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Impact of EPA’s Voluntary 33/50 Program on Toxic Releases 
I. INTRODUCTION 

Environmental regulations in the US have typically relied on command-and-

control approaches that focus on end-of-pipe measures instead of source reduction for 

pollution control. Since the 1990s there has been greater emphasis on voluntary programs 

to reduce releases of unregulated pollutants and on pollution prevention as the preferred 

approach for environmental protection. The emphasis on pollution prevention follows 

from the view that pollution can be viewed as an outcome of inefficient use of resources 

and that pollution prevention is a more cost effective way to protect the environment as 

compared to end-of-pipe pollution control. While not mandated by the National Pollution 

Prevention Act of 1990, adoption of pollution prevention techniques for reducing toxic 

releases has been encouraged by voluntary means and by requiring firms to report their 

activities to the Toxics Release Inventory (TRI).  

The earliest voluntary program that sought to encourage a pollution prevention 

ethic among firms was the 33/50 program initiated by the US EPA in 1991 with the aim 

of reducing aggregate releases of 17 toxic chemicals by 33% by 1993 and by 50% by 

1995, relative to their 1988 levels. However, firms had flexibility in the extent of 

reduction they achieved and in the methods they chose to reduce their releases. Observed 

data indicate that the program was successful in attracting participation from 17% of 

eligible firms that accounted for 61% of releases of 33/50 chemicals (hereafter referred to 

as 33/50 releases) in 1988. The program exceeded its goals and reduced these releases by 

55% by 1995 relative to 1988 with 72% of this reduction occurring after 1991 (EPA, 

1997). Empirical evidence on the extent to which this reduction can be attributed to 

program participation is mixed (see Khanna, 2006) and there has been no systematic 
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examination of the effectiveness of pollution prevention techniques in reducing 33/50 

releases. 

There are several reasons why the impact of the program on 33/50 releases could 

be questioned despite the observed reductions. First, two of the 17 chemicals were 

considered ozone depleting substances (ODS) and were being phased out by 1996 under 

the Montreal Protocol. Second, the 33/50 chemicals were classified as Hazardous Air 

Pollutants (HAP) in the Clean Air Act Amendments of 1990 and were expected to be 

subject to Maximum Available Control Technology standards starting in 2000. This 

could have created incentives for some firms to achieve early reductions even in the 

absence of the 33/50 program. Third, by using 1988 as the baseline for measuring 

emissions reductions the program created incentives for firms that had already achieved 

reductions prior to the 33/50 program to participate and obtain credit for those reductions. 

These firms may have initiated actions prior to program participation following negative 

publicity accompanying the public disclosure of TRI data that led to a downward trend in 

33/50 releases and was independent of their program participation decision. Fourth, the 

program sought to encourage adoption of pollution prevention, firms may have simply 

reduced 33/50 releases by increasing recycling (Gamper-Rabindran, 2006).  

The purpose of this paper is to re-assess the impact of 33/50 program on 33/50 

releases. Specifically we examine if this impact differed for ODS and the rest 15 

chemicals.  Second, we examine if such impact differed for earlier participants and late 

participants. Third, we look at the extent to which any reduction in 33/50 releases can be 

attributed to pollution prevention techniques. In undertaking these analyses we control for 

any time trend in emissions, for the effect of anticipated regulations on Hazardous Air 
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Pollutants (HAP) that include 33/50 chemicals and for the synergistic effects of other 

regulations.  

We conduct our analysis at the facility level, using facility level participation 

information and emissions data for the 1988-1995 period for 12,463 facilities from 48 

states in the U.S that were eligible to participate in the program starting in 1991 because 

they reported emitting 33/50 releases prior to 1991 to the TRI. These facilities belonged 

to 4,861 parent companies. Of these, 1033 facilities belonging to 12681 parent companies 

that committed to the 33/50 program. We apply a GMM framework suitable for dynamic 

panel data models that incorporates facility specific unobserved effects, timing of 

participation and controls for endogeneity of program participation and pollution 

prevention adoption decisions. This approach allows us to determine the program’s effect 

on the change in releases over time and to examine if the effect of program participation 

differed for late joiners as compared to early joiners.    

We find that the 33/50 program led to a reduction of 33/50 releases. Despite the 

downward trend in emission reduction for most facilities during the program period, the 

annual rate of reduction was 35% higher for participating facilities than non-participating 

ones. Phasing out of the ODS chemicals had caused large reduction in ODS releases, but 

the program’s effect was extended to the other 15 chemicals.  Among participating 

facilities, those that participated in the first year of the program i.e. 1991 had undertaken 

largest reduction throughout the program; whereas facilities that participated later did not 

significantly reduce their releases as compared to the first group and those that did not 

                                                 
1 Since some parent company names changed over time or because some facilities did not report parent 
company names in the TRI database, we are not able to match all 1294 firms in the EPA’s program 
participants list with parent companies reported to TRI. 
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participate. Furthermore, pollution prevention technology adopted for specific chemicals 

had led to reduction of releases after controlling for program participation.  

II. LITERATURE REVIEW 

Several papers have sought to explain the incentives for participation in the 33/50 

program (see review in Khanna, 2006 and Alberini and Sergerson, 2002; also Arora and 

Cason, 1995; Khanna & Damon, 1999; Vidovic and Khanna, 2007; Rivera et al., 2006). 

A few studies (Khanna and Damon, 1999; Vidovic and Khanna, 2007; Gamper-

Rabindran, 2006; Sam and Innes, forthcoming; Sam et al., 2008) have examined the 

effectiveness of the 33/50 program in reducing releases and find mixed evidence.  

Khanna and Damon (1999) find that program participation has a statistically 

significant negative effect on 33/50 releases in the chemical sector over the period of 

1989-93. Vidovic and Khanna (2007) examine the effects of the program over the period 

1991-95 for a broader set of sectors and argue that this finding vanishes if prior 

reductions in pollution achieved before the start of the program and time fixed effects are 

taken into account.  However, even after controlling for time and industry effects and 

examining a broad array of manufacturing firms, Sam and Innes (forthcoming) find that 

33/50 participation significantly reduces related emissions. Sam et al. (2008) find that 

even after controlling for other voluntary activities a firm might undertake, such as 

adoption of Total Quality Environmental Management (TQEM), program participation 

had a statistically significant negative impact on 33/50 releases. Gamper-Rabindran 

(2006) focus only on the 15 non-ozone depleting chemicals, arguing that the two ozone 

depleting 33/50 chemicals were due to be phased out anyway under the Montreal 

Protocol. She finds that the impact of the program varied by industry and media with 

some industries and media experiencing significant release reductions due to the 33/50 
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program effect, and others did not. The broad conclusion from this literature appears to 

be that, at least in some sectors, the 33/50 program led to reduction in releases.  

These studies use two-step estimation methods. A discrete choice model of 

program participation is estimated in the first step; the second step uses the probability of 

participation to estimate the impact of participation on emissions with fixed/random 

effect estimators (an exception is Gamper-Rabindran (2006) that uses cross sectional 

change of emissions before and after the program) with bootstrapping methods to obtain 

consistent standard errors (Vidovic and Khanna, 2007; Sam and Innes, forthcoming).  

However there are several draw backs related to this method. Such two-step 

estimation requires that the first-step probit model is correctly specified and correction of 

standard errors when using predicted probability as a variable (Wooldridge, 2002). 

Moreover, fixed effect estimation might still be biased if explanatory variables like 

program participation are affected by time varying factors or if they include lagged 

dependent variables and the dependent variable has an autoregressive structure. The latter 

is likely since emissions can be expected to be path dependent with adjustments in the 

production process occurring gradually over time.  

