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Abstract

In this paper, we develop a model of regulation for a set of heterogenous farmers

whose production yields to environmental externalities. The goal of the regulator is

�rst to o¤er some income support depending on collective preferences towards income

redistribution and second to internalize externalities. The optimal policy is constrained

by the information available. We �rst consider the second best where the regulator is able

to observe all individuals decisions in terms of inputs and individual pro�t, but not the

individual farming labor supply. We characterized the generalized transfer in function of

the desire to redistribute and the underlying characteristics of the production process. In a

second step, we assume that the regulator has only information on aggregate consumption

of inputs and hence can only tax/subsidy linearly inputs and output. However, because

the accounting pro�t remains observable, a non linear transfer of pro�t is still part of the

optimal policy. In the last part of the paper, we endogenize the market price of land and

examine how the optimal policy should be modi�ed.
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1 Introduction

Government intervention remains pervasive in agriculture, at least for two reasons. One

is to provide some income support to farmers and the second one is to promote positive

externalities and/or to reduce negative externalities arising from agricultural production. It

appears that agricultural policies in developed countries are often characterized by apparently

countervailing provisions. Indeed, income support motivated subsidies may have undesired

environmental consequences. As noted by Bourgeon and Chambers (2000), production sub-

sidies are granted but at the same time farmers are paid to reduce their acreage. Finally, the

di¤erent ways governments intervene to achieve several objectives are not equivalent as some

measures are less production and trade distorting than others. These issues and therefore the

design of e¢ cient governmental intervention in agriculture have raised a considerable concern

in the literature.

For instance, Guyomard et al. (2004) (see also Leathers (1992) for an earlier reference)

compare four agricultural income support programs (output subsidy, land subsidy, a decou-

pled payment with or without mandatory production) according to achieve four goals (income

support, reduction of negative externalities, maintenance of a maximum number of farmers

and e¤ects on trade). It is shown that no program uniformly dominates others. While these

kind of results are of importance, it might be needed to go a little further in order to bet-

ter understand the determinants of optimal governmental intervention and in particular to

understand how to combine e¢ ciently the di¤erent available instruments.

This is precisely such an approach that Bourgeon and Chambers (2000) have used to

study the optimal design of income support in agriculture (as well as public investment) in

a context of imperfect discrimination due to asymmetric information between farmers and

the regulator.1 There, in order to insure all farmers a minimum parity income, there is a

need to transfer money to high-cost and low income farmers. But these transfers can be

1See also Lewis, Ware and Feenstra (1989), Chambers (1992) and Hueth (2000).
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claimed by high income farmers as well and hence an optimal policy deters these claims by

tying income support programs to production or acreage limits that are more costly to the

high-income farmers. Innes (2003) pursues this line of research by showing that it is also

important to incorporate the e¤ects of the policy on all market prices and in particular on

farmland prices. In particular, it may be optimal to implement some compensated acreage

limitations for high-cost farmers together with low-cost farmers cultivating more acreage than

they otherwise would.

Besides, the optimal design of environmental regulation in agriculture has been extensively

studied. For instance, Bontems, Turpin and Rotillon (2005, 2007) study an output regulation

aimed at reducing negative externalities and that takes into account the political power of

farmers and the pre-intervention distribution of farming incomes. More recently, Sheri¤

(2008) analyzes the optimal design of environmental regulation taking into account the need

to support income and the existence of price uncertainty while Feng (2007) looks at a model

of optimal green payments for conservation and income support goals, where farmers are

heterogeneous along two dimensions (farm size and conservation e¢ ciency).2

Despite the interesting results gathered by the literature, it is fair to observe that many of

these normative models typically rely on a rather crude modelling of farmer�s behavior with

often only one decision to be taken (production or land cultivated). Hence, the regulation

is optimally designed on a exogenously and very limited set of variables in order to achieve

several goals simultaneously. The purpose of the paper is to theoretically explore the optimal

design of both income support and agri-environmental regulation in a more general model

where farmer�s decisions cover several variable inputs such as fertilizer, land cultivated and

labor devoted to production. Given the existing policies, another important decision for a

farmer is whether to stay as an active farmer or to give up production and lease out all his

land endowment and allocating his labour to the next best alternative in terms of wages. In

other words, the size of the agricultural sector is endogenous in the analysis. The goal of

2See also Wu and Babcock (1995) for an earlier analysis.
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the government is to redistribute income among a population of heterogenous farmers taking

into account the potential negative externalities of production and its budget constraint. The

intensity of redistribution depends on the social preferences towards redistribution through

the degree of social aversion to inequality. The amount of damage caused by production

depends on all polluting inputs used and also of the size of land cultivated. For instance,

if environmental damage is primarily driven by intensi�cation then increasing the land used

reduces damages holding the level of polluting inputs constant.

Importantly, the policies that the government can implement are constrained by the

information available. First, we assume that farmers are heterogenous according to their

ability in the production process which is private information. In addition, the e¤ort (or

labour) devoted to production constitutes a private decision of farmers and hence is non

observable to the regulator. However, we assume that the regulator is able to observe the

accounting pro�t (pro�t gross of the disutility of labor) at the individual level. In addition,

the status of agent (active farmer or not) is observable so that the regulator can implement

a poll subsidy/tax on all non active farmers that lease out their lands.

We derive the optimal regulation policy in two di¤erent settings. First, we assume in

addition that a very powerful regulator is able to gather observations of all relevant farmer�s

individual decisions (production, inputs). We show that unless some separability conditions

hold for the production function, it is generally optimal to distort the taxation of polluting

inputs like fertilizers from the traditional pigovian rule for redistributive purposes. We also

study the shape of the optimal transfer and its progressive/regressive feature depending on

the social preferences towards redistribution and the respective political weights of di¤erent

types of farmers. Second, we consider a more realistic setting where the regulator has only

access to aggregate decisions and hence cannot do better than employing linear tax/subsidy

when regulating the output or the variable inputs. In this setting, the optimal policy is a

combination of linear tax/subsidy on output and inputs and a non linear transfer based on the

observation of accounting pro�t. Here, the Principle of Targeting breaks down as the income
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subsidy based on the observed accounting pro�t is in�uenced by the negative externality.

We hence obtain results that are related to the ones obtained by Cremer et al. (1998)

in the context of income non linear taxation and commodities taxes for the consumer case.

Our model di¤ers in that it is �rst in a context of production, also because the political or

social weights of individuals appear in the analysis and �nally because individuals may opt

to quit the production sector making the size of the agricultural sector endogenous. Last,

another di¤erence lies into the fact that we endogenize the price of some good (namely the

farmland price) which then depends on the policy implemented. There, the objective of the

government now also takes into account the opportunity cost of land devoted to agriculture

and the rents for landowners. We study the in�uence of income support and environmental

policies on the equilibrium price of farmland.

The paper is organized as follows. The next section is devoted to assumptions and no-

tations. Sections 3 and 4 are devoted to benchmark cases, the laissez-faire equilibrium and

the �rst best. We analyze the second best regulation in section 5 and the optimal regulation

under observable aggregate variables in section 6. Section 7 is devoted to the endogeneization

of farmland price. Section 8 concludes.

2 Assumptions and notations

Consider a farmer with the following production technology:

q = f(l; z; e; �)

where q denotes the agricultural production; l is the land used, z is a variable marketed input

(say chemical fertilizers, pesticides, energy...), e is the production-enhancing e¤ort supplied

by the farmer and � is a one-dimensional productivity parameter.3 We assume that land l is

essential to production, i.e. f(0; z; e; �) = 0. We assume that f is smooth and is increasing

in all its arguments, i.e. fi > 0; 8i = l; z; e; �:4 Parameter � can be interpreted as a value

3The extension of the model to more than two inputs is straightforward.
4We denote fx = @f

@x
as the partial derivate of f with respect to x.
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characterizing the farmer himself in terms of ability to produce or some �xed characteristics

of the production process. Here, a larger � means a more e¢ cient production process. We

assume that � belongs to a compact set � = [�; �] with distribution K(�) and a positive

density k(�) on �.

