the copula approach for WFI insurance modeling by using a two-stage

MLE method. Section 3 provides the empirical analysis of the copula model by using corn
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and soybean data. A simulation study is conducted in Section 4 to compute the premium

rate of the WFI and crop-specific insurance based on the copula estimates from Section 4.

The conclusion is that premia of WFI are 36% cheaper at a 75% coverage level.

2 Copula Based Models for Whole Farm Revenue In-

surance

This section discusses the copula approach for whole-farm insurance modeling. In the WFI

model, gross revenue is exposed to multiple risks, such as random yields and random prices

of multiple crops, which may affect each other. It is important to model the distributions of

these multivariate risk variables simultaneously by using a joint distribution model, which

can capture the dependence structure between these risk factors.

2.1 Copula Functions and the Two-stage MLE Estimation Method

The copula is a tool for understanding relationships among multivariate random variables.

The usefulness of copulas in modeling dependence stems from a famous theorem of Sklar

(1959). Sklar’s theorem states that any continuous multivariate distribution can be uniquely

described by two parts: the univariate marginals and the multivariate dependence structure.

The latter is represented by a copula. A m-dimensional copula C(F1(x1), F2(x2), ..., Fm(xm))

is defined as any multivariate distribution function in the unit hypercube [0, 1]m, with uniform

U [0, 1] marginal distributions. It can be shown (see Sklar, 1959) that every joint distribution

F (x1, x2, ..., xm), whose marginal distribution functions are F1, F2, ..., Fm, can be written as:

F (x1, ..., xm) = C(F1(x1), ..., Fm(xm); θ), (1)

where θ is a vector of parameters of the copula which are called the dependence parameters,

which measure dependence between the marginals.
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Sklar’s theorem implies that copulas can be used to express a multivariate distribution in

terms of its marginal distributions. The copula C is unique for a given distribution F if each

marginal Fj(xj) is continuous. That is, the joint distribution of x1, . . . , xm can be described

by the marginal distribution Fj(xj) and the copula C. This result allows us to estimate joint

distributions with a two-step process. The first step is to estimate appropriate marginal

distributions of each random variable (not necessarily from the same family). The copula

construction does not constrain the choice of marginal distributions. Second, estimate a

copula by using one of the copula models and use it to capture the joint distribution, given

the underlying marginal distributions. Alternatively, one can jointly estimate the marginals

and the copula parameters.

Equation (1) is a frequent starting point of empirical applications of copulas. In this

equation, the joint distribution is expressed in terms of its respective marginal distributions

and a function C that binds them together. A substantial advantage of copula functions is

that the marginal distributions may come from different families. This construction allows

researchers to consider marginal distributions and dependence as two separate but related

issues. For the empirical applications, the dependence parameter θ is the main focus of

estimation. This equation will be used in fitting copula-based models to agricultural data in

the design of whole farm insurance contract.

Using the relation, a large number of parametric families of copulas are presented in the

literature (Nelson, 1999). The most common copulas in risk management are the t copula

and the Gaussian (normal) copula.

The Gaussian copula takes the form

C(u1, u2; θ) = Φ2(Φ
−1(u1),Φ

−1(u2); θ))

where Φ is the distribution function of the univariate standard normal distribution, Φ−1 is

the inverse distribution function of the standard normal distribution and Φ2(x1, x2; θ) is the
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standard bivariate normal distribution with correlation parameter θ ∈ (−1, 1).

The t copula with γ degrees of freedom and correlation θ is

C(u1, u2; θ1, θ2) = T2γ(T
−1
1γ (u1), T

−1
1γ (u2); θ)

where T1γ is the distribution function of an univariate t-distribution with γ degrees of freedom

and T2γ(x1, x2; θ) denotes the distribution function of a bivariate t-distribution with γ degrees

of freedom. The two dependence parameters are (γ, θ). The parameter γ controls the

heaviness of the tails. As γ →∞, the t copula approaches Gaussian copula.

Given a collection of marginal densities, the multivariate distribution can be defined by

applying a copula to the prescribed marginals by using equation (1). There are several

parametric models for price and yield risk factors for corn and soybeans. For instance, yield

risks are usually modeled by a family of Beta distributions, whereas price shocks are usu-

ally modeled by log-normal distributions. Copulas allow researchers to piece together joint

distributions when only parametric form of the marginal distributions are known explicitly.