With the exception of Gamper-Rabindran (2006) all studies have examined the 

impact of participation using firm level data that considers a firm as a participant if even 

one facility of that firm participates in the program. Due to lack of participation data at 

the facility level, even Gamper-Rabindran assumes that all facilities belonging to a 

participating parent company participated in the program. Additionally, these studies 

have modeled participation decisions using Probit models with cross sectional 

information about participation in the beginning of the program, i.e. year 1991/1992 

(Gamper-Rabindran, 2006; Sam and Innes, forthcoming). They therefore do not 
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incorporate differences in the timing of participation by firms (EPA, 1997; EPA, 1992; 

EPA, 1991).  Exceptions are Vidovic and Khanna (2007) who include information on 

program participation in each year of the program with random effect panel probit model 

and Khanna and Damon (1999) who estimate a cross sectional probit model for the 

period from 1991 to 1993. None of these papers however, distinguish between firms 

based on the timing of their participation decision. These studies also consider the effects 

of participation in a given year on emissions in that year with the exception of Sam and 

Innes (forthcoming) who examine the impact of the 33/50 program during the program 

years (1992-1995) and after the program (1996-1998) and find significant negative 

impacts in both periods. Lastly, these studies have typically focused on impact of 

participation only and disregarded other voluntary activities a firm might be undertaking 

that could also impact its 33/50 releases. Sam et al. (2008) consider the effects of both 

33/50 program and adoption of TQEM and show that 33/50 participating firms are more 

likely to adopt TQEM, which further contributes to emission reduction.  

This paper contributes to the literature in the following ways. First, we 

incorporate the dynamics process in our model and apply instrumental variables to 

correct for endogenous problems associated with self-selection and lagged dependent 

variable. Second, we study the impact of the 33/50 program using data on participation at 

the facility level. This allows for more accurate assessment of program impact since we 

do not incorrectly attribute participation to all facilities in a firm in which only one 

facility has participated. In our sample, the 1268 participating parent companies had a 

total 5832 facilities of which only 1033 facilities participated. Earlier papers have thus 

overestimated the number of participants by more than five fold.  Third, we examine how 

timing of participation affects outcomes and to which extend pollution prevention 
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techniques have impacted on releases. Last, we compare the program’s impacts on the 

two ozone deleting chemicals and the other 15 chemicals, to isolate the effectiveness of 

the program by controlling for the effect of other overlapping regulatory pressures.  

 

III. MODEL FRAMEWORK & HYPOTHESIS 

Conceptual Framework 
We assume that a rational facility chooses its levels of pollution generation, the 

method of pollution reduction at each point in time and whether or not to participate in a 

voluntary program such as the 33/50 program to maximize its discounted net benefits 

over a specified time horizon. Since participating in the 33/50 program, adopting 

pollution reduction methods and reducing toxic releases are non-mandatory activities, 

incentives for any of these voluntary initiatives can arise due to regulatory pressure, the 

desire to preempt more stringent regulations, and desire to signal good public image or 

prevent adverse publicity. The commitment to reduce 33/50 releases is not binding, but 

the amount of releases by each facility and the count of pollution prevention techniques 

adopted for each chemical is publicly disclosed, regulators, environmental groups etc can 

observe the extent to which a firm is being environmentally responsible, making good 

faith efforts to improve environmental performance and being successful at doing so. 

 Specifically, the hypotheses we seek to test are as follow: 

Hypothesis 1: Participation in the 33/50 program led to a reduction in 33/50 releases. 
 

The first hypothesis we test is whether 33/50 program participation induced a 

reduction in 33/50 releases that was larger than that in the absence of the program.  The 

extent to which such reductions can be attributed to the program is not as straightforward 

to determine. Some facilities might be making changes to their operations which would 

reduce their releases even in the absence of program participation. They might have 
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joined the program simply to get credit for reductions they were going to be making 

anyway. Other participants might simply join the program to get some reputational 

benefits without making any effort to make the changes needed to improve environmental 

performance.  

Hypothesis 1a: the 33/50 program had a more significant impact on ODS than non -ODS 

chemicals 

 Facilities that participated in the program were those emitting more ODS and 

needed to phase them out anyway. As a result of the mandatory phasing out, at the 

facility level, we observe that the number of facilities that emitted ODS releases also 

reduced. In 1988, 30% facilities in TRI that were eligible for the program had emitted 

ODS, while in 1995, it reduced to 7%.  Similarly, the percentage of ODS emitting 

facilities dropped from 30% to 4% among participating facilities.  

Although the aggregated releases and transfers from the two ODS chemicals was 

about 14% in total 33/50 releases in 1988 (EPA,1999), it experienced the highest 

percentage reduction during the program, which was 86% reduction; while the other 

33/50 program chemicals reduced by 40%. Since program only cared about aggregate 

reductions, these facilities could claim to reduce 33/50 releases while focusing only on 

reducing ODS.  If this is the case, we expect to see stronger impact of the program on 

ODS chemicals than the other program chemicals. Such reduction in fact would be due to 

regulations rather than voluntary efforts. However 33/50 program might indeed have 

induced participants to further reduce emissions from other toxic chemicals beyond the 

two ODS chemicals. The program’s effect on non-ODS chemicals could be larger than 

ODS chemicals because participants would have reduced more non-ODS releases than 

non-participants; while all facilities were going to reduce ODS anyway.   
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Hypothesis 1b: Early joiners in the 33/50 program achieved bigger reductions in 33/50 
releases than late joiners.    
 

We expect that incentives to reduce these releases might have differed by the 

timing of participation. The difference in time of participation is due to the following 

reasons: EPA sent invitation letters in five rounds in January 1991, July 1991, July 1992, 

Jan 1993 and 1994, to the top “600 firms” and other eligible firms. Companies can decide 

when to participate so some of them waited for a year or two to join the program after 

invitation. As the first invitation group includes the “top 600 firms”, their emission level 

in 1988 was the highest. They had incentives to participate early in order to improve their 

reputation, show good faith efforts to be environmentally responsible to the EPA and 

mitigate adverse publicity from public disclosure of TRI since 1989. Compared to the 

second invitation group and the rest of the facilities, the first invitation group has reduced 

its emission by 66% (EPA, 1999).  

Firms who had already begun to make reductions in emissions before the program 

was established (during 1988 to 1990) might also participate in the program early, to get 

credit for their earlier efforts. On the other hand, firms that were smaller polluters and not 

among the earlier invitees by the EPA may have joined later and made smaller reductions 

in pollution. They could benefit from the reputation that the 33/50 program had already 

achieved as being a successful program without making significant reductions and free-

riding on the reductions achieved by earlier participants.  

 
Hypothesis 2: Adoption of pollution prevention technologies reduced 33/50 releases  
 

The 33/50 program emphasized pollution prevention at source as the preferred 

method for reducing 33/50 releases. It provided technical assistance and established a 

pollution prevention clearing house to provide information about pollution prevention 
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methods to firms. Information about these techniques was available to participants and 

non-participants. A facility can choose to reduce its releases using several different 

methods, prevention at source, end-of pipe abatement, reduction in production, and 

recycling, transfer to off-site disposal. A rational firm would pick the appropriate mix of 

methods for each chemical so as to maximize net benefits. The effectiveness of that 

method in improving environmental performance of the firm will depend on the choice of 

the method and its implementation. Since adoption of pollution prevention is also 

publicly disclosed as part of the TRI, facilities have incentives to adopt these for similar 

reasons as for participating in voluntary programs. The effectiveness of pollution 

prevention in reducing releases will depend on whether they are adopted simply to 

convey a visible signal of an environmentally responsible firm among external 

stakeholders without making meaningful changes that reduce pollution or if they are 

adopted to improve process efficiency, reduce waste and phase out toxic chemicals. By 

including the count of pollution prevention techniques adopted we examine the extent to 

which emissions were reduced using this particular method.  