The e¤ort e can be interpreted as the quantity of e¤ective labor devoted to production

or even as the (continuous) choice of technology intensity employed on the farm. More e¤ort

which is costly in time or a more intensive technology allows to increase production.

In addition, we also assume that f is supermodular in (l; z; e; �), that is, fij � 0, 8i 6= j

with (i; j) 2 fl; z; e; �g. This amounts to suppose that the technology is normal in all inputs

in the sense of Rader (1968) and hence exhibits some complementarity between the variables.

The agricultural accounting pro�t absent any governmental intervention is given by the

restricted pro�t function � de�ned as follows:

�(e; p; r; w; �; l
�
) = max

l;z

n
pq � r(l � l�)� wz s.t. q � f(l; z; e; �); l � 0; z � 0

o
where l

�
is the initial endowment in land and r the market price of land. Also, p and w are

respectively the market price of output and polluting input which are assumed to be constant.

We denote z(�) and l(�) the optimal (interior) allocation of polluting input and land from

the perspective of a type-� farmer.

Each farmer has a utility function U(I; e) where I is the net income. We assume that U

takes the following quasi-linear form U = I �  (e) where  is the (monetary) cost of e¤ort

with  0 > 0 and  00 > 0.

The farmer can quit the agricultural sector and obtain an outside wage v together with

the returns from renting his land endowment: Hence, in the laissez-faire situation, a farmer

is actually active and produces if and only if

�(e; p; r; w; �; l
�
)�  (e) � v + rl

�
. (1)

Note that this free entry/exit condition (1) does not depend on l
�
as the optimal allocation

z(�) and l(�) do not depend on l
�
as well. But the distribution of income obviously depends on
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the distribution of land endowment. We assume that the outside wage is constant (otherwise,

we would have to model a second sector of production where workers are employed).

We assume that producing entails an environmental damage x which is related to the

intensity of input usage

x = x(z; l)

and we assume that x(:; :) is increasing in the �rst argument z. Concerning the land use, if the

environmental damage is primarily caused by the intensi�cation of production process then

it is natural to assume that x(:; :) is decreasing in l. In that case, obviously the intervention

of the regulator would call a for land subsidy. Conversely, if damage is instead driven by

excessive use of marginal land, then it would be natural to assume that x(:; :) is increasing

in l.

3 Laissez-faire equilibrium with free entry/exit

In the absence of governmental support, the farmer has to take four decisions: �rst whether

to stay active or to leave the sector, if active how much land, fertilizer and e¤ort to put in

the production process. Note that the entry condition only depends on �, hence it follows

that a farmer with type �̂ decides to stay then any farmer with type � > �̂ stays active as

well. This implies that the set of active farmers is only determined by the ability � and is

[�s; �].

The equilibrium is characterized by the following conditions:

pfl(l; z; e; �) = r

pfz(l; z; e; �) = w

pfe(l; z; e; �) =  0

which gives the equilibrium allocation for an active �-type farmer, l(�), z(�) and e(�). Also,

the (interior) marginal farmer �s who is indi¤erent between producing and leaving the agri-
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cultural sector is such that:

U(�s) = pf(l(�s); z(�s); e(�s); �s)� wz(�s)� r(l(�s)� l
�
)�  (e(�s)) = v + rl

�

or equivalently

pf(l(�s); z(�s); e(�s); �s)� wz(�s)� rl(�s)�  (e(�s)) = v.

This condition means that the return of production must be at least superior to the next

best alternative v. Note that this condition is independent of the land endowment l
�
.

4 The First Best

We now examine the benchmark situation where the regulator intervenes without informa-

tional constraints. Indeed, we assume that the regulator can observe costlessly the status

of agents (farmer or not), the individual decisions over l, z, q and the accounting pro�t �:

In addition, we assume in this section that the regulator is able to observe the e¤ort e and

the type �. The objective of the regulator is to maximize a weighted sum of social value of

utilities. The social value of utility U is denoted W(U) where W(:) is increasing, concave,

re�ecting the desire to redistribute income from the richer to the poorer farmers. The so-

cial (or political) weight in the welfare function is denoted �(�) for a type-� farmer. If this

weight function is increasing in � then the basic desire to redistribute (W(U) is concave)

is counterbalanced by the fact that richer farmers have also a higher weight in the welfare

function. A transfer T (�) is paid to any type-� active farmer and a transfer � is paid to

any non active farmer. The budget devoted to the agricultural sector is denoted B while the

maximal environmental damage which is sustainable is given by X.
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The program of the regulator can thus be written as follows:

max

Z �

�s

�(�)W(U(�))dK(�) +
Z �s

�
�(�)W(v + rl� + �)dK(�)

s.t.Z �s

�
�dK(�) +

Z �

�s

T (�)dK(�) � B (2)Z �

�s

x(z(�); l(�))dK(�) � X (3)

U(�) � v + rl
�
+ � for any � � �s

U(�) = �(�) + T (�)�  (e(�))

where �(�) = pf(l(�); z(�); e(�); �)� r(l(�)� l
�
)� wz(�). Also �(�) is a positive function of

� with the normalization
R �
� �(�)d� = 1 which represents as indicated above the social (or

political) weight of type-� farmers in the welfare function.

Let us denote by � the Lagrange multiplier of the environmental constraint (3) and by

� the Lagrange multiplier of the budget constraint (2). Solving the regulator�s program, we

obtain the following result.

Proposition 1 At the �rst best, the optimal allocation devoted to a type-� farmer is such

that

pfl(l; z; e; �) = r +
�

�
xl(z; l)

pfz(l; z; e; �) = w +
�

�
xz(z; l)

pfe(l; z; e; �) =  0(e)

and the (interior) marginal farmer is such that

pf(l(�s); z(�s); e(�s); �s)� rl(�s)� wz(�s)�  (e(�s))�
�

�
x(z(�s); l(�s)) = v

Last, the �rst best is characterized by the equality between marginal social value of utility

across types:

�(�)W 0(U(�)) = �0W 0(v + rl
�
+ �) = �:
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for any � � �s and where �0 = 1
K(�s)

R �s
� �(�)dK(�).

Proof: See appendix A.

As can be seen from the Proposition, the First Best allocation entails a Pigovian tax/subsidy

on both z and l. More precisely, if the optimal allocation is l�(�) and z�(�), then the

regulator can decentralize the �rst best allocation by implementing a personalized tax per

unit of land equal to �
� xl(z

�(�); l�(�)) and a personalized tax per unit of fertilizer equal to

�
� xz(z

�(�); l�(�)).5 Note that in the case of land, it can be a subsidy if damage is primarily

driven by intensi�cation (xl < 0). In addition, the optimal distribution of incomes is obtained

through personalized transfers T (�) for active farmers and a uniform transfer � for inactive

agents. Note also that there is no need to regulate the e¤ort once z and l are driven to their

e¢ cient levels.

Last, the identity of the marginal farmer is such that the return of production from

the marginal farmer net of the social damage weighted by the shadow price of public funds

should be equal to the outside wage. It follows that the intervention tends to reduce the

size of the agricultural sector by taking into account the social cost of production in terms of

environmental damages.

