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A tragedy of the commons appears when the users of a common resource have 
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source they are connected to. We show that if the value of the resource to the users is 
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expresses the quantities at an equilibrium as a function of a network centrality measure. 
Next we characterize the efficient levels of extractions by users and outflows from 
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case of concave values, we provide a graph decomposition which divides the network 
into regions according to the availability of sources. Then the efficiency problem can be 
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1 Introduction

Many environmental resources which supply the basic inputs of production are owned col-

lectively. Typical examples of such commons are clean air, carbon-dioxide levels in the

atmosphere, pastures, forests, fisheries and water sources. One similarity they share is that

the availability (or the fertility) of the resource decreases with use, and in some cases over

exploitation may even destroy it completely.

When the individual users ignore the cost their activity imposes on the rest, ”The Tragedy

of The Commons” occurs. It was brought under the spotlight by Hardin (1968), but the

analysis of the problem in specific contexts precedes that1. Although the term is used for

issues relating to the use of natural resources, it is not far from a moral hazard in teams as

modeled in Holmstrom (1982). It has been studied widely since Hardin’s article.

In a standard model of commons, there exists a single resource exploited by many users.

In real life examples, the most representative commons (e.g. pastures, forests, fisheries and

water sources) are local, but numerous. Each site from which a natural resource is extracted

are utilized by many, but in most of the cases the beneficiaries also have access to many

such sites, which they might share with similar or different users. A lake might supply water

to many cities, but cities also receive water from many lakes. A country shares fisheries

with its coastal neighbors, but many countries have coasts in multiple seas and oceans. The

exploitation decision of a user would be affected by the availability of sites, but also by the

other users who operate on these sites. When the sources and users are interconnected, the

exploitation of each user from each source will depend on the structure of the connections.

We model a bipartite network, where sources and cities are connected through links.

We assume that the average cost of extraction at each source increases with the amount of

total exploitation from that source. Then each user imposes a cost on all other users. We

distinguish between two cases. One where the users value the resource linearly, and the other

where they have concave quadratic valuations.

We look at the water extraction game, where agents decide how much to draw from each

source they are connected to. They have a value from consuming the resource, but their

marginal cost of extraction increases with each extra unit. We assume that at each source,

agents share of the total cost is equal to her share from the total extraction. Meaning that

1See Gordon (1954) for a model of fisheries. Olson (1965) also alludes to the problem as it relates to
collective action.
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the users at the same source face the same per unit cost at that source.2

We show that for the case of linear values, each source exhibits an isolated tragedy of

the commons. Players’ actions depend on how many other users there are at each source. In

the terminology of networks, only the source centered graph matters. The network effects

do not permeate through paths of more than two links.

When the users’ values are concave, their actions at a source does not only depend on

the number of users they share it with. It also depends on the number of sources their neigh-

bors are linked to. And also on the number of users at the sources which their neighbors

are linked to. The externalities diffuse through the paths ad infinitum. We write the equi-

librium conditions as a linear complementarity problem and show uniqueness. To interpret

the equilibrium quantities, we define a centrality index (link centrality) that captures the

spreading effects of each extraction. We provide an interpretation of this index comparing

it with the Katz-Bonacich centrality (Katz (1953), Bonacich (1987)).

We next characterize the efficient amounts of extraction for both cases. The linear case

can again be divided source by source. There exists a continuum of flows which give efficiency,

but in all of them the outflows from the sources are equal. For concave values, the efficient

amounts depend on the whole network. Generically, there exists a continuum of efficient

flows, which all give the same amounts of extractions to cities and outflows to sources. To

calculate these efficient amounts, we decompose the network into regions. Each region is a

connected subgraph of the original network. They are cut out from the network, according

to the ratio of sources to cities in them.

Given a network, we determine a connected subgraph such that all its cities are among

the least privileged with respect to sources. The subgraph will contain all the sources that

its cities are connected to in the network. The aim is to favor most the poorest in source.

We give them exclusive rights to the sources they are connected to. After cutting out this

subgraph from the network, we will find a similar subgraph formed by the least privileged

cities in the remaining one. We continue until we reach a network where all cities are equal

with respect to source availability.