The density function of a multivariate distribution whose dependence structures is defined

by a copula function can be obtained by differentiation of equation (1) and is given by

f(X1, . . . , Xm, θ) = c(F1(X1), . . . , Fm(Xm))
m∏
j=1

fj(Xj)

where fj represents the marginal density function of xj and c is the density function of the

copula function as shown in equation (1). In other words,

c(u1, u2) =
∂2C(u1, u2)

∂u1∂u2

=
f(F−1

1 (u1), . . . , F
−1
m (u1)∏m

j=1 fj(F
−1
j (uj))

The log-likelihood function is

l(θ) =
n∑
i=1

log(c(F1(Xi1; β), . . . , Fm(Xim; β);α)) +
n∑
i=1

m∑
j=1

log(fi(Xij; β))
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where u1 = F1(Xi1), u2 = F2(Xi2).

The usual methodology used in the literature, as proposed by Joe and Xu (1996), requires

one to estimate the MLE of the appropriate marginal in a two-stage approach. This method

is called the inference function for margins (IFM) method. By using this method, the set of

parameters of the model are estimated through a system of estimating equations, with each

estimating equation being a score function (partial derivative of a log-likelihood) from some

marginal distribution of the multivariate copula model. In the first step of the IFM method,

the marginal parameter βi is estimated by maximizing the loglikelihood of the m univariate

margins separately

β̂iIFM = arg max
β

T∑
t=1

logfi(Xti; β),

where i = 1, 2, . . . ,m stand for parameters from each marginal distribution Fi. In the second

step, the copula form is identified and the dependence parameters are estimated given the

marginal estimates β̂IFM :

θ̂ = arg max
α

T∑
t=1

logc(F1(Xt1; β̂IFM), . . . , Fm(Xtm; β̂IFM);α)

2.2 Copula-Based Whole Farm Insurance Model and Price-Yield

Dependence and Cross Price-Yield Dependence

To model the risk of whole-farm revenue (WFI) variability that arises from changes in multi-

crop prices, yields shortfalls or both, the copula method can be applied. Suppose a farm

grows two crops, corn and soybean, an insurance based on the farm’s total revenue and the

sum of the premia of corn and soybean for the same expected revenue can be compared

based on a four-dimensional copula and two two-dimensional copulas, respectively.

The WFI contract has the standard indemnity scheme of the form

max[(λRe −R), 0]
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where R = YcPc+YsPs is the revenue, Re = E(R) is the expected revenue and λ ∈ (0, 1])is

the coverage level. Pi and Yi, i = c, s are the non-negative random variables representing

price and yield risks of corn and soybean, respectively, with the joint probability distribution

F in a certain copula function form F (Pc, Ps, Yc, Ys) = C(F1(Pc), F2(Ps), F3(Yc), F4(Ys); θ).

If R < λRe, the insurer will pay (λRe−R) as an indemnity. An actuarially fair premium for

the WFI is equal to the expected loss of this contract. To calculate the premium of a WFI

contract based on the copula we estimated, suppose an insurance contract will insure some

proportion λ of the mean crop revenue (Re), the expected loss (in bushels) for this insurance

contract that guarantees λ× 100% of the predicted revenue (Re) takes the form of

EL(R) = E[(λRe −R)I(R ≤ λRe)]

where R denotes the observed annual WFI revenue and Re represents the predicted revenue.

The expected value of the revenue risk Re is with respected to the marginal risk measures

of price and yield risk. The marginal distribution of yield and price can be inferred from

the historical yield and price data. To construct the full joint distribution of yield and price

risk, we therefore need a copula.

3 Empirical Framework

This section illustrates the copula modeling of WFI revenue risk by using a four-dimensional

copula model. The guarantee of WFI revenue insurance is based on market price and the

actual yield. The data used in this analysis are the National Agricultural Statistics Service

(NASS) county-level corn and soybean yields of Iowa from 1960 to 2006 and the difference

between the futures prices at harvest and at planting for corn and soybeans from the Chicago

Board of Trade (CBOT) for the same time period.
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3.1 Futures Price Data

Current revenue insurance programs use Chicago Board of Trade futures market prices and

the historic average of the actual yields to compute the revenue coverage and guarantee. The

Chicago Board of Trade’s December corn futures contract and November soybean futures

contract data from 1960 to 2007 are considered.