 
Hypothesis 3: A facility’s current emissions of 33/50 releases will be influenced by its 
lagged emissions of 33/50 releases 
 

Emissions are affected by managerial, technical and organizational features of a 

facility’s operations which may change slowly over time and not always observable. The 

levels of pollution dependent on observable facility’s production technology, level of 

output produced, input and output prices; as emissions are outputs of production.  Since 

outputs are usually highly correlated with output prices. When output prices are likely to 

be autoregressive, current emissions levels are more likely to be dependent on previous 

emissions. Furthermore, emissions, program participation and pollution prevention 
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methods applied can all be influenced by unobserved heterogeneity which can be 

partially captured by lagged emissions. Therefore the emission process is path dependent.  

Facilities with higher emissions previously are more likely to take voluntary initiatives to 

reduce future releases; although, their releases are still likely to be relatively higher in the 

future.  

 
 

Empirical Framework 

We hypothesize that the ith facility’s pollution level at time t, Yit, is determined by 

a vector of observed of exogenous facility-specific variables, itX (such as a facility’s 

production technology, level of output produced, input and output prices), and it’s 

program participation decision, itP , its extent of adoption of pollution prevention 

technologies , itT , and unobserved facility specific effects.  In addition, if 33/50 releases 

are path dependent, and follow a first-order autoregressive process, the program outcome 

model is specified as: 

 (1) 1 1 2it it it it it ity y X P T vρ β γ β−= + + + +    , t=1991,..., 1995     

Where itv  is the error term, which can be composed of a facility-specific time-

invariant unobservable and an idiosyncratic error, i.e. it i itv uη= + . Program participation 

and P2 adoption could be correlated with unobserved error term itv .  

Our main interest is to correctly and consistently estimate coefficientsγ  and 2β  , 

which represents the partial effect of 33/50 program and P2, after controlling for other 

factors.  There are several problems while estimating equation (1) using Pooled OLS. 

First the participation decision and P2 is likely to be correlated with the error term, either 

through ,iη or through itu , or both. For example, Facilities with a greener manager are 
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more likely to participate in the 33/50 program and have lower emissions even in the 

absence of participation. Besides parent companies might have assigned a particular 

facility to participate in the program based on characteristics that we can not observe.  A 

fixed effect model that controls for unobserved factors correlated with the explanatory 

variables could be used to estimate equation (1) and would control for endogeneity of 

participation and P2 if these variables are primarily determined by time invariant facility 

specific factors. Alternatively, we estimate a model by first differencing time varying 

variables in equation (1) as follows and estimating equation (2).  

   (2) 1 1 2it it it it it ity y X P T uρ β γ β−Δ = Δ + Δ + + + Δ  ,   t=1991,..., 1995   

where 1it it ity y y −Δ = − ,  1 1 2it it ity y y− − −Δ = − 1it it itX X X −Δ = − , 1it it itu u u −Δ = −  , and the 

unobserved individual effect drops out. The binary participation variable here is defined 

as 1isP =  for t s≥ if facility started to join the program in year s , and  0isP =  otherwise; 

and it is not first differenced in equation (2).  The P2 variable is reported as the new P2 

adopted each year by facility; it is already in first differenced form. The estimated 

coefficient γ  shows the program’s effect on the annual change in toxic releases between 

participants and non-participants. When ity is taken log form, γ  is the difference in rate 

of release reduction between participants and non-participants.  

In order to differentiate the program effect among early joiners and late joiners, 

we break the participation variable into two binary variables: ,1991 1itP =  for 1991t ≥  if a 

facility participated in the program in the first year and ,1991 0itP =  otherwise; ,1992itP =1 for 

1992t ≥ if a facility participated in the program in either 1992, 1993 or 1994, and 

,1992itP =0 otherwise. The coefficient of the first binary participation variable indicates the 

differences in change of releases between first joiners and non-participants and late 
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joiners. The coefficient of the second binary variable indicates the different program’s 

impact between late joiners and first joiners and non-participants on change of releases.   

Although first differencing removes the individual time invariant unobserved 

effect iη ; two potential problems remain. First, when ( ) 0it itE P uΔ ≠  and ( ) 0it itE T uΔ ≠  

(possible due to unobserved heterogeneity), estimation of the coefficients of (2) is biased. 

To avoid this problem, we could use valid instruments for program participation and P2 

in equation (2). These instruments could be a predicted value obtained from a first stage 

model or variables that can be hypothesized to influence participation and are 

uncorrelated with emissions. 

The second problem is associated with the dynamic feature of our model. In the 

presence of a lagged dependent variable as an explanatory variable, the fixed effects 

method will lead to biased results (Anderson and Hsiao, 1981) because the first 

differenced 1ity −Δ is correlated with ituΔ in equation (2). One can use 2SLS by Anderson 

and Hsiao (1981) to estimate equation (2), where 2ity − is used as instrument, because 

2( ) 0it itE y u− Δ =  but 2ity − is correlated with ityΔ . Additional instruments are available 

when the panel has more than 3 period observations. Thus, 2 1( ,.... )it iy y−   can be used as 

instruments in the first-differenced equation for period t=T. However, 2SLS is not 

asymptotically efficient, even if the complete set of instruments is used for each equation 

at each time (Arellano and Bond, 1991).  

Instead, we use the GMM framework proposed by Arellano and Bond (1991) 

where instrument matrix iZ is used for each individual. The GMM conditions are such 

that ( ' ) 0i iE Z uΔ = , for each individual i; where 3 4( , ,.... ) 'i i i iTu u u uΔ = Δ Δ Δ . The GMM 

estimator is obtained by minimizing the criterion 
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function
1 1

1 1( ' ) ( ' )
N N

N i i N i i
i i

J u Z W Z u
N N= =

= Δ Δ∑ ∑ , where NW  is the weighting matrix. Using 

identity matrix and the weighting matrix yields one-step GMM estimator. The efficient 

GMM estimator is such that
1

' '

1

1 ( )
N

N i i i i
i

W Z U U Z
N

−

=

⎡ ⎤= Δ Δ⎢ ⎥⎣ ⎦
∑

) )
, where iUΔ

)
 are consistent 

estimates of the residuals obtained from a consistent estimation on the first differenced 

equations. We explain how the instruments for GMM estimation are constructed in the 

next section. 

The validity of the entire set of over identifying conditions can be tested by 

Hansen’s J statistic, when the model is over identified, i.e. the number of instruments 

excluded from the equation is larger than the number of included endogenous variables 

(Baum, Schaffer and Stillman, 2003; 2007). The J statistic measures the value of GMM 

criterion function at the efficient GMM estimator under the null. It follows a chi-squared 

distribution with degrees of freedom equal to the number of over identifying restrictions 

under the null. Rejection of the null hypothesis implies that instruments are not satisfying 

the orthogonality conditions, possibly because they are not truly exogenous or because 

the are incorrectly excluded from the regression. In addition, we can use a GMM distance 

test (C test) to test a subset of the original set of orthogonality conditions. The C-statistic 

is calculated as the “difference between two J statistics: that for the restricted and fully 

efficient regression using the entire set of overidentifying restrictions, versus that for  the 

unrestricted, inefficient but consistent regression using a smaller set of restrictions , in 

which a specified set of instruments are removed from the set” (Baum, et al. 2003,p18). 

Under the null that the suspect orthogonal conditions are satisfied, it follows a chi-

squared distribution with degree of freedom equals the number of suspected IVs. It can 

be used to test if an instrument is exogenous; or if a endogenous regressor can be treated 
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as exogenous. We use both tests to evaluate and select proper instruments to estimate 

equation (2) in the next section. 

Besides the orthogonality conditions, a weak identification problem may be 

present, even when the parameters are identified. If instruments are only weakly 

correlated with the endogenous regressors, biased estimation will arise. Staiger and Stock 

(1997) suggested that the F-test statistics on the joint significance of all the excluded IVs 

in the first stage regression should be larger than 10 as a “rule of thumb”. In our case, 

there will be multiple endogenous variables (program participation, P2 adoption and 

lagged dependent variable); therefore, we can not make a judgment on the instruments 

based on any one of the first-stage F statistics. Stock and Yogo (2005) have tabulated the 

critical values based on the F-statistic of Cragg & Donald (1993) in finite sample, which 

includes cases up to three endogenous variables and 100 excluded instruments under i.i.d 

assumption. The null hypothesis is that the estimator is weakly identified and is subject to 

bias that is unacceptably large. Cragg-Donald F statistic is not robust to non-i.i.d error. 