We bridge two branches of economics literature. On one side we study a tragedy of the

commons. In a standard model of a common pool resource (Gordon (1954), Weitzman (1974),

Funaki and Yamato (1999)) multiple users exploit a single source. One user’s consumption

2It is logical that the crowding of the source affects everyone equally. When the fish population decreases,
the catch becomes difficult for everyone.
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affects others identically. In this paper, we extend this basic model to a network of users and

sources. The symmetry between the users is lost (except for exceptional networks like the

complete network, the hub, etc.). Given a network, we show how the structure of connections

determine users’ extraction levels. We also characterize the socially efficient outcomes.

We do not explicitly deal with the question of management of the commons3. But we

provide a network decomposition such that in each of the subnetworks we obtain, the problem

of efficiency is equivalent to the case of one source and many users.

Although we use the metaphor of water, this paper is different from Ambec and Sprumont

(2001), because the sources in our model works quite differently from the river in theirs.

Moreover, we do not make any cooperative analysis of the problem.

The other related line of literature is the analysis of behavior on networks. We study a

bipartite-network as in Corominas-Bosch (2004). She studies the equilibria of a bargaining

game in a network of buyers and sellers. The model differs from ours in two basic points.

First, both buyers and sellers are active agents, where we only take one side, the users,

as strategical. Second, buyers and sellers are bargaining over a single indivisible good. In

contrast, we assume that the good transferred between parties is perfectly divisible, allowing

a source to supply to many users.

Ballester et al. (2006) analyzes the equilibrium activities at each node of a simple non-

directed network. Players create externalities on their neighbors. A player has a single

level of activity. Her payoff depends on her activity level and of her neighbors’. They show

that the equilibrium levels are given by a network centrality index, which is similar to the

Katz-Bonacich centrality. Ballester and Calvó-Armengol (2006) show that the first order

equilibrium conditions of games which exhibit cross influences between agents’ actions are

linear complementarity problems. They study some interesting classes of such games which

have a unique equilibrium. In both papers, the agents strategy spaces are subsets of the

real line. They choose a real number and a link between two agents shows that they impose

externalities on each other. In our model, agents’ strategy spaces are multidimensional and

a link is not only a qualitative object, but also carries a value.

The basic notation, some of which we borrow from Corominas-Bosch (2004), is introduced

3Seabright (1993) gives a survey of the literature on the management of the commons issue. Faysse (2005)
provides a survey of game theoretical models of commons management. On the empirical side, many real
life examples have been discussed in Ostrom (1991) and Ostrom et al. (1994, 2002). They also provide
theoretical and empirical analysis concerning possible solutions for the tragedy of the commons.
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in Section 2. Section 3 defines the payoffs and Section 4 defines the water extraction game.

We study the equilibrium in section 5 and characterize the efficient outcomes in Section 6.

Section 7 discusses the results. The proofs are given in Section 8.

2 Notation

There are n sources s1, ..., sn, and m cities c1, ..., cm. They are embedded in a network that

links sources with cities, and cities can acquire their water from the sources they are con-

nected to. We will represent the network as a graph.

A non-directed bipartite graph g = 〈S ∪ C,L〉 consists of a set of nodes formed by sources

S = {s1, ..., sn}, and cities C = {c1, ..., cm} and a set of links L, each link joining a source

with a city. A link from si to cj will be denoted as (i, j). We say that a node si is linked

to another node cj if there is a link joining the two. We will use (i, j) ∈ g and (i, j) ∈ L
interchangeably, meaning that si and cj are connected in g.

A bipartite graph g is connected if there exists a path linking any two nodes of the graph.

Formally, a path linking nodes si and cj will be a collection of t cities and t sources, t ≥ 0,

s1, ...st, c1, ..., ct among S ∪ C (possibly some of them repeated) such that

{(i, 1), (1, 1), (1, 2), ..., (t, t), (t, j)} ∈ g

A subgraph g0 = 〈S0 ∪ C0, L0〉 of g is a graph such that S0 ⊆ S,C0 ⊆ C,L0 ⊆ L and such

that each link in L that connects a source in S0 with a city in C0 is a member of L0. Hence

a node of g0 will continue to have the same links it had with the other nodes in g0. We will

write g0 ⊆ g to mean that g0 is a subgraph of g.

For a subgraph g0 of g, we will denote by g − g0, the subgraph of g that results when we

remove the set of nodes S0 ∪ C0 from g. g − g0 will be defined as the maximal connected

parts of the subgraph induced by the set of nodes (S − S0) ∪ (C − C0).

Given a subgraph g0 = 〈S0 ∪ C0, L0〉 of g, let ←→g0 be the complete bipartite graph with

nodes S0 ∪ C0. We call ←→g0 the completed graph of g0.