A base market price is determined during February (planting time) by averaging new-crop

futures prices for December corn futures contract and November soybeans futures contract.

A delivery price is determined by averaging the new crop futures prices during delivery time

for both corn (in December) and soybeans (in November). The data used in this study are

February corn futures price data (defined as P 2,12
c,t ) and December (harvest time) corn futures

price data (defined as P 12,12
c,t ) of each year from 1960 to 2007; February soybean futures price

data (defined as P 2,11
s,t ) and November (harvest time) soybean futures price data (defined as

P 11,11
s,t ) of each year from 1960 to 2007.

By regressing the actual futures price on the February predicted futures price for both

corn and soybeans, the estimates of the intercept and slope parameter can be obtained.

P 12,12
c,t = αc + βc ∗ P 2,12

c,t + ec,t, P
11,11
s,t = αs + βs ∗ P 2,11

s,t + es,t. As showed in Table 1, the

estimated intercept α is not significantly different from 0 and the estimated slope βi, i =

c, s is not significantly different from 1 for both regressions. Thus, the logarithmic price

shocks for corn (defined as P̃c,t) and soybeans (defined as P̃s,t are approximately equal to

the difference between the logarithm prices in harvest time and in planting time. That is,

P̃c,t = log(P 12,12
c,t ) − log(P 2,12

c,t ), P̃s,t = log(P 11,11
s,t ) − log(P 2,11

s,t ). It is typical assumption that

the price is distributed as log-normal. Therefore, the logarithmic price shocks (P̃c,t and P̃s,t)

are normally distributed. The summary statistics for the price shocks are shown in Table 2.

3.2 Yield Data

The yield data used here are the county-level Iowa annual yields data for corn and soybeans

from 1960 to 2006 in Adair county. By assuming that errors are proportional to the predicted
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mean, a proportional adjustment can be applied to obtain the detrended yield shocks. This

detrending method is ad hoc but it is very common in practice. To do so, regress the yields

on a quadratic time trend and output the residuals. yt = α+ β1t+ β2t
2 + et, where yt is the

observed crop yield data in year t. Then, calculate the residual êt and the predicted yield

for 2006 as ŷ2006, the normalized and detrended data will be given by the following

ỹt = ŷ2006(1 +
êt
ŷt

).

where êt is the residual for time t by regressing the yields on a quadratic time trend, and

ŷ2006 is the predicted yield for 2006.

3.3 Fitting 4-dimensional Copula for WFI Model

By using the data of price and yield shock of corn and soybeans (p̃c,p̃s,ỹc,ỹs), the model of

prices and yields for corn and soybeans can be estimated by using a 4-dimensional Gaussian

or t copula with the correlation matrix

ρ =


1 ρ1 ρ2 ρ4

ρ1 1 ρ3 ρ5

ρ2 ρ3 1 ρ6

ρ4 ρ5 ρ6 1


where the matrix of ρ is known as the unstructured dispersion matrix and ρjs are dispersion

parameters. Since the one of the good property of copula is invariance to monotonic trans-

formations of the marginals, the dispersion matrix determines the dependence structure of

the distribution functions Fj(xj) as well as multivariate variables xjs. In the case of WFI

copula model, xj stands for price and yields of corn and soybeans.

To use the two-step copula model fitting method, the initial step is to determine the ap-

propriate marginals. It is popular to fit univariate marginals of the logarithmic price shocks as

a normal distribution with parameters µ and σ of the distribution function and to fit univari-

ate marginals of yields as a general Beta distribution. The Chi-square goodness-of-fit statis-
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tics also suggest that the yield marginal is Beta and the logarithmic price shock marginal is

Normal. The Maximum Likelihood Estimate of µ and σ for corn logarithmic price shocks and

soybean logarithmic price shocks are (−0.03, 0.20) and (0.02, 0.16) respectively. The marginal

MLEs of yields shocks are estimated with corn yields yc ∼ Beta(7.01, 2.09, 0, 203.55), soy-

bean yield ys ∼ Beta(17.60, 7.66, 0, 65.60). In the second step, the dependence parameters

for corn and soybeans are estimated given the marginal estimates from the first step. The

estimated results of the 4 dimensional Gaussian copula (LLF = 34.43631) and t copula

(LLF = 36.5453) are shown in Tables 4 and 6. The corresponding correlation matrices for

(pc, ps, yc, ys) implied by the t and Gaussian copula with Normal and Beta marginals are

shown as Tables 5 and 7.