5 The second best with observable individual decisions

We now suppose that the regulator can always observe the accounting pro�t � and the status

of any agent (being an active farmer or not). In addition, we will assume that the regulator

may observe individual decisions like the land used, the quantity of fertilizer used and the

production level. However, the e¤ort level and the productivity parameter are unobservable

to the regulator.

Given its information set, the regulator is able to consider a general policy of the form

f� ; t̂(�; z; l; q)g where � is the transfer paid to any farmer stopping his activity and t is

5The tax would have been uniform if we had instead assumed that the aggregate pollution level is a function
~X(Z;L) where Z is the aggregate consumption of polluting input z and L the aggregate use of farmland. The
constraint would then write ~X(Z;L) � X.
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the transfer paid to each active farmer as a function of observable variables. Note that

actually a transfer t(�; z; l) is equivalent to the transfer t̂(�; z; l; q), because we have q =

(� + wz + r(l � l�))=p and (z; l; l�) are observable:

5.1 Analysis

From the Revelation Principle, any mechanism f� ; t(�; z; l)g is equivalent to a direct reve-

lation mechanism f� ; �(�); z(�); l(�); T (�)g where T (:) is the transfer paid by the regulator

to a producing agent and in which truthtelling is an optimal strategy for each farmer. For

simplicity, we assume the di¤erentiability of the policy.6 The program of the regulator can

be written as follows:

max
e;l;z;�s;� ;U

Z �

�s

�(�)W(U(�))dK(�) +
Z �s

�
�(�)W(v + rl� + �)dK(�)

s.t.Z �s

�
�dK(�) +

Z �

�s

T (�)dK(�) � BZ �

�s

x(z(�); l(�))dK(�) � X

U(�s) = v + rl
�
+ �

U(�) � U(�; ~�) for any �; ~�

U(�) = �(�; l(�); z(�); e(�)) + T (�)�  (e(�))

�(�; l(�); z(�); e(�)) = pf(l(�); z(�); e(�); �)� wz(�)� r(l(�)� l�)

Given that the regulator observes � together with l and z, it is interesting to denote the

e¤ort E(�; l; z; �) needed to generate a pro�t � using l and z for a type-� farmer. As fe > 0,

the equation � = �(�; l; z; e) = pf(l; z; e; �) � wz � r(l � l
�
) de�nes implicitly the function

E(�; l; z; �): Note that we easily get:

E� = �
f�
fe
< 0, E� =

1

pfe
> 0, El = �

pfl � r
pfe

, Ez = �
pfz � w
pfe

.

Hence, the e¤ort needed decreases with ability and increase with the pro�t goal. Whether E

6Standard arguments allow to prove the di¤erentiability almost everywhere.
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increases or not with l or z depends on whether the optimum involves under-use (compared

to the private optimum) of land or fertilizer or not.

Proposition 2 At a separating optimum, the allocation devoted to a type-� active farmer is

characterized by:

pfl(l(�); z(�); e(�); �) = r +
�

�
xl(z(�); l(�)) +

�(�)

�k(�)
 0(e(�))

d(E�)

dl

pfz(l(�); z(�); e(�); �) = w +
�

�
xz(z(�); l(�)) +

�(�)

�k(�)
 0(e(�))

d(E�)

dz

pfe(l(�); z(�); e(�); �) =  0(e(�)) +
�(�)

�k(�)

d( 0E�)

de

where

�(�) = ��(1�K(�)) +
Z �

�
�(�)W 0(U(�))dK(�)

and

� =

Z �

�s

�(�)W 0(U(�))dK(�) + �0W 0(v + rl
�
+ �)K(�s) > 0:

Also the marginal farmer has identity �s given by:

pf(l(�s); z(�s); e(�s); �s)�rl(�s)�wz(�s)� (e(�s))�
�

�
x(z(�s); l(�s))�

�(�s)

�k(�s)
 0(e(�s)) E�j�=�s = v

Proof: See appendix B.

A direct comparison between the �rst best and the second best suggests that the �rst-

order conditions for l, z and e are now corrected by a new term due to incentive compatibility.

Let us consider for instance the condition for land use:7

pfl(l(�); z(�); e(�); �) = r +
�

�
xl(z(�); l(�)) +

�(�)

�k(�)
 0(e(�))

d(E�)

dl

This equation can be interpreted as follows: in the absence of asymmetric information on

� (�rst best) then �(�) = 0 so that we recover the �rst-best rule described before. Under

asymmetric information, there is a need to introduce an incentive distortion due to the fact

that by distorting l it is possible to extract rents in order to redistribute income across

7The interpretation of the condition for z is similar.
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farmers. Note that we get the usual result of no distortion at the top as �(�) = 0 which

means no distortion for the highest type of farmers. Actually, d(E�)dl measures how much land

use l a¤ects the potential e¤ort savings (E� < 0) associated with an increase in e¢ ciency. It

also measures how the rent U 0(�) evolves with l. Note that we have:

d(E�)

dl
=

@

@l

�
�f�
fe

�
= �f�lfe � f�fel

(fe)
2 > 0

if and only if

fel
fe

>
f�l
f�
(> 0):

which means in terms of elasticity that the elasticity of marginal productivity of ability

with respect to land use is lower than the elasticity of marginal productivity of e¤ort with

respect to land use. In other words, land use has a more (positive) in�uence on the marginal

productivity of e¤ort than on the marginal productivity of ability.

It follows that by increasing the land use of a type-� farmer, one also decreases the

(positive) rate of growth U 0(�) = � 0E� of the rent devoted to this farmer and hence the

rents to all more e¢ cient farmers (between � and �). The social cost of this decrease is

�(�)d(U
0(�))
dl . On the other hand, the distortion in l for type � relative to the �rst best

level
�
pfl � r � �

� xl
�
has social cost �

�
pfl � r � �

� xl
�
and occurs with probability k(�). The

trade-o¤ between redistribution and e¢ ciency thus yields to the condition in the Proposition.

Finally, for the highest type, there is no more e¢ cient farmers on which one would want to

extract rents and this calls for e¢ ciency at the top, i.e. �(�) = 0.

Now it is possible to obtain a result in the spirit of La¤ont-Tirole (1991) on the dichotomy

between the tasks of redistributing income among farmers and the tasks of correctly pricing

land and fertilizer by taking into account externalities.

Proposition 3 The tasks of distributing income support among farmers and the tasks of

correctly pricing land and fertilizer by taking into account externalities are disconnected if

f(l; z; e; �) = f(l; z; h(e; �)). Under this assumption, we obtain the �rst-best rules for land

13



and fertilizer (for a given e¤ort)

pfl(l(�); z(�); e(�); �) = r +
�

�
xl(z(�); l(�))

pfz(l(�); z(�); e(�); �) = w +
�

�
xz(z(�); l(�))

while the e¤ort remains distorted for redistributive purposes

pfe(l(�); z(�); e(�); �) =  0(e(�)) +
�(�)

�k(�)

d( 0E�)

de
:

Proof: If f(l; z; e; �) = f(l; z; h(e; �)) (Aggregation theorem of Leontie¤ (1947)), then

fel
fe

=
f�l
f�

fez
fe

=
f�z
f�

which implies that d(E�)
dl = d(E�)

dz = 0.

This Proposition applies for instance if f is a Cobb-Douglas function, i.e. f = �e�1z�2 l�3 .

Proposition 3 implies that the second best can be decentralized through a pure pigouvian

regulation of x and l together with a non linear subsidy t as a function of � alone for

redistributive purposes.