Instead Kleibergen-Paap rk Wald F statistic is robust to herterskedasticity, 

autocorrelation and clustering. However there have not been any studies testing weak 

instruments in the presence of non-i.i.d errors. In that case, one can still refer to the 

critical values by Stock and Yogo (2005) or refer to the “rule of thumb” with caution 

(Baum, Schaffer and Stillman, 2007).  

 
Construction of Explanatory Variables and Instruments  
 

The 33/50 releases include onsite releases to air, water, land, etc. and transfers to 

treatment and disposals. There are three endogenous variables: program participation, 

lagged releases, and P2 adoptions. The valid instruments need to be correlated with 

participation, releases, and P2 adoption but not with change of release. The exogenous 
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variables included in itX however influence both the dependent variables and endogenous 

variables.  

All earlier studies have used the first invitation group as one of the excluded IVs 

in the first step probit modeling. Start from March 1991, July 1991, July 1992, Jan 1993 

and 1994, EPA sent out invitation letters in five groups to the top “600 firms” and other 

eligible firms.  The first invitation group represents the big polluters, and 64% of the 

companies in the first invitation group had participated in the program. At the facility 

level, however, we find that using the first invitation solely as IV cannot reject weak 

identification test. Although only 15% of the parent companies in the second group had 

participated in the program, at the facility level however, 69% of the 33/50 facilities 

belong to the second invitation group. Therefore, we use the dummy variable indicating 

those parent companies who were invited by EPA in the first and second round in early 

and June 1991 as one of the IVs in the instrument set of the GMM condition. 

Earlier studies also have used the prior reduction of 33/50 releases to program 

participation, which is defined as the change of 33/50 releases from 1988 to 1990, as one 

of the excluded IVS from their first-step probit model (Khanna and Damon, 1999; 

Gamper, 2006; Sam and Innes, forthcoming).  Vidovic and Khanna (2007) include this 

variable as one of the regressors in their second step fixed effect model on 33/50 releases 

and find that after taking into account of this reduction, 33/50 program’s effect is not 

significant anymore. In our case, once it is included as one of the excluded IVs in the 

GMM instrument set described above, both of the test statistics (J-statistic=58.159; C-



 18

statistic=55.803) are significant at 1%, which implies that prior reduction of 33/50 

releases is endogenous to equation (2)2 .  

Facilities were required to report the number of additional P2 activities adopted 

by each chemical annually. Such reporting became formalized only after 1991 and there 

were very few facilities reporting P2 before 1991.  P2 is reported as the count of new 

practices adopted that year; thus it is already in the form of a first difference. While 

estimating equation (2) we treat lagged P2 as predetermined, and can be used as one of 

the instruments together with other instruments specified above in the GMM framework3.   

To estimate equation (2) consistently with a lagged dependent variable, Arellano 

and Bond (1991) uses the value of the dependent variable lagged two or more years as an 

instrument. Since the program started in 1991 and lasted until 1995, releases between 

1991 and 1995 could be potentially endogenous to program participation. For example, 

releases in 1993 might not be orthogonal to change in releases in 1995 if facilities 

participated in the program before 1993. We therefore use emissions in 1988 and in 1989 

as instruments to avoid this problem.  

After checking for the test statistics of orthogonality conditions and weak 

identifications, we choose the following instrument set: 

' '
1 2 ,1991 ,1990' ' 2 2 'i i i i iZ y y P P mail⎡ ⎤= ⎣ ⎦ , where each column corresponds to a vector of 

                                                 
2 Appendix Table 1 show the estimated results from Probit model on program’s participation. Prior 
reduction of 33/50 release and the invitation groups (first and second groups) are significantly influencing 
program’s participation. However, prior reduction of 33/50 release cannot be used as excluded IVs because 
it is endogenous to 33/50 release.  Including it as a regressor in the equation (2) directly does not change 
the conclusion of our model.  
 
3 We assume the P2 reported in 1991 is not correlated with change of releases in 1991 but is impacting on 
change of releases in 1992. We have also tried to use 2Tit− as instruments for each period from 1992-1995, 
but they are shown not to be orthogonal according to J statistics.  
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instruments4; and each row corresponds to the first differenced dependent observation for 

periods t=1991,1992, ..1995. The first period starts in 1988; 1iy  and 2iy represent the 

33/50 releases in 1988 and 1989; “mail” represents a dummy variable indicating facilities 

belonging to the first and second invitation group.  

We include several explanatory variables to control for the effects of regulatory 

pressures on releases. These include the numbers of inspections for checking compliance 

with air pollution regulations and the percentage of releases of HAP5 chemicals in total 

TRI releases (HAP-TRI ratio). As HAP chemicals were expected to be regulated from 

2000 onwards, the higher the ratio is, the more likely that the facility would join the 

33/50 program and reduce emission to reduce compliance costs in the future. The 

dependent variable in (2) is first difference of the natural log of emissions.  Both 

HAP/TRI and AFS inspections are lagged by one year in equation (2) then first 

differenced6. We also include the attainment status of the county, reported by EPA since 

19927 for six “criteria pollutants”. Areas where air pollution levels consistently stay 

below ambient standards are designated "attainment”. Facilities that are located in a more 

polluted county may be more likely to reduce releases or participate in the program if 

they anticipated more stringent regulatory pressures. 

                                                 
4 The instruments are generated this way: all previous lags of y from 1988 up to year t-2 are generated for 
each year t (1991-1995). We have un-balanced data set, not all observations of a particular year have 
observations in 1988 or 1989. For example, a facility that had 33/50 releases in 1993 did not appear in 
1989’s TRI, then the missing value in 1989 is replaced with zero in order to be used in the instrument 
matrix.  
5 189 toxic chemicals are identified by the congress as Hazard Air Pollutant Chemicals. The 17 33/50 
chemicals are among them. Emissions of these 188 chemicals by air will be subject to the first major 
maximum control technology standards by year 2000.  
6 Lagged HAP/TRI ratio and AFS inspection can be treated as exogenous given the instrument sets we 
specified above6. 
7 http://nsdi.epa.gov/oar/oaqps/greenbk/anay.html, we assumed that attainment in 1991 was the same as 
1992, due to lack of data in 1991. 
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Scores8 on the environmental-friendly actions made by the state legislature from 

1991 to 1995 (LCV scores) and per capital membership of Sierra club by state from 1991 

to 1995 are also included (Sam and Innes, forthcoming), to control for state specific 

effect. If facilities locate in a state with higher per capital membership and LCV score, it 

will have negative impact on the releases. The industry specific effect is controlled by 

including ten industry dummies, classified by facility’s primary 4-digit SIC code. All of 

these control variables are strictly exogenous and since they do not vary much over time, 

all of them are kept in levels in equation (2).  