Ng(si) will denote the set of cities linked with si in g = 〈S ∪ C,L〉 , more formally:

Ng(si) = {cj ∈ C such that (i, j) ∈ g}

and similarly Ng(cj) stands for the set of sources linked with cj.
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For a set A, let |A| denote the number of elements in A. For si in S, we denote |Ng(si)|
by mi(g). Similarly for cj ∈ C, let |Ng(cj)| = nj(g), be the number of sources connected to

cj.

An invasive subgraph g0 = 〈S0 ∪ C0, L0〉 of g is such that g0 is connected and,

S0 =
⋃
cj∈C0

Ng(cj)

An invasive subgraph includes all the sources to which its cities were connected in graph

g. We will denote by W (g) = {g0 ⊆ g : g0 is invasive} the set of invasive subgraphs in g.

W (g) 6= ∅ as g is an invasive subgraph of itself. In the network g1 in Figure 1, the subgraph

g0
1 that we encircle is invasive. It includes c1 and all the sources that c1 is connected to.

t t t

@
@

@
@
@

@
@

H
HH

H
HH

HH
HH

H
HH

H

A
A
A
A
A
A
A

t t t

s3s2s1

c3c2c1

g1

Figure 1

g0

1

Given a subset of sources S0 ⊆ S and a subset of cities C0 ⊆ C, |S0|
|C0| is the average number

of sources per city. A minimally invasive subgraph ĝ =
〈
Ŝ ∪ Ĉ, L̂

〉
of g is such that∣∣∣Ŝ∣∣∣∣∣∣Ĉ∣∣∣ < |S||C| and

〈
Ŝ ∪ Ĉ, L̂

〉
∈ argmin
〈S0∪C0,L0〉∈W (g)

|S0|
|C0|

The first requirement for ĝ to be a minimally invasive subgraph of g is for it to have a

strictly smaller source/city ratio than g. This means that a graph does not necessarily have

a minimally invasive subgraph. For example a complete bipartite graph has no minimally

invasive subgraphs. Any invasive subgraph cut out from a complete graph will have a

source/city ratio at least as big as the complete graph.

The second requirement is for ĝ to have the smallest source/city ratio among the invasive

graphs of g. A minimally invasive subgraph is invasive and formed by a set of least connected
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cities. There should be no cities in g which are strictly worse than them with respect to

source availability.

In Figure 1, the subgraph g0
1 is not minimally invasive, because the ratio of source to

cities in it is 1. But this ratio for the graph g1 is lower than 1. The subgraph g1
1 of g1, as

encircled Figure 2 below, is a minimally invasive subgraph. Its source/city ratio is lower

than that of g1, and there is no other subgraph of g1 with a lower ratio.
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g1

1

If ĝ is a minimally invasive subgraph of g, then ĝ cannot have a minimally invasive

subgraph of its own. Any invasive subgraph of ĝ is also invasive in g. If ĝ had a minimally

invasive subgraph with a smaller source/city ratio than ĝ, this would have contradicted ĝ

having the smallest source/city ratio in g.

We denote by qij ≥ 0 the amount of water extracted by city cj from source si.

2.1 Labelling of pairs (i,j)

Let τ : {1, ..., n} × {1, ...,m} → N+, be a lexicographic order on {1, ..., n} × {1, ...,m} such

that:

(i) τ(1, 1) = 1,

(ii) (i, j) 6= (k, l)⇒ τ(i, j) 6= τ(k, l),

(iii) j < l⇒ τ(i, j) < τ(k, l) for all i, k ∈ {1, .., n},

(iv) i < k ⇒ τ(i, j) < τ(k, j) for all j ∈ {1, ..,m},

(v) if ∃(i, j) such that τ(i, j) = y > 1 then ∃(k, l) s.t. τ(k, l) = y − 1.
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τ orders all possible links such that the links of a city j are assigned a lower number

than any city i, for i > j, and the links of a city is ordered according to the indices of the

sources they come from. For example for 2 cities and 2 sources, the function τ orders the

links starting from the first city, and the first source, τ(1, 1) = 1. The second ranked link

is between the first city and the second source, τ(2, 1) = 2. Now, as all links of city c1 is

ranked, τ will next rank the link between c2 and s1, τ(1, 2) = 3. Next comes the link between

city 2 and source 2, τ(2, 2) = 4.

For a network g, let Y (g) = {y ∈ N+