Concerning the e¤ort decision, we have

pfe(l(�); z(�); e(�); �) =  0(e(�)) +
�(�)

�k(�)

d( 0E�)

de
(4)

with

d( 0E�)

de
=  0

d(E�)

de
+  00E�

=  0
�
@(�f�=fe)

@e

�
�  00 f�

fe

= � 0
�
f�efe � feef�

(fe)
2

�
�  00 f�

fe
< 0

as fee � 0 and f�e � 0. This means that increasing the e¤ort allows to increase the rate U 0(�)

of growth of rents. This means that if the objective is to redistribute income towards the

poorer farmers (i.e. if �(�) < 0), it might be optimal to reduce the incentives to exert e¤ort.
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This is because increasing the e¤ort amounts to �nally get a more unequal distribution of

incomes in the population. This expresses the con�ict between the search for more equity

between heterogenous farmers and e¢ ciency. On the contrary, when �(�) > 0, it is optimal

to give incentives for e¤ort in order to generate more incomes to the more e¢ cient farmers.

It then appears that it is crucial to understand how the nature of objective (the desire

to redistribute and the presence of social weights for di¤erent types of farmers) will generate

the direction of the distortions under second best and this is precisely the role of �(�).

5.2 Implementation

Before looking at the sign of �(�), it is interesting to go back to the way the optimal policy

can be implemented through the generalized transfer t(�; z; l) intented for active farmers.8

Facing such a transfer, the type-� farmer maximizes his utility by choosing the land l, the

fertilizer level z and the e¤ort e (or equivalently the pro�t level �):

max
�;z;l

U = � + t(�; z; l)�  (E(�; l; z; �))

The corresponding �rst-order conditions for an interior solution are as follows:

@U

@�
= 1 +

@t

@�
�  0E� = 0

@U

@z
=

@t

@z
�  0Ez = 0

@U

@l
=

@t

@l
�  0El = 0

Recalling that E� = 1=pfe, we �rst get for the e¤ort:

@t

@�
=
 0 � pfe
pfe

= � �(�)

�k(�)pfe

d( 0E�)

de
(5)

using (4). This means that whenever �(�) > (<)0, then the transfer t increases (decreases)

in the observed level of pro�t. Intuitively, when �(�) > 0, such a pattern gives incentives

to the farmer to exert more e¤ort. Conversely, when �(�) < 0, it is optimal to reduce the

incentives to exert e¤ort as this goes against the search for a more equal distribution of

8Recall that non active farmers receive the uniform transfer � .
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incomes. Furthermore, at the top (� = �), the marginal rate of subsidy is @t
@� = 0 because

�(�) = 0.

Concerning the fertilizer level, we have

@t

@z
=  0Ez = � 0

pfz � w
pfe

= �  0

pfe

�
�

�
xz(z(�); l(�)) +

�(�)

�k(�)
 0(e(�))

d(E�)

dz

�
It follows that the transfer should decrease with the fertilizer use due to the damage im-

pact but this implicit tax also depends on the redistributive concern through the incentive

distortion. If

(0 <)
fez
fe

<
f�z
f�

which once again means in terms of elasticity that the elasticity of marginal productivity of

ability with respect to fertilizer use is larger than the elasticity of marginal productivity of

e¤ort with respect to fertilizer use, then d(E�)
dz < 0. This means that if �(�) < 0 then it is

optimal to increase the implicit taxation of fertilizer for redistributive issues.9

In other words, if d(E�)dz < 0 then ceteris paribus the taxation on fertilizer is heavier than

under the �rst best. In that case, if one increases the fertilizer use of a type-� farmer, one

also increases the rent of all more e¢ cient farmers which goes against inequality preferences.

Hence, the tax on fertilizer cannot escape from redistribution considerations except under the

pricing-dichotomy assumption. The intuition goes as follows: when dU 0(�)
dz = � 0 d(f�=fe)dz � 0,

then more fertilizer makes it easier for the farmers to convert a superior ability into less e¤ort.

A farmer who wants to mimic the pro�t of a lower ability farmer uses more fertilizer than the

farmer being mimicked. Finally, there is no reason to overtax the more able because there is

nobody more able than him, hence �rst best taxation rule occurs.10

9Obviously, we would have the same situation but for opposite reasons when �(�) > 0 and d(E�)
dz

> 0.
10A similar interpretation holds for the land use as well.
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5.3 The direction of distortions

As suggested above, of utmost importance for the direction of the incentive distortions is the

sign of the marginal cost of incentive compatibility �(�). For instance, from (4), we know that

if �(�) is negative for all � in
�
�s; �

�
then it is optimal to distort downward the e¤ort provided

by all active farmers (except at the top). On the contrary, each times �(�) is positive this

entails that distorting upwards the e¤ort is optimal.

First, we know that there is no distortion at the top (�(�) = 0). Second, we also know

that

�(�s) =
�
� � �0W 0(U(�s))

�
K(�s) (6)

Third, derivating the expression of �(�), we get

�0(�) =
�
� � �(�)W 0(U(�))

�
k(�): (7)

It follows that a priori there are many possibilities for the pattern of �(�) over the set
�
�s; �

�
depending in particular on the social weight function �(�). The following lemma is useful to

obtain further results concerning the sign of �(�):

Lemma 4 The marginal weighted social utility of income �(�)W 0(U(�)) is increasing in �

if and only if the elasticity �(�) = ��0(�)=�(�) of the social weight function is greater than

�(�) = ��W 00(U(�))U 0(�)=W 0(U(�)), the absolute value of the elasticity of the marginal social

utility function W 0(U(�)) with respect to �.

Proof: We have

d

d�

�
�(�)W 0(U(�))

�
= �0(�)W 0(U(�)) + �(�)W 00(U(�))U 0(�)

= �(�)W 0(U(�))

�
�0(�)

�(�)
+
W 00(U(�))U 0(�)

W 0(U(�))

�
:

Let us denote �(�) = ��0(�)=�(�) the elasticity of the political weight function �(:) w.r.t �.

Also let us de�ne �(�) = � �W 00(U(�))U 0(�)
W 0(U(�)) as the absolute value of the elasticity of W 0(U(�))
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with respect to � (recall that W is concave and that U 0 > 0). Hence, �(�)W 0(U(�)) > 0 if

and only if �(�) � �(�).

Hence the social weight function �(�) has to be su¢ ciently increasing in � in order to

counterbalance the desire to redistribute which is expressed by the concavity of W. In the

following, we describe the situations where the function �(�)W 0(U(�)) is assumed to be

monotone in �, either increasing or decreasing.

We now introduce the following condition.

Condition 5 The marginal weighted social utility of the income of the mean non active

farmer, �0W 0(U(�s)), is greater or equal to the average marginal weighted social utility of

income for all agents, �.

From (6), this condition is equivalent to �(�s) < 0. This essentially means that the social

weight of the poorest agents is rather high compared to the total population of farmers. In

particular, Condition 5 holds in the particular case of equal social weights (�(�) = 1 for any

�). We are now able to establish the following Proposition.

Proposition 6 Assume that the marginal weighted social utility of income �(�)W 0(U(�)) is

decreasing in � or equivalently that �(�) � �(�). Then,

(i) the transfer t(�; l; z) decreases in � if and only if Condition 5 holds,

(ii) the transfer t(�; l; z) is �rst increasing and second decreasing in � if and only if Condition

5 does not hold.

Proof: See appendix C.

The context described by Proposition 6 is one where the priority in terms of income

support is directed towards the less e¢ cient farmers, including those who are not active.

This is because the marginal weighted social utility of income is decreasing in �. We would

then expect that the transfer should optimally decrease with the observed level of pro�t � as
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this is the way to reduce incentives to exert e¤ort which entails a more equal distribution of

incomes in the population. This intuitive result holds but only under Condition 1. Actually,

as suggested by part (ii), it is possible for the optimal policy to gives incentives for e¤ort for

the less e¢ cient active farmers by making t an increasing function of observed �.