 

IV.DATA DESCRIPTION 

TRI data set contains facility specific information on 33/50 releases, P2 adoptions, 

HAP releases and all TRI chemical releases, SIC codes and locations.  Participation 

status of facility is merged with TRI data set by the unique TRI-identifier for each 

facility9.  Using the unique TRI identifier, this data set is merged with EPA’s AFS data 

set, where numbers of violations, penalties and inspections for compliance with 

mandatory regulations at the individual facility level are recorded.  The reported location 

of facilities is used to merge the above data with a county’s attainment status (EPA,10 

2008), state level scores on environmental legislations11 (League of Conversation Voters, 

2007), and Sierra club membership (Sam and Innes, forthcoming),  

We compile this data to create an unbalanced panel data for 33/50 emissions, 

adoption of P2 techniques and program participation for 16618 (93344 observations) 

                                                 
8 League of Conversation Voters calculate these scores according to votes on environmental and energy 
related bills, by states. http://www.lcv.org/ 
 
9 Facility’s participation status is obtained from Catherine Miller, Hampshire Research, 
www.hampshire.org 
10 http://nsdi.epa.gov/oar/oaqps/greenbk/anay.html 
11 http://www.lcv.org/scorecard/ 
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eligible12 facilities from 1988 to 1995 in 48 U.S states. Among those, 11907 facilities can 

be identified as belonging to 4861 parent companies. According to EPA, 1294 companies 

committed to 33/50 program (hereafter 33/50 companies). We are able to identify 1268 

parent companies by their names in our dataset. 328 firms among the 600 invitees that 

were first contacted by EPA in march 1991 confirmed their participation; 819 firms 

among 5400 invitees that were contacted in July 1991 participated in the program (EPA, 

1999).   Our data set is able to identify 327 out of 328 parent companies in the first group; 

and 810 out of 819 in the second group.  For the rest of the invitation groups, we identify 

132 out of 140 participating companies  

The 1268 participating parent companies had 5852 facilities but only 1033 

facilities participated in the 33/50 program (hereafter 33/50 facilities). The participation 

percentage at the facility level was therefore as low as 8.7 %. An assessment of the 

program based on the assumption that all facilities belonging to a participating parent 

company is therefore inaccurate.  

Our data show that total 33/50 releases dropped by 57.6% from 1988 to 1995 and 

by 29.5% from 1988-1991 (this is also the trend reported in EPA’s final report (EPA, 

1999). The reduction of 33/50 releases was not confined to facilities in 33/50 

participating companies. Nor did such decrease only happen for ozone depleting 

chemicals. Total releases of ODS reduced by 36% for 33/50 facilities, although 

participating facilities had larger average releases in the base year than non-participating 

facilities, by the end of the program, the average ODS releases had fallen by 17 thousand 

pounds for 33/50 facilities (Figure 1a).  

                                                 
12 If a facility had positive emissions of 33/50 chemicals in 1988, 1989 or 1990, we consider it as eligible of 
participating in 33/50 program. 
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 Similarly, releases for the other 15 chemicals decreased over time for both 

participating and non-participating facilities (Figure 1b).  Although facilities from 33/50 

companies had almost twice emission level on the average than the facilities that did not 

belong to 33/50 companies in 1988, by the end of the program, the average releases for 

the facilities from the participating firms dropped by about 50%. The average releases 

from 33/50 facilities became slightly smaller than non-participating facilities.  

V. ESTIMATION & RESULTS 

Estimation 
Although the dataset is un-balanced, the average length of period for each facility 

in the data set is 3.89 years; 77% observations have remained in the dataset for at least 3 

years. For the modeling period of 1991- 1995, there are 13206 eligible facilities (520702 

observations). After taking first differencing and instrumenting, the size of the sample is 

reduced to 12463 facilities (48529 observations) and 860 33/50 facilities are left, as 

facilities that did not have complete time series dimension are dropped. Table 1 shows 

the sample descriptive statistics of the main variables in regression and the distribution of 

facilities across various industries in the regression; in which 82% facilities in chemical 

and 76% in fabricated metal industry participated in 33/50 program.  

Results  
 

Feasible efficient GMM estimates that are robust to heteroskedasticity and 

clustering are reported in Table 2-Table 513. The last two rows of each table report 

Hansen’s J statistics indicating the validity of the entire set of over-identifying conditions 

and Kleibergen-Paap rk statistic 14  (robust to heteroskedasticity, autocorrelation and 

clustering)  which will be compared with Stock-Yogo critical values (derived for Cragg-

Donald F-statistic under i.i.d. errors) for  to determine if parameters are only weakly 
                                                 
13 Estimations are obtained from Stata’s User Written Command, ivreg2, by Baum et.al. 2007.  
14 It is reported automatically in stata when feasible efficient 2-step GMM estimates are called. 
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identified. Since, those critical values15 are not tabulated for rk statistic; we apply those 

critical values with caution in the presence of heteroskedasticity and auto-correlated 

errors (from first differencing). 

Table 2 shows the estimated results for equation (2), where the impact of program 

participation on 33/50 releases are measured using GMM. The first column only includes 

facility level variables and time dummies. Including control variables in the second 

column yields similar results as the first one: the program’s effect on the change of 33/50 

release is negative and significant at 1%16. The coefficient of the 33/50 participation 

variable is -0.35 in column 2. Since the 33/50 releases are included in natural log form, 

the coefficient on program participation indicates that with program participation the 

reduction rate of 33/50 releases is 35% higher for participating facilities than non-

participating facilities for each year the facility stayed in the program, after controlling 

for time and industry effect. For example, a representative facility emitted 109 thousand 

pounds (mean releases of all participating facilities) in 1990. The regression result 

implies that if this facility started the program in the first year (1991), by 1995, it would 

reduce its emission by 87%; and the emission would drop to 19 thousand pounds.  If this 

facility followed the same reduction as non-participants, it would reduce its release to 39 

thousand pounds in 1995, which is around 36% less than what it achieved as a participant.  

The last column of Table 2 provides the results obtained by assuming that if a 

parent company participated in the program, all its subsidiary facilities also participated 

                                                 
15 There are two types of Stock-Yogo critical values generated: one is for the maximal IV relative bias 
(ratio of IV estimator bias vs. bias of OLS) and the other is for the maximal IV size (under the weak IV, 
Wald test on the coefficient of the endogenous regressor rejects too often; the size test refers to a rejection 
rate 10%, 20% etc that one is willing to tolerate if the true rejection rate is 5%). 
 
16 In the appendix we show the estimation results of determinants of program participation, fixed effect 
estimation of the release model and alternative two-step estimation. The conclusion that program 
participation led to reduction of 33/50 releases does not change. 
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in the program in that year. With the same instrument set, the program effect is attenuated 

from -35% to around -6%. This would imply that the amount of reduction achieved by 

participating facilities that started the program in the first year was only 26% higher 

( 0.06*51 e−− ) than by non-participants.   

All three models in Table 2 pass the overidentification test since the J statistics are 

not significant at 5%. The critical values for maximum relative bias at 5% and maximum 

size at 10% are all smaller than the rk statistics reported in the last row, which validates 

the null that the these IVs do not suffer from weak identification problem. 

Next we are testing if the reduction has come from ODS chemicals only. The first 

two columns in Table 3 model the change of releases of 15 non-ODS chemicals; while 

the third and forth columns model the change in releases of two ODS chemicals, using an 

instrument set constructed in a similar manner to that in Table 2. The first model only 

includes facility level variables that failed to pass the overidentification test (J statistic is 

significant at 5%). With control variables however, model (2) satisfies tests for 

overidentification and weak identification. It shows that the annual reduction rate of 15 

chemicals releases is 30% higher for the 33/50 facilities than non-participating ones 

(coefficient for program participation is -0.3). Thus the program has led to reduction to 

chemicals not only ozone depleting chemicals but also the other 15 chemicals (Table 3, 

row 2). These 15 chemicals are included among the HAP chemicals. Facilities with a 

higher HAP/TRI ratio in the past achieved greater reduction in 33/50 releases in the next 

period (Table 3, row 3).  

We hypothesize that that the program had a bigger impact on ODS than the rest of 

the 15 chemicals. However the results indicate the opposite (coefficients for program 

participation are -0.3 for 15 chemicals and -0.287 for ODS). This implies that participants 
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did not simply reduce ODS chemicals but all 33/50 chemicals. In fact the program’s 

effect was smaller for the ODS because non-participants were reducing their ODS too 

due to the phase out mandated by the Montreal Protocol. 