These results show that Gaussian copula and t copula exhibit similar dependence struc-

tures among price and yield shocks of corn and soybeans. The own-crop and cross-crop

correlations of price and yield are negative, while the cross-crop price correlation (0.73 in

Gaussian copula and 0.74 in t copula) and cross-crop yield correlation (0.68 in Gaussian

copula and 0.71 in t copula) are positive. The magnitude of the negative correlations of

prices and yields in t copula is higher, which means that the t copula implies higher overall

dependence than Gaussian copula.

The copula-based revenue risk model can be fit by different types of Copula functions.

Some criterion need to be evaluated in order to select the best copula model. Some typi-

cal model selection methods can be used such as Akaike Information Criterion (AIC) and

Bayesian Information Criterion of Schwarz (BIC). Various parametric copula models esti-

mated in this sections such as Gaussian copula and t copula can be investigated for their

suitability in modeling yield, price and revenue risks. From the estimation, the AIC of t

copula (AIC = −59.1) is smaller than the AIC of the Gaussian copula (AIC = −56.86) and

the log-likelihood value of t copula is greater than the log-likelihood value of the Gaussian

copula, which imply better goodness-of-fit of t copula than the Gaussian copula.
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4 Simulation Study and Policy Implication

In this section, a Monte Carlo simulation method is used to simulate the multi-dimensional

variables of prices and yields of corn and soybeans from the copula function estimated above,

which preserves the rank correlations of these variables. The joint revenue loss and the

premium rates of the revenue insurance contract can be obtained at certain coverage levels.

Several scenarios are conducted in which gross crop revenue is supported at the 75 and 85

percent level, respectively. The mean and variance of expected revenue and the expected loss

and actuarially-fair premium rates for a whole-farm revenue insurance policy that guarantees

a certain percent of the expected level of revenue are calculated.

Suppose that a representative Iowa farm in Adair county grows corn and soybeans with

a equal proportion. The farm’s guaranteed yields for crop insurance purposes for the two

crops are equal to county trend yields. The dependence structure is imposed by the 4-

dimensional copula as estimated in section 3. One million revenue series were drawn from

the 4-dimensional copulas which preserved the dependence structure among prices and yields

of corn and soybean as well as the Normal logarithm price shocks and Beta yields. Those

draws (p̃c,t, p̃s,t, ỹc,t, ỹs,t) are used to calculate the expected loss and premium rates for the

revenue insurance contract at different coverage levels at year 2006. The predicted harvest

delivery price of corn is P̂ c,12
2006 = exp(P̃c,2006 + log(P 2

c,2006)), in which 1, 000, 000 of realized

predicted P̂ 12
c,2006 can be obtained. There are 1, 000, 000 of predicted corn yield ỹ2006 of 2006

as well. The predicted revenue realization of corn is R̂c,2006 = P̂ 12
c,2006 ∗ ỹc,2006. Likewise,

the predicted revenue realization of soybeans can be calculated as R̂s,2006 = P̂ 12
s,2006 ∗ ỹs,2006.

Based on the simulated predicted revenue, the expected revenue loss and premium rate for

crop-specific insurance contract and whole farm insurance contract can be calculated at 75%

and 85 % level respectively as shown in Tables 8 through 12. The actuarially fair premium

value of a yield insurance contract can also be obtained by calculating the dollar value of

yields given a predetermined price. The yield series of corn and soybeans are simulated from

the estimated Gaussian and t copula respectively and the expected loss of the yield of corn
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and soybean are calculated. The dollar value of the yield loss is then obtained by multiplying

the expected yield loss and the predetermined prices.

Table 8 shows that the actuarially fair premium value of a WFI contract implied from

a Gaussian copula at 75% coverage is $4.44, while the premium implied from a t copula at

the same coverage is $3.63 as shown in Table 9. This indicates that higher magnitude of

dependence structure implied by a t copla tends to result in lower premium than that from

a Gaussian copula given the same level of revenue insurance coverage ($511).