Consider for instance the particular case where �(�) = 1 for any � (equal social weight

situation). Here the only task of the government is to redistribute from the rich to the poor

as W is concave. One can check that �(�) is negative, �rst decreasing then increasing. This

means that the point where there is the highest decrease in the transfer when � increases lies

somewhere between �s and �.

Note �nally that because of the no distortion at the top result, the transfer is always

locally convex in the neighborhood of �(�) which means that the rate of decrease in the

transfer is diminishing when approaching the highest level of pro�t.

Examining the opposite situation where �(�)W 0(U(�)) is an increasing function of �, we

obtain the following proposition.

Proposition 7 Assume that the marginal weighted social utility of income �(�)W 0(U(�)) is

increasing in � or equivalently that �(�) � �(�). Then, the transfer t(�; l; z) is increasing in

�.

Proof: See appendix D.

From Proposition 7, we deduce that it is optimal to make the transfer an increasing

function of � in order to give incentives to exert e¤ort. Nevertheless, from the no distortion

at the top result, t is locally concave around �(�). The highest marginal rate of subsidy is

hence interior or in �s.

6 Observable aggregate variables

In this section, we discuss the optimal design of the income support and environmental policy

when the regulator cannot observe the individual variables like the output level, the use of
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variable input like fertilizers or the amount of land involved in production. Hence, the policy

can only rely on the observation of the status of each agent and their accounting pro�t.

However, as the regulator can observe the aggregate consumption of fertilizer or land and the

aggregate level of output, linear taxes are available. The taxes on output, land and fertilizer

are denoted respectively tq, tl and tz. In that case, we have to compute the optimal reaction

of a farmer to these linear taxes.

The problem of the regulator is now to �nd the optimal uniform transfer � for non active

farmers, the optimal non linear transfer t as a function of observed � together with the linear

taxes tq, tl and tz in order to maximize the social welfare subject to the budget constraint

and the environmental constraint. Hence, the utility of the type-� farmer who is active writes

as follows:

max
z;l;e

U = (p+ tq)f(l; z; e; �)� (w + tz)z � (r + tl)(l � l�) + t(�)�  (e)

where � = (p+ tq)f(l; z; e; �)� (w+ tz)z� (r+ tl)(l� l�). We denote z�, l� and e� the optimal

decisions for this farmer given the existing policy
�
tq; tl; tz; t(�); �

	
.

Solving the regulator�s problem, we establish the following Proposition.

Proposition 8 At an optimal separating policy, the non linear transfer t(�) depends on the

presence of environmental externalities. The optimal e¤ort of a type-� farmer is given by

pfe =  0 +
�(�)

�k(�)

d( 0E�)

de
� (pfl � r �

�

�
xl)l

�
e � (pfz � w �

�

�
xz)z

�
e (8)

Proof: See appendix E.

Comparing with Proposition 2, we now have two additional terms in determining the in-

centives to exert e¤ort and thereby the way the non linear transfer t(�) evolves. The last two

terms of (8) correspond to the marginal impact of the e¤ort on the pro�t net of the environ-

mental damage. This is due to the fact that with only one non linear instrument, the regulator

has to take into account the redistributive concern (through the term �(�)
�k(�)

d( 0E�)
de ) but also

the in�uence of t(�) on the decisions over land and fertilizer taken by the farmer. In other
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words, the income support policy must now take into account the presence of externalities

contrary to the preceding section.

Intuitively, suppose for instance that pfz�w� �
� xz < 0 which means that at the optimum

the type-� farmer over-uses fertilizer compared to the �rst best. If increasing the e¤ort also

contributes to increase the fertilizer use, then the last term is positive and this means that it

is optimal to reduce the transfer t(�) at the margin because of the negative externalities due

to z.

The linear taxes are designed optimally by taking account all their e¤ects on incentives.

Consider for instance the case of the optimal linear tax on fertilizer. From the appendix E

we have the following condition:

�

Z �

�s

[(pfl � r) l�tz + (pfz � w) z�tz ] dK(�)� �
Z �

�s

[xzz
�
tz + xll

�
tz ] dK(�)

�
Z �

�s

�(�)
d( 0E�)

dtz
d� = 0:

Rearranging, we haveZ �

�s

h�
pfl � r �

�

�
xl

�
l�tz +

�
pfz � w �

�

�
xz

�
z�tz
i
dK(�) =

Z �

�s

�(�)

�

d( 0E�)

dtz
d�

Hence, the tax tz is set such that the total marginal impact on pro�t net of damage is equal to

the total marginal impact on the informational rents left to all active farmers. In other words,

when manipulating the tax rate tz the regulator will modify the decisions taken with respect

to fertilizer and also land use. This will impact the social surplus of production �� �
� x. The

other impact is that this tax in�uences the distribution of incomes in the population (which

is re�ected by the term . We have a similar interpretation for the tax tl on land and the

subsidy tq on production.

7 Introducing an endogenous market price for lands

In this section, we go back to the second best analysis of section 5 but we also introduce the

possibility of having an endogenous market price for land. For simplicity, we consider only
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the case where the social weights are equal (�(�) = 1 for any �).

Let L the total amount of land used in the agricultural sector and V (L) the value (or

opportunity cost) of land in other sectors, that is increasing and concave. The market value

of land per acre is then given by

r(L) = �V 0(L)

where r0(L) > 0 because of diminishing returns to land use in other sectors.

Following Innes (2003), suppose that we have the endowment for agricultural usage de-

noted L
�
= N

Z
�
l
�
dK(�) and we denote also L the total land used for agriculture. N

represents the number of farmers that is hereafter normalized to equal one, N = 1. Similarly,

for non agriculture usage, we have L
�
NA and LNA. We have

V (L) = max
LT�L�+L

�
NA

B(LT � L)� c(LT � L
� � L�

NA)

where LT = L + LNA is the aggregate land use and c(:) is the increasing, convex cost of

developing new lands. We also have

max
LNA

B(LNA)� rLNA , B0(LNA) = r = �V 0(L)

It follows that the associated supply function is LS(r) and it is given implicitly by r =

r(L� L�
). And the equilibrium on the market of land is described by

LS(r�) + L
�
=

Z
�

l�(r�; �)dK(�)

where we denote the demand for land from a type-� farmer by l�(r�; �). The model en-

compasses the limit cases where the supply of land is either �xed (perfectly inelastic) as in

Guyomard et al. (2005) or perfectly elastic (which means that r is constant) as in Bourgeon

and Chambers (2000).

The objective of the regulator is written as the sum of social utility of pro�ts plus the

value of land use and the land rents of the landowners. However, because the social utilityW

is only de�ned up to an increasing transformation, we normalize the problem by aggregating
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the certainty equivalent:

CE(U) =W�1

0B@ �Z
�

W(U(�))dK(�)

1CA
with the opportunity cost of land use and the rents of landowners which can be written as

B(LNA)� r(LNA � L
�
NA) + r(LNA + L� L

� � L�
NA)� c(LT � L

� � L�
NA)

= B(LNA) + r(L� L
�
)� c(LT � L

� � L�
NA)

= V (L) + r(L� L�
)

Hence, the objective of the regulator sums up to maximize

CE(U) + V (L) + r(L� L�
)

under the budget constraint, the environmental constraint and the incentive compatibility

constraints as written in section 5. Solving this program, we establish the following proposi-

tion.