The third hypothesis we are testing is whether participants in the beginning of the 

program have led larger reduction than later ones. We generate two binary variable for 

program participation: 91 , 1,i tP = for 1991t >= , if facilities joined the program in 1991; 

otherwise  91 , 0i tP =  . 91 , 1b itP =  for t S>= , S is any year after 1991 that the facilities 

joined the program; otherwise 91 , 0b itP = .  Unlike the coefficients shown in earlier tables 

that indicate the program’s impact on the annual change of releases, the coefficient of the 

first binary variable implies the impact of program participation on the change of 33/50 

release for facilities that joined the program in 1991 comparing to facilities that joined 

later or did not join at all; while the second coefficient indicate the program effect for 

later participants in comparison to facilities that participated earlier or did not participate 

at all.  

Table 4 shows that facilities that joined the program in 1991 had undertaken 

larger reduction throughout the program, as compared to later participants and non-

participants (row 2).  The annual rate of reduction for first group of participants is 88% 

higher than other facilities. By the end of the program, those facilities reduced by 100% 

more releases than the other facilities. As facilities that participated in the first year 

belong to the top 600 firms, those facilities were more likely to be larger polluters or 

under higher pressure to reduce emissions. On the other hand, facilities that participated 

later during the program were either more likely to be smaller polluters. Or some of them 

had already undertaken reduction before they were invited. The same pattern is seen for 

both ODS chemicals and the other 15 chemicals (column 2 and 3) where program 
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participation in 1991 had led to 77% more reduction for 15 chemicals and 70% more for 

ODS chemicals. All three models in Table 4 have insignificant J statistics at 5% and quite 

high rk statistics for weak identification test (although the critical values are not 

generated for 4 endogenous variables estimated in this model, the large rk statistics are 

somewhat comforting) . 

The last hypothesis we are interested in is whether pollution prevention activities 

by program participants and non-participants led to further reduction of 33/50 releases 

after controlling for program participation effect. This analysis only covers year 1992 to 

1995 because reporting of P2 was not required until 1991. We undertake the analysis for 

all 33/50 releases (Table 5, Column 1), the 15 non-ODS chemicals (Column 2) and two 

ODS chemicals (Column 3). In column 2 and 3, P2 activities are separated by two groups 

of chemicals accordingly (15 chemicals and 2 ODS chemicals).  We find that in addition 

to program participation, P2 adoption contributed to reduction of 33/50 releases for ODS 

and non-ODS chemicals. The results show that each additional P2 activity adopted for the 

15 non-ODS chemicals, change of releases were reduced by 5.6%. For five years, one 

extra P2 adopted would reduce 25% emissions. The P2 adopted for ODS chemicals had a 

much stronger impact on releases (-100%), which implies that the phasing out the ODS 

chemicals was achieved through reduction at the source (replacing chemicals, 

modification of production process, etc). However, results for model (3) in this table 

should be taken with grain of salt. As more facilities stopped emitting ODS over time, 

our instruments for endogenous P2 adoption of ODS chemicals, program participation 

and lagged ODS releases seem to be weak. The weak identification test is significant at 

10% (last row, column 3).  
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Conclusion 

Previous studies on the effects of 33/50 program have found mixed evidence of 

program impact. This study analyze emission, P2 adoption and program participation at 

the facility level and recognizes the path dependence in emission production and takes it 

into account while modeling change of release. We also examine the impact of the 

program separately for two ODS under mandatory phase out and the rest of 15 chemicals 

that were expected to be regulated in 2000.  In addition, introducing two participation 

variables in the model allows us to draw contrasts between early participants and late 

joiners in terms of program’s impact.   

Our results show that 33/50 program led participating facilities to reduce more 

releases than non-participating facilities.  Regulatory pressure to comply with Montreal 

protocol motivated firms to reduce ODS emissions. Nevertheless, the program also led 

reduction in the other 15 chemicals that are target of HAP pollutants control. In fact the 

effect is slightly larger for the 15 chemicals than two ODS. At the time of the 33/50 

program, those pollutants were not directly subject to emission regulations, facilities 

might have anticipated that more stringent regulations such as Maximum Available 

Control Technology would take into place by 2000. These standards were to be based on 

emissions levels already being achieved by the best-performing similar facilities. By 

participating in the 33/50 program and reducing releases, facilities could avoid future 

compliances costs and establish themselves as environmental leaders in the industry. 

The effect of the program varied across time possibly because firms committed to 

the program with different agendas. We find facilities that participated in the first year of 

the program had the most reduction; while facilities that joined later did not significantly 

reduce their releases compared to non-participants and the first participants. Facilities that 
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were larger polluters were more likely to participate early in the program and make real 

efforts to improve environmental performance, gain goodwill from regulators and 

improve public adversity associated with disclosure of TRI.  

33/50 program had sought to encourage facilities to reduce emissions at source. 

By including the count of new P2 activities in our models, we find that pollution 

prevention technologies had significant negative impact on releases of ODS and the rest 

15 chemicals.  Specifically, ODS chemicals had the larger reduction due to P2 adopted.  

In conclusion, this paper provides more accurate assessment on the effectives of 

33/50 program by using facility level participation information. Our approach enables us 

to control for endogeneity associated with program participation, P2 adoption, and 

dynamics of emission production. The results show that the program and P2 adoption had 

caused further reductions in releases for both ozone depleting chemicals and other 15 

chemicals. We also discover that the program’s effect varied by time of participation i.e. 

the first groups of participants significantly reduced their releases than other facilities.  
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Tables and Figures 
 
Table 1 Descriptive Statistics (1991-1995) 

  All Facilities 33/50 facilities Non-33/50 
facilities  

Facility level variables  Mean Mean Mean 
33/50 releases 
(1000 pounds)  

70.68 
(260.79) 

84.68 
(244.85) 

69.64 
(261.91) 

ODS releases 
(1000 pounds)  

7.39 
(42.04) 

14.58 
(80.79) 

6.86 
(37.51) 

Non-ODS releases 
(1000 pounds)  

63.28 
(255.54) 

70.10 
(231.60) 

62.78 
(257.24) 

HAP/TRI ratio  
76.95 

(31.24) 
77.71 

(30.50) 
76.89 

(31.30) 
Number of Inspections  
(EPA AFS)  

0.37 
(1.04) 

0.43 
(1.24) 

0.36 
(1.02) 

Number of P2 adopted  
1.23 

(2.52) 
1.84 

(3.09) 
1.19 

(2.47) 
 
Control variables      

County  
non-attainment status  

0.57 
(0.98) 

0.65 
(1.01) 

0.57 
(0.98) 

State per capita sierra 
membership(log)  

9.32 
(1.12) 

9.44 
(1.02) 

9.31 
(1.13) 

State LCV scores  
99.75 

(39.36) 
104.42 
(36.10) 

99.40 
(39.57) 

     
Number of facilities 12463 860 11603 
Total observations  48529 3379 45150 
 

Industry Dummies   
 Percentage in total obs. Percentage in 

33/50 facilities 

Percentage in 
non 33/50 
facilities 

SIC 26: Paper   3.58 14.42 3.51 
SIC 28: Chemical  21.42 82.44 21.11 
SIC 29: Petroleum  2.65 2.21 2.79 
SIC 30: Rubber  8.86 26.05 8.92 
SIC 33: Primary metal  13.28 44.42 13.25 
SIC 34: Fabricated metal  21.43 75.58 21.29 
SIC 35: Machinery 
 & Computer  8.59 17.21 8.84 
SIC 36:Electronics  8.40 32.91 8.27 
SIC 37:Transportation  9.66 22.33 9.86 
SIC 38: Instruments  2.13 6.16 2.15 
Standard errors in parentheses 



 32

(1) (2) (3)
COEFFICIENT 33/50 releases 33/50 releases 33/50 Releases
LD.33/50 releases 0.465*** 0.459*** 0.466***