Tables 10 and 11 show that the actuarially fair premium value of crop-specific revenue

insurance and the WFI implied by a Gaussian copula and a t copula at 85% coverage. The

results are consistent with those at 75% coverage. Table 12 presents actuarially fair crop-

specific and whole-farm revenue assurance premiums for different types of copulas and for

different coverage levels. Let D be the difference between crop specific premiums and the

whole-farm premium. The difference D ranges from $2.46 in the Gaussian copula and $2.06

in the t copula at 75% coverage, which implies the premium of WFI is 36% cheaper than

the sum of the premiums of two crop-specific revenue insurance. At 85% coverage level,

the premium of WFI is 39% cheaper than the combination of the two crop-specific revenue

insurance, which shows that the portifolio effect increases as the coverage level increases. It

indicates a big difference between crop-specific coverage and whole-farm coverage revenue

insurance. These results suggest that there is a reduction in the actuarialy fair premium

for whole-farm revenue insurance relative to single-crop insurance. The reduction is driven

by portifolio effects of pooling across crops if a farmer compares single-crop and whole-farm

crop insurance at the same coverage level for all crops. Therefore, the WFI on farm’s gross

revenue is less costly than the sum of crop-specific insurance policies at the same level of

liability.
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5 Conclusion

This study has taken a close look at the efficiency of whole-farm insurance when the crop

producer faces joint yield and price risk and grows corn and soybeans by using a copula

model approach. Systematic risk of price and yields has been studied as it is very important

in crop revenue insurance. The empirical analysis in this study shows that the whole-

farm contracts are more efficient as a risk management tools than the combination of the

crop-specific contracts. A combination of crop-specific contracts is more expensive than a

single whole-farm contract at the same protection level. Based on these results, the crop

producers would switch from purchasing the crop-specific revenue insurance contracts to the

WFI contract. The social planner should also take this into consideration when the crop

insurance program is designed. For example, the subsidy plan in crop insurance program

should favor crop producers who purchase whole-farm contract to improve the efficiency of

crop insurance program.

This study contributes to the assessment of the new whole-farm revenue insurance which

provides overall coverage to all farms’ crops. The idea of whole-farm insurance is to pool

all of a farm’s insurable risks into a single insurance policy that provides cheaper premium

rate at the same protection level against the gross farm revenue losses. The results in this

analysis support this idea. Simulation results indicate that a WFI scheme that guarantees a

certain expected revenue to producers could provide approximately the same level of coverage

as the sum of crop-specific programs at as little as 64% ($3.63/$5.69) the cost at 75%

coverage level, and at as little as 76% the cost at 85% coverage level. This shows that

the accuracy and efficiency of modeling cross-crop yield and price correlations and rating of

whole-farm insurance contracts are improved by using this copula approach. The result will

have implications to pricing whole farm insurance products which cover crop revenues from

corn and soybeans. These results are also crucial for conducting better risk management to

producers from the whole-farm crop production risks.
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Table 1. Equation Estimates: Corn and Soybean Price shocks

Parameter Standard t
Variable Estimate Error Ratioa

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Regression with intercept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Intercept(Corn Futures Price) 0.84 0.42 2.01
P 2,12

c,t 0.84 0.07 10.68∗
Intercept(Soybean Futures Price) 0.69 0.35 1.99
P 2,11

s,t 0.89 0.06 15.87∗

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Regression without intercept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
P 2,12

c,t 0.99 0.01 180.96∗

P 2,11
s,t 1.003 0.003 262.17∗

aAn “*” indicates statistical significance at the α = .05 or smaller level.

Table 2: Variable Descriptions and Summary Statisticsa (1960-2006)

Standard
Variable Description Meanb Deviation

P 2,12
c,t Predicted December Futures Price of Corn at February planting time of year t 221.58 71.20

P 12,12
c,t Realized December Futures Price of Corn of year t 214.23 72.37

P 2,11
s,t Predicted November Futures Price of Soybeans at February planting time of year t 510.67 178.07

P 11,11
s,t Realized November Futures Price of Corn of year t 519.80 181.20

P̃c,t Logarithm Price shocks for corn −0.03 0.20

P̃s,t Logarithm Price shocks for soybeans 0.02 0.16

aData source: Chicago Board of Trade (CBOT). Number of observation is 48. Year t = 1960, 1961, ...2007.

bThe units of the futures price are cents and quarter-cents/bushel (5000 bushels per contract).
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Table 3. Equation Estimates: Detrending Corn Yield

Parameter Standard t
Variable Estimate Error Ratioa

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Adair County, Iowa (Fips = 19001) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Intercept 32.03 5.47 5.85∗
t 0.47 0.31 1.52
t2 0.012 0.004 3.43∗

aAn “*” indicates statistical significance at the α = .10 or smaller level.