Proposition 9 Assuming a separating optimal policy, the optimal allocation of land use with

endogenous market price for land is given by

pfl(l(�); z(�); e(�); �) = r +
�

�
+
�

�
xl(z(�); l(�)) +

�(�)

�k(�)
 0(e(�))

d(E�)

dl
(9)

where

�(�) = ��(1�K(�)) +
Z �

�

W 0(U(u))

W 0(CE(U))
k(u)du

and

� = r0(L)
h
(� � 1)L� �K(�s)l

�
i
:

Proof: See appendix F.

Proposition 9 suggests that when the market price is endogenous, the optimal policy now

takes into account the shadow price � of the aggregate land demand L from the agricultural

sector. Obviously, if the market price r is constant (r0(L) = 0) then we are back to Proposition
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5, with the only minor di¤erence in the evolution of �(�) due to the normalization through

the certainty equivalent CE(U) in the objective in place of E�W(U).

The intuition of the expression of � goes as follows. As r0(L) > 0, due to diminishing

returns to land use in other sectors, each time we increase marginally the land use l(�) for a

type-� farmer, this has also some consequences for the rest of the economy. Indeed, as the

price r increases, this induces a marginal loss to all active farmers who have to pay a larger

price for land and this needs a compensation in terms of income support which costs � times

L. But on the other hand, we also increase the rents of landowners marginally over L units.

Last, we also increase the income of non active farmers (in proportion K(�s)) who rent their

endowment l
�
and hence are less needed to get socially costly income support:

Consequently, if the drawback for active farmers outweighs the advantage for landowners�

rents and non active farmers� income, then at the optimum, we have � > 0. Hence, if we

assume for simplicity the absence of asymmetric information (�(�) = 0) and the absence of

land impact on the environmental constraint (xl = 0), then the optimal land use of a type-�

farmer should be set such that the private marginal return should be equal to the social price

which is equal to r plus the positive shadow price � weighted by the shadow cost � of the

budget constraint. In other words, it is optimal ceteris paribus to induce an under-use of

land compared to the �rst best with constant market price given by pfl = r.

8 Conclusions

In this paper, we have developed a model of regulation for a set of heterogenous farmers

whose production yields to environmental externalities. The goal of the regulator is �rst to

o¤er some income support depending on collective preferences towards income redistribution

and second to internalize externalities. The optimal policy is constrained by the information

available. We �rst considered the second best where the regulator is able to observe all

individuals decisions in terms of inputs and individual pro�t, but not the individual farming

labor supply. We characterized the generalized transfer in function of the desire to redistribute
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and the underlying characteristics of the production process. In a second step, we assumed

that the regulator has only information on aggregate consumption of inputs and hence can

only tax/subsidy linearly inputs and output. However, because the accounting pro�t remains

observable, a non linear transfer of pro�t is still part of the optimal policy. In the last part

of the paper, we have endogenized the market price of land and examine how the optimal

policy should be modi�ed.

Obviously, the limit of such an approach of income support and agri-environmental reg-

ulation lies in its static character. Also a natural extension would consider a model where

farmers are heterogenous along other dimensions, for instance the endowment in land l
�
or

the disutility of e¤ort. Finally, it would be interesting to introduce price and production

uncertainty (see Sheri¤ 2008 for a �rst approach) to better understand the insurance role of

regulation in agriculture. All these interesting extensions are devoted to further research.
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Appendix

A Proof of proposition 1

The Lagrangean writes as follows:

L =

Z �

�s

�(�)W(�(�) + T (�)�  (e(�)))dK(�) +
Z �s

�
�(�)W(v + rl� + �)dK(�)

+�

 
B �

Z �s

�
�dK(�)�

Z �

�s

T (�)dK(�)

!
+ �

 
X �

Z �

�s

x(z(�); l(�))dK(�)

!
Pointwise maximization gives us the following �rst-order conditions:

�(�)W 0(U(�)) [pfl � r] = �xl

�(�)W 0(U(�)) [pfz � r] = �xz

�(�)W 0(U(�))
�
pfe �  0

�
= 0

together with

�(�)W 0(U(�)) = �

for any � � �s. Also, derivating with respect to � , we get

�0W 0(v + rl
�
+ �) = �

where we denote �0 = 1
K(�s)

R �s
� �(�)dK(�). Finally we also have (assuming an interior

solution)

@L
@�s

= ��x(z(�s); l(�s))� �(� � T (�s)) = 0

which gives the identity of the marginal farmer. This concludes the proof.

B Proof of Proposition 2

A type-� farmer solves the following program:

max
e;~�

�(~�) + T (~�)�  (e)

s.t.

�(~�) = pf(l(~�); z(~�); e; �)� wz(~�)� r(l(~�)� l�)
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Hence the farmer�s program can be rewritten as follows:

max
~�
�(~�) + T (~�)�  (E(�; l(~�); z(~�); �(~�)))

and we denote U(�; ~�) = �(~�) + T (~�)�  (E(�; l(~�); z(~�); �(~�))) the utility of a type-� farmer

announcing to be of type ~�. Incentive compatibility requires that:

@U

@~�

����
~�=�

= 0 and
@2U

@~�@�

����
~�=�

� 0

that is

@U

@~�

����
~�=�

= �0(�) + T 0(�)�  0
�
Ell

0(�) + Ezz
0(�) + E��

0(�)
�
= 0

and

@2U

@~�@�

����
~�=�

= � 00E�
�
Ell

0(�) + Ezz
0(�) + E��

0(�)
�
�  0

�
El�l

0(�) + Ez�z
0(�) + E���

0(�)
�

= l0(�)
�
 00E�El +  

0El�
�
+ z0(�)

�
 00E�Ez +  

0Ez�
�
+ �0(�)

�
 00E�E� +  

0E��
�
� 0

which will be checked ex-post.

If we denote U(�) = U(�; �) then we have

U 0(�) = � 0(e)E�(�; l; z; �(�; l; z; e)) > 0

so that the rent is increasing in �:

Hence the program to be solved (ignoring the second order constraint) is

max
e;l;z;�s;� ;U

Z �

�s

�(�)W(U(�))dK(�) +
Z �s

�
�(�)W(v + rl� + �)dK(�)

s.t.Z �s

�
�dK(�) +

Z �

�s

[U(�)� �(�; l(�); z(�); e(�)) +  (e(�))] dK(�) � BZ �

�s

x(z(�); l(�))dK(�) � X

U(�s) = v + rl
�
+ �

U 0(�) = � 0(e(�))E�(�; l(�); z(�); �(�; l(�); z(�); e(�)))

�(�; l(�); z(�); e(�)) = pf(l(�); z(�); e(�); �)� wz(�)� r(l(�)� l�)
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or equivalently

max

Z �

�s

�(�)W(U(�))dK(�) + �0W(v + rl
�
+ �)K(�s)

s.t.

�K(�s) +

Z �

�s

[U(�)� �(�; l(�); z(�); e(�)) +  (e(�))] dK(�) � BZ �

�s

x(z(�); l(�))dK(�) � X

U(�s) = v + rl
�
+ �

U 0(�) = � 0(e(�))E�(�; l(�); z(�); �(�; l(�); z(�); e(�)))

�(�; l(�); z(�); e(�)) = pf(l(�); z(�); e(�); �)� wz(�)� r(l(�)� l�)

The Lagrangean writes as follows:

L =

Z �

�s

�(�)W(U(�))dK(�) + �0W(v + rl
�
+ �)K(�s)

+�

 
B � �K(�s)�

Z �

�s

h
U(�)� pf(l(�); z(�); e(�); �) + wz(�) + r(l(�)� l�) +  (e(�))

i
dK(�)

!