[0.057] [0.057] [0.056]
Program Participation -0.342*** -0.351*** -0.057***

[0.087] [0.085] [0.014]
LD.HAP-TRI ratio -0.011*** -0.010*** -0.011***

[0.001] [0.001] [0.001]
LD.Number of inspections -0.004 -0.004 -0.005

[0.010] [0.010] [0.010]
State per capita sierra membership -0.005 -0.006

[0.005] [0.005]
State LCV scores 0 0

[0.000] [0.000]
County non-attainment status -0.002 -0.003

[0.006] [0.006]
Year Dummy

Year 1991 -0.224*** -0.178*** -0.162***
[0.021] [0.050] [0.049]

Year 1992 -0.082*** -0.036 -0.026
[0.019] [0.049] [0.049]

Year 1993 -0.133*** -0.089* -0.079
[0.019] [0.051] [0.050]

Year 1994 -0.059*** -0.015 -0.007
[0.020] [0.050] [0.050]

Year 1995 -0.203*** -0.160*** -0.152***
[0.023] [0.052] [0.052]

SIC Dummy
SIC 26: Paper 0.044* 0.054**

[0.024] [0.024]
SIC 28: Chemical 0.062*** 0.068***

[0.016] [0.016]
SIC 29: Petroleum 0.007 0.034

[0.030] [0.029]
SIC 30: Rubber 0.041* 0.044**

[0.021] [0.021]
SIC 33: Primary metal 0.01 0.01

[0.021] [0.021]
SIC 34: Fabricated metal 0.008 0.005

[0.019] [0.019]
SIC 35: Machinery & Computer -0.050* -0.037

[0.026] [0.025]
SIC 36:Electronics -0.099*** -0.092***

[0.024] [0.024]
SIC 37:Transportation -0.014 0.003

[0.020] [0.020]
SIC 38: Instruments -0.108** -0.093**

[0.044] [0.043]
Observations 48529 48529 48529
R-squared -0.349 -0.342 -0.348
Hansen J Statistic 2.092 2.045 2.205
Weak identification test 98.12 100 101.2
Robust(clustered) standard errors in brackets *** p<0.01, ** p<0.05, * p<0.1

Table 2. Program's Effect on 33/50 Releases, 1991-1995.
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(1) (2) (3) (4)
COEFFICIENT 15 releases 15 releases ODS releases ODS releases
LD.15 releases 0.629*** 0.534*** 0.892*** 0.861***

[0.078] [0.039] [0.043] [0.046]
Program Participation -0.306*** -0.300*** -0.251** -0.287***

[0.101] [0.093] [0.109] [0.103]
LD.HAP-TRI ratio -0.009** -0.010*** -0.006*** -0.006***

[0.004] [0.001] [0.001] [0.001]
LD.Number of inspections 0.008 0.007 -0.012 -0.012

[0.013] [0.013] [0.024] [0.024]
State per capita sierra membership -0.007 -0.004

[0.006] [0.007]
State LCV scores 0 0

[0.000] [0.000]
non-attainment status 0.004 -0.001

[0.007] [0.007]
Year Dummy

Year 1991 -0.182*** -0.160*** -0.173*** -0.09
[0.031] [0.058] [0.024] [0.062]

Year 1992 -0.005 -0.014 -0.057*** 0.023
[0.027] [0.058] [0.021] [0.060]

Year 1993 0.117*** 0.134** -0.369*** -0.290***
[0.025] [0.060] [0.031] [0.064]

Year 1994 -0.045* -0.014 -0.054 0.014
[0.027] [0.059] [0.038] [0.068]

Year 1995 -0.210*** -0.176*** 0.239*** 0.305***
[0.028] [0.060] [0.034] [0.065]

SIC Dummy
SIC 26: Paper 0.004 0.047

[0.027] [0.033]
SIC 28: Chemical 0.009 0.025

[0.018] [0.017]
SIC 29: Petroleum -0.016 -0.117***

[0.029] [0.043]
SIC 30: Rubber 0.021 -0.082***

[0.026] [0.030]
SIC 33: Primary metal 0.019 -0.003

[0.023] [0.022]
SIC 34: Fabricated metal 0.084*** -0.092***

[0.021] [0.021]
SIC 35: Machinery & Computer 0.003 -0.058*

[0.029] [0.034]
SIC 36:Electronics -0.051* -0.096***

[0.030] [0.032]
SIC 37:Transportation -0.007 -0.102***

[0.026] [0.033]
SIC 38: Instruments 0.095** -0.231***

[0.045] [0.062]
Observations 48529 48529 48529 48529
R-squared -0.615 -0.469 -0.955 -0.893
Hansen J Statistic 5.441* 1.911 2.344 2.255
Weak identification test 40.69 173 177 151.6
Robust(clustered) standard errors in brackets *** p<0.01, ** p<0.05, * p<0.1

Table 3. Program's Effect by Groups of Chemicals, 1991-1995
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(1) (2) (3)
COEFFICIENT 33/50 releases 15 releases ODS releases
LD.33/50 releases 0.487*** 0.578*** 0.868***

[0.058] [0.048] [0.052]
Participation 1991 -0.882*** -0.770** -0.702*

[0.330] [0.366] [0.373]
Participation after 1991 0.184 0.225 0.051

[0.144] [0.162] [0.156]
LD.HAP-TRI ratio -0.011*** -0.010*** -0.006***

[0.001] [0.001] [0.001]
LD.Number of inspections -0.004 0.007 -0.012

[0.011] [0.013] [0.024]
State per capita sierra membership 0 0 -0.000**

[0.000] [0.000] [0.000]
State LCV scores 0 0 0

[0.000] [0.000] [0.000]
non-attainment status -0.001 0.002

[0.006] [0.007]
Year Dummy
Year 1991 -0.192*** -0.195*** -0.108***

[0.027] [0.032] [0.036]
Year 1992 -0.080*** -0.067** -0.003

[0.025] [0.030] [0.030]
Year 1993 -0.136*** 0.073** -0.322***

[0.026] [0.031] [0.035]
Year 1994 -0.063** -0.083*** -0.015

[0.026] [0.032] [0.041]
Year 1995 -0.210*** -0.246*** 0.275***

[0.029] [0.031] [0.036]
SIC Dummy
SIC 26: Paper 0.041 0.004 0.047

[0.026] [0.029] [0.034]
SIC 28: Chemical 0.058*** 0.005 0.022

[0.017] [0.018] [0.017]
SIC 29: Petroleum 0.018 -0.006 -0.105**

[0.030] [0.030] [0.042]
SIC 30: Rubber 0.047** 0.023 -0.076**

[0.022] [0.027] [0.031]
SIC 33: Primary metal 0.024 0.027 0.007

[0.022] [0.025] [0.022]
SIC 34: Fabricated metal 0.012 0.082*** -0.091***

[0.019] [0.021] [0.021]
SIC 35: Machinery & Computer -0.042 0.008 -0.054

[0.026] [0.030] [0.035]
SIC 36:Electronics -0.088*** -0.044 -0.088***

[0.025] [0.031] [0.033]
SIC 37:Transportation -0.014 -0.01 -0.102***

[0.021] [0.026] [0.035]
SIC 38: Instruments -0.098** 0.090* -0.227***

[0.045] [0.046] [0.063]
Observations 48529 48529 48529
R-squared -0.38 -0.538 -0.908
Hansen J Statistic 5.972 2.997 2.233
Weak identification test 36.11 48.54 43.66
Robust(clustered) standard errors in brackets *** p<0.01, ** p<0.05, * p<0.1

Table 4. Program's Effect by Time of Participation,1991-1995
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(1) (2) (3)
COEFFICIENT 33/50 releases 15 releases ODS releases
LD.33/50 releases 0.676*** 0.269*** 0.141

[0.129] [0.049] [0.144]
Program Participation -0.382*** -0.386*** -0.430***

[0.102] [0.100] [0.146]
LD.HAP-TRI ratio -0.012*** -0.005*** 0

[0.002] [0.001] [0.001]
LD.Number of inspections -0.009 0.003 -0.015

[0.013] [0.012] [0.017]
State per capita sierra membership -0.013* -0.024*** 0.034**