Table 4. The Estimates of the Dependence Parameters of the Gaussian Copula
Gussian Estimate Std. Error P-value
ρ1 0.73 0.055 < 0.001
ρ2 −0.16 0.14 0.25
ρ3 −0.27 0.13 0.04
ρ4 −0.17 0.14 0.23
ρ5 −0.29 0.13 0.03
ρ6 0.68 0.065 < 0.001

Table 5. The Dependence Structure Implied by the Gaussian Copula
Corn Price Soybean Price Corn Yield Soybean Yield

Corn Price 1 0.73 −0.16 −0.17
Soybean Price 1 −0.27 −0.29
Corn Yield 1 0.68
Soybean Yield 1

Table 6. The Estimates of the Dependence Parameters of the t Copula
Gussian Estimate Std. Error P-value
ρ1 0.74 0.062 < 0.001
ρ2 −0.31 0.15 0.042
ρ3 −0.31 0.14 0.026
ρ4 −0.29 0.15 0.06
ρ5 −0.26 0.15 0.084
ρ6 0.71 0.068 < 0.001
df 7 3.68 0.05
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Table 7. The Dependence Structure Implied by the t Copula
Corn Price Soybean Price Corn Yield Soybean Yield

Corn Price 1 0.74 −0.31 −0.29
Soybean Price 1 −0.31 −0.26
Corn Yield 1 0.71
Soybean Yield 1

Table 8: The Revenue Insurance Implied from a Gaussian-copula at 75% Coverage

Liability Expected Loss Premium Rate Premium

Corn(Yield) 295.10 3.84 0.0130 3.84
Soybean(Yield) 216.65 0.57 0.0026 0.57
WFI (Yield) 511.25 2.82 0.0055 2.82

corn(Revenue) 294.65 5.83 0.0198 5.83
soybean(Revenue) 216.60 1.08 0.0050 1.08
WFI(Revenue) 511.25 4.44 0.0087 4.44

Table 9: The Revenue Insurance Implied from a t-copula at 75% Coverage

Liability Expected Loss Premium Rate Premium

Corn(Yield) 293.92 3.78 0.0130 3.78
Soybean(Yield) 216.65 0.58 0.0027 0.58
WFI (Yield) 511.01 2.96 0.0058 2.96

corn(Revenue) 294.46 4.43 0.0152 4.43
soybean(Revenue) 216.56 1.26 0.0059 1.26
WFI(Revenue) 511.01 3.63 0.0072 3.63
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Table 10: The Revenue Insurance Implied from a Gaussian-copula at 85% Coverage
Liability E(loss) Premium Rate Premium

Corn(Yield) 334.45 9.21 0.0275 9.21
Soybean(Yield) 245.53 2.71 0.011 2.71
WFI (Yield) 579.42 9.42 0.0163 9.42

corn(Revenue) 333.90 13.62 0.041 13.62
soybean(Revenue) 245.52 4.53 0.018 4.53
WFI(Revenue) 579.42 14.30 0.025 14.30

Table 11: The Revenue Insurance Implied from a t-copula at 85% Coverage

Liability Expected Loss Premium Rate Premium

Corn(Yield) 334.46 9.24 0.0276 9.24
Soybean(Yield) 245.53 2.72 0.011 2.72
WFI (Yield) 579.32 9.66 0.0167 9.66

corn(Revenue) 333.83 11.18 0.033 11.18
soybean(Revenue) 245.49 4.60 0.0187 4.60
WFI(Revenue) 579.32 12.01 0.0207 12.01

Table 12: Premium Comparison

Crop Type
Total Premium for Total Premium for

Copula Corn Soybeans Crop Specific Whole-Farm

Gaussian copula (75% ) 5.83 1.08 6.91 4.44
t copula (75% ) 4.43 1.26 5.69 3.63

Gaussian copula (85%) 13.62 4.53 18.15 14.30
t copula (85%) 11.18 4.60 15.78 12.01
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