+�

 
X �

Z �

�s

x(z(�); l(�))dK(�)

!
+

Z �

�s

�(�)
�
� 0E� � U 0(�)

�
d�

Integrating by parts the last term containing U 0(�) we getZ �

�s

�(�)U 0(�)d� = [�(�)U(�)]��s �
Z �

�s

�0(�)U(�)d�

= ��(�s)U(�s)�
Z �

�s

�0(�)U(�)d�

as �(�) = 0 because the value of U at � is free. Replacing in the Lagrangean (and recall that

U(�s) = v + rl
�
+ �), we obtain:

L =

Z �

�s

�(�)W(U(�))dK(�) + �0W(v + rl
�
+ �)K(�s)

+�

 
B � �K(�s)�

Z �

�s

h
U(�)� pf(l(�); z(�); e(�); �) + wz(�) + r(l(�)� l�) +  (e(�))

i
dK(�)

!

+�

 
X �

Z �

�s

x(z(�); l(�))dK(�)

!
+ �(�s)

h
v + rl

�
+ �
i
+

Z �

�s

�
�0(�)U(�)� �(�) 0E�

	
d�
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Derivating, we get the following necessary conditions (for � 2
�
�s; �

�
):

@L
@�

= �0W 0(v + rl
�
+ �)K(�s)� �K(�s) + �(�s) = 0 (10)

@L
@l(�)

= �(pfl � r)k(�)� �xlk(�)� �(�) 0
d(E�)

dl
= 0

@L
@z(�)

= �(pfz � w)k(�)� �xzk(�)� �(�) 0
d(E�)

dz
= 0

@L
@e(�)

= �(pfe �  0)k(�)� �(�)
d( 0E�)

de
= 0

@L
@U(�)

= �(�)W 0(U(�))k(�)� �k(�) + �0(�) = 0

and @L
@�s

= 0 which implies:

pf(l(�s); z(�s); e(�s); �s)�rl(�s)�wz(�s)� (e(�s))�
�

�
x(z(�s); l(�s))�

�(�s)

�k(�s)
 0(e(�s)) E�j�=�s = v:

Integrating �0(�), we getZ �

�
�0(�)d� =

Z �

�

�
� � �(�)W 0(U(�))

	
k(�)d�

�(�) = ��(1�K(�)) +
Z �

�
�(�)W 0(U(�))dK(�)

so that the (positive) shadow cost of the budget constraint writes (using (10)):

� =

Z �

�s

�(�)W 0(U(�))dK(�) + �0W 0(v + rl
�
+ �)K(�s) > 0

which represents the sum of all marginal (weighted) social utilities. And we also obtain that

�(�s) =
h
� � �0W 0(v + rl

�
+ �)

i
K(�s)

= K(�s)

"Z �

�s

n
�(�)W 0(U(�))� �0W 0(v + rl

�
+ �)

o
dK(�)

#

This concludes the proof.

C Proof of Proposition 6

Assume that the function �(�)W 0(U(�)) is decreasing in �. Part (i): from equation (5), @t@� < 0

everywhere if and only if �(�) is non positive everywhere. As the function �(�)W 0(U(�)) is
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decreasing in �, there are two possible situations. Either �(�)W 0(U(�)) is lower than � for

any � and consequently �0(�) > 0 everywhere.11 As �(�) is increasing and because �(�) = 0,

it must be that Condition 5 �(�s) < 0 holds. Or �(�)W 0(U(�)) intersects once � for an

intermediate value of � and consequently �0(�) is �rst negative then positive. Once again,

for �(�) to be non positive everywhere, Condition 5 must hold. Conversely, if Condition 5

holds then �(�) is non positive everywhere. Otherwise, the assumption that �(�)W 0(U(�)) is

decreasing in � would be violated.

Part (ii): from equation (5), @t
@� is �rst positive then negative if and only if �(�) is �rst

positive then negative. For �(�s) to be positive, obviously Condition 5 must not hold. This

amounts to

�(�s) =
�
� � �0W 0(U(�s))

�
K(�s)

=

"Z �

�s

�
�(�)W 0(U(�))� �0W 0(U(�s))

�
dK(�)

#
K(�s) > 0

which is possible if �(�) increases su¢ ciently in �.

Note also that �(�) cannot be positive for any �. Indeed, for �(�) to be positive every-

where, we would have �0(�) < 0 or equivalently

�(�)W 0(U(�)) > �

�(�)W 0(U(�)) >

Z �

�s

�(�)W 0(U(�))dK(�) + �0W 0(U(�s))K(�s)

which is impossible as
R �
�s
�(�)W 0(U(�))dK(�) > �(�)W 0(U(�)).

Conversely, if Conditions 5 does not hold then �(�s) is positive and �(�) is necessarily

negative in the neighborhood of �. Hence, @t
@� is �rst positive then negative: This concludes

the proof.

11For this case to be possible, a su¢ cient condition is that �(�) decreases in �. Indeed, �(�)W 0(U(�)) is
lower than � everywhere if and only if �(�s)W 0(U(�s)) < � which is equivalent toZ �

�s

�(�)W 0(U(�))dK(�) + [�0K(�s)� �(�s)]W 0(U(�s)) > 0:

A su¢ cient condition is �0K(�s) > �(�s) which is guaranteed when �(�) decreases in �.
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D Proof of Proposition 7

Assume that the function �(�)W 0(U(�)) is increasing in �. We have several possibilities for

the pattern of �(�)W 0(U(�)) compared to the constant �. First consider the case where

�(�)W 0(U(�)) is greater than � for any �. This implies that �0(�) < 0 and hence it must be

that �(�) is positive everywhere so that t is increasing in �. Second consider the situation

where �(�)W 0(U(�)) intersects once �. It follows that �(�) is �rst increasing then decreasing.

However, it is impossible to have �(�s) < 0. Indeed,

�(�s) =
�
� � �0W 0(U(�s))

�
K(�s)

=

"Z �

�s

�
�(�)W 0(U(�))� �0W 0(U(�s))

�
dK(�)

#
K(�s) > 0

as �(�)W 0(U(�)) is increasing in �. It follows that �(�) is positive everywhere. Last, it is easy

to check that the case where �(�)W 0(U(�)) is lower than � for any � cannot appear. Indeed,

in such a case, we would have �0(�) > 0 and hence it must be that �(�) < 0 everywhere which

contradicts the fact that �(�s) > 0. This concludes the proof.

E Proof of Proposition 8

A type-� farmer solves the following program:

max
e;l;z;~�

�(~�) + T (~�)�  (e)

s.t.

�(~�) = (p+ tq)f(l; z; e; �)� (w + tz)z � (r + tl)(l � l�)

Once again, by de�ning the e¤ort function E(�; l; z; �), we can transform the program as

follows:

max
l;z;~�

�(~�) + T (~�)�  (E(�; l; z; �(~�))):

Given ~�, the optimal solution for l and z is de�ned by minimizing  (E(�; l; z; �(~�))), i.e.:

(p+ tq)fl(l; z; E(�; l; z; �(~�)); �) = r + tl (i.e. El = 0)

(p+ tq)fz(l; z; E(�; l; z; �(~�)); �) = w + tz (i.e. Ez = 0):
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This system implicitly de�nes the functions l�(�; ~�) and z�(�; ~�). Then the farmer�s program

becomes:

max
~�
U(�; ~�) = �(~�) + t(~�)�  (E(�; l�(�; ~�); z�(�; ~�); �(~�))):

Incentive compatibility requires that:

@U

@~�

����
~�=�

= 0 and
@2U

@~�@�

����
~�=�

� 0

We have (using the envelop theorem, i.e.El = Ez = 0)

@U

@~�

����
~�=�

= �0(�) + T 0(�)�  0E��0(�) = 0

or equivalently

U 0(�) = � 0E� � 0

Also, we get:

@2U

@~�@�

����
~�=�

= � 00E��0(�) [E� + Ell�� + Ezz�� ]�  0�0(�) [E�� + E�zz�� + E�ll�� ] � 0

Applying again the envelop theorem, we get

@2U

@~�@�

����
~�=�

= �0(�)
�
� 00E�E� �  0 [E�� + E�zz�� + E�ll�� ]

�
� 0

As E� < 0, E� = 1=fe > 0 and

@2E

@�@z
=

@

@z

�
1

fe

�
= � fez

(fe)
2 � 0

@2E

@�@�
=

@

@�

�
1

fe

�
= � fe�

(fe)
2 � 0

@2E

@�@l
=

@

@l

�
1

fe

�
= � fel

(fe)
2 � 0

together with z� > 0 and l� > 0, then

@2U

@~�@�

����
~�=�

� 0, �0(�) � 0

The program of the regulator is thus

max

Z �

�s

�(�)W(U(�))dK(�) +
Z �s

�
�(�)W(v + rl� + �)dK(�)
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under the budget constraint, the environmental constraint and the incentive compatibility

constraint (ignoring the second order conditions) U 0(�) = � 0E� � 0.