[0.007] [0.008] [0.013]
State LCV scores 0 0 -0.001**

[0.000] [0.000] [0.000]
non-attainment status -0.004 0.002 0.021*

[0.008] [0.009] [0.011]
Number of P2 0.009 -0.056*** -1.015***

[0.011] [0.010] [0.187]
Year Dummy

Year 1992 0.057 0.156** -0.127
[0.066] [0.072] [0.095]

Year 1993 -0.032 0.326*** -0.465***
[0.066] [0.075] [0.104]

Year 1994 0.063 0.228*** -0.498***
[0.067] [0.074] [0.142]

Year 1995 -0.089 0.027 -0.261*
[0.067] [0.074] [0.149]

SIC Dummy
SIC 26: Paper 0.017 -0.047 -0.018

[0.028] [0.030] [0.037]
SIC 28: Chemical 0.046** 0.02 0.044*

[0.022] [0.023] [0.025]
SIC 29: Petroleum 0.006 0.031 -0.029

[0.038] [0.040] [0.065]
SIC 30: Rubber 0.043 0.075** -0.145***

[0.027] [0.034] [0.044]
SIC 33: Primary metal 0.011 -0.009 -0.132***

[0.026] [0.028] [0.038]
SIC 34: Fabricated metal 0.023 0.072*** -0.141***

[0.026] [0.026] [0.033]
SIC 35: Machinery & Computer 0.02 0.052 -0.288***

[0.038] [0.036] [0.065]
SIC 36:Electronics -0.066* -0.031 -0.254***

[0.035] [0.036] [0.053]
SIC 37:Transportation -0.003 0.026 -0.110**

[0.028] [0.033] [0.048]
SIC 38: Instruments -0.09 0.111* -0.058

[0.057] [0.059] [0.103]
Observations 37742 37742 37742
R-squared -0.683 -0.174 -0.074
Hansen J Statistic 2.541 0.817 2.646
Weak identification test 15.04 78.96 8.64*
Robust(clustered) standard errors in brackets *** p<0.01, ** p<0.05, * p<0.1

Table 5.Effect of P2 Adoption and Program Participation, 1992-1995
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Appendix Table 1 Determinants of Program Participation, 1991-1995
(1) (2) (3)

COEFFICIENT
Program 

Participation
Program 

Participation
Program 

Participation

Invitation group 2.799*** 2.828*** 2.815***
[0.074] [0.074] [0.074]

Prior reduction in 33/50 releases -0.000***
[0.000]

Previous33/50  releases -0.014
[0.010]

HAP-TRI ratio 0 0.001 0
[0.001] [0.001] [0.001]

Number of inspections 0.019 0.028 0.025
[0.025] [0.025] [0.025]

SIC 26: Paper -0.465** -0.423** -0.443**
[0.186] [0.187] [0.186]

SIC 28: Chemical -0.308*** -0.319*** -0.306***
[0.108] [0.109] [0.108]

SIC 29: Petroleum -1.996*** -1.972*** -1.984***
[0.334] [0.336] [0.335]

SIC 30: Rubber -0.366*** -0.365** -0.371***
[0.142] [0.142] [0.142]

SIC 33: Primary metal -0.104 -0.095 -0.091
[0.129] [0.128] [0.129]

SIC 34: Fabricated metal 0.081 0.072 0.078
[0.110] [0.110] [0.110]

SIC 35: Machinery & Computer -0.713*** -0.725*** -0.720***
[0.157] [0.157] [0.157]

SIC 36:Electronics -0.255* -0.248* -0.250*
[0.136] [0.135] [0.136]

SIC 37:Transportation -0.885*** -0.869*** -0.873***
[0.143] [0.144] [0.143]

SIC 38: Instruments -0.718*** -0.693*** -0.699***
[0.254] [0.255] [0.254]

State LCV scores 0.003*** 0.003*** 0.003***
[0.001] [0.001] [0.001]

State per capita sierra membership 0.073** 0.069** 0.071**
[0.033] [0.033] [0.033]

County's non-attainment status 0.092** 0.091** 0.091**
[0.037] [0.037] [0.037]

lnsig2u 1.288*** 1.287*** 1.287***
[0.027] [0.027] [0.027]

Constant -6.269*** -6.124*** -6.243***
[0.322] [0.333] [0.322]

Observations 50911 50911 50911
Number of code 12898 12898 12898
Standard errors in brackets *** p<0.01, ** p<0.05, * p<0.1  
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(1) (2)

COEFFICIENT 33/50 releases 33/50 releases

Previous33/50  releases 0.194***
[0.012]

HAP-TRI ratio 0.002*** 0
[0.001] [0.001]

Program Participation* -0.252*** -0.229***
[0.075] [0.071]

Number of inspections -0.003 -0.002
[0.012] [0.011]

State per capita sierra membership -0.144** -0.130**
[0.067] [0.066]

State LCV scores 0 0
[0.001] [0.001]

non_attain 0.087 0.098
[0.072] [0.070]

Year 1992 -0.148*** -0.115***
[0.018] [0.018]

Year 1993 -0.345*** -0.288***
[0.020] [0.020]

Year 1994 -0.451*** -0.367***
[0.021] [0.020]

Year 1995 -0.725*** -0.614***
[0.025] [0.023]

Constant 10.139*** 8.423***
[0.639] [0.634]

Observations 50911 50911
Number of code 12898 12898
R-squared 0.042 0.075
Robust standard errors in brackets *** p<0.01, ** p<0.05, * p<0.1

*Program partcipation was not instrumented by Ivs in this Table

Appendix Table 2 Program's Effect, Fixed Effect, 1991-1995
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COEFFICIENT 33/50 releases
LD.33/50 releases 0.466***

[0.056]
Program Participation -0.236***

[0.091]
LD.HAP-TRI ratio -0.011***

[0.001]
LD.Number of inspections -0.005

[0.010]
State per capita sierra membership -0.005

[0.005]
State LCV scores 0

[0.000]
County non-attainment status -0.002

[0.006]
Year Dummy

Year 1991 -0.177***
[0.050]

Year 1992 -0.038
[0.049]

Year 1993 -0.092*
[0.050]

Year 1994 -0.019
[0.050]

Year 1995 -0.164***
[0.052]

SIC Dummy
SIC 26: Paper 0.042*

[0.024]
SIC 28: Chemical 0.061***

[0.016]
SIC 29: Petroleum 0.011

[0.030]
SIC 30: Rubber 0.040*

[0.021]
SIC 33: Primary metal 0.009

[0.021]
SIC 34: Fabricated metal 0.008

[0.019]
SIC 35: Machinery & Computer -0.047*

[0.026]
SIC 36:Electronics -0.099***

[0.024]
SIC 37:Transportation -0.011

[0.020]
SIC 38: Instruments -0.106**

[0.044]
Observations 48529
R-squared -0.349
Hansen J Statistic 2.252
Weak identification test 100.8
Robust(clustered) standard errors in brackets *** p<0.01, ** p<0.05, * p<0.1

Appendix Table 3. Alternative Estimation* on Program's Overal Effect, 1991-1995.

* 
                                                 
* We can modify the two-step estimation that had been done previously. In the first step, a probit model on program 
participation is estimated with valid instruments. In the second step, instead of replacing program participation directly 
with predicted probability in equation (3), one can use the predicted probability as instruments while estimating 
equation (3). This way, the standard errors obtained in the second step are asymptotically valid (Wooldridge, 2002, 
pp.623). The important robustness feature of this IV estimator is that we are using the predicted probability as an 
instrument for program participation, the model for participation does not have to be correctly specified. This model 
uses predicted probability from Model (3) in Appendix Table 1. 
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Average toxic releases for ozone depeleting chemicals in 33/50 program
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Figure 1a. Changes of Average Toxic Releases for ODS chemicals in 33/50 program 

Average toxic releases for 15 chemicals in 33/50 program
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 Figure 1b. Changes of Average Toxic Releases for 15 non-ODS chemicals in 33/50 
program 

 