The budget constraint writesZ �s

�
�dK(�) + tq

Z �

�s

f(l�; z�; e; �)dK(�)� tz
Z �

�s

z�dK(�)

�tl
Z �

�s

l�dK(�) +

Z �

�s

[U(�)� �(�; l�; z�; e) +  (e)] dK(�) � B

which simpli�es intoZ �s

�
�dK(�) +

Z �

�s

h
U(�)� pf(l�; z�; e; �) + wz� + r(l� � l�) +  (e)

i
dK(�) � B

The Lagrangean writes

L =

Z �

�s

�(�)W(U(�))dK(�) + �0W(v + rl
�
+ �)K(�s)

+�

 
B � �K(�s)�

Z �

�s

h
U(�)� pf(l�; z�; e; �) + wz� + r(l� � l�) +  (e)

i
dK(�)

!

+�

 
X �

Z �

�s

x(z�; l�)dK(�)

!
+ �(�s)

h
v + rl

�
+ �
i
+

Z �

�s

�
�0(�)U(�)� �(�) 0E�

	
d�

Derivating, we get the following necessary conditions (for � 2
�
�s; �

�
):

@L
@�

= �0W 0(U(�s))K(�s)� �K(�s) + �(�s) = 0 (11)

@L
@e

= �(pfe �  0)k(�) + � [p (fll�e + fzz�e )� wz�e � rl�e ] k(�)

�� [xzz�e + xll�e ] k(�)� �(�)
d( 0E�)

de
= 0

@L
@U(�)

= �(�)W 0(U(�))k(�)� �k(�) + �0(�) = 0

@L
@tq

= �

Z �

�s

[(pfl � r) l�tq + (pfz � w) z�tq ] dK(�)� �
Z �

�s

[xzz
�
tq + xll

�
tq ] dK(�)

�
Z �

�s

�(�)
d( 0E�)

dtq
d� = 0

@L
@tz

= �

Z �

�s

[(pfl � r) l�tz + (pfz � w) z�tz ] dK(�)� �
Z �

�s

[xzz
�
tz + xll

�
tz ] dK(�)

�
Z �

�s

�(�)
d( 0E�)

dtz
d� = 0
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@L
@tl

= �

Z �

�s

�
(pfl � r) l�tl + (pfz � w) z

�
tl

�
dK(�)

��
Z �

�s

�
xzz

�
tl + xll

�
tl

�
dK(�)�

Z �

�s

�(�)
d( 0E�)

dtl
d� = 0

Once again, we obtain for �(�) and � the following similar expressions:

�(�) = ��(1�K(�)) +
Z �

�
�(�)W 0(U(�))dK(�)

and

� =

Z �

�s

�(�)W 0(U(�))dK(�) + �0W 0(v + rl
�
+ �)K(�s) > 0

This concludes the proof.

F Proof of Proposition 9

The program of the regulator can be written as

maxCE(U) + V (L) + r(L)(L� L�
)

s.t.

CE(U) =W�1

"Z �

�s

W(U(�))dK(�) +W(v + rl� + �)K(�s)
#

�K(�s) +

Z �

�s

[U(�)� �(�; l(�); z(�); e(�)) +  (e(�))] dK(�) � BZ �

�s

x(z(�); l(�))dK(�) � X

U(�s) = v + rl
�
+ �

U 0(�) = � 0(e(�))E�(�; l(�); z(�); �(�; l(�); z(�); e(�)))

�(�; l(�); z(�); e(�)) = pf(l(�); z(�); e(�); �)� wz(�)� r(l(�)� l�)

L =

Z �

�s

l(�)dK(�)

We denote by � the multiplier of the last constraint determining the aggregate land use by the

agricultural sector. Following the preceding analysis, we can write directly the Lagrangean
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as follows

L = CE(U) + V (L) + r(L)(L� L�
)

+�

 
B � �K(�s)�

Z �

�s

h
U(�)� pf(l(�); z(�); e(�); �) + wz(�) + r(l(�)� l�) +  (e(�))

i
dK(�)

!

+�

 
X �

Z �

�s

x(z(�); l(�))dK(�)

!
+ �(�s)

h
v + rl

�
+ �
i

+

Z �

�s

�
�0(�)U(�)� �(�) 0E�

	
d� + �

 
L�

Z �

�s

l(�)dK(�)

!

The �rst-order conditions are

@L
@l(�)

= �(pfl � r)k(�)� �xlk(�)� �(�) 0
d(E�)

dl
� �k(�) = 0

@L
@z(�)

= �(pfz � w)k(�)� �xzk(�)� �(�) 0
d(E�)

dz
= 0

@L
@e(�)

= �(pfe �  0)k(�)� �(�)
d( 0E�)

de
= 0

@L
@L

= V 0(L) + r0(L)L+ r(L)� �r0(L)L+ � + �(�s)r0(L)l
�
+
dCE(U)

dr
r0(L) = 0(12)

@L
@�

=
dCE(U)

d�
� �K(�s) + �(�s) = 0 (13)

Note that

dCE(U)

dr
=

d

dr

 
W�1

"Z �

�s

W(U(�))dK(�) +W(v + rl� + �)K(�s)
#!

=
W 0(U(�s))K(�s)

W 0(CE(U))
l
�

and

dCE(U)

d�
=
W 0(U(�s))K(�s)

W 0(CE(U))

Hence, from (12) and (13) we deduce that

r0(L)L� �r0(L)L+ � + (�K(�s)�
dCE(U)

d�
)r0(L)l

�
+
dCE(U)

dr
r0(L) = 0

r0(L)L� �r0(L)L+ � + �K(�s)r0(L)l
�
= 0

so that

� = r0(L)
h
(� � 1)L� �K(�s)l

�
i
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With respect to U(�), we have

@L
@U(�)

=
dCE(U)

dU(�)
� �k(�) + �0(�) = 0

which is equivalent to

W 0(U(�))k(�)

W 0(CE(U))
� �k(�) + �0(�) = 0

Hence, we obtain thatZ �

�
�0(u)du =

Z �

�

�
� � W 0(U(u))

W 0(CE(U))

�
k(u)du

�(�) = ��(1�K(�)) +
Z �

�

W 0(U(u))

W 0(CE(U))
k(u)du

As

�(�s) = �K(�s)�
dCE(U)

d�

= �K(�s)�
W 0(U(�s))K(�s)

W 0(CE(U))

we also have that

� =

Z �

�s

W 0(U(�))

W 0(CE(U))
dK(�) +

W 0(U(�s))K(�s)

W 0(CE(U))
:

This concludes the proof.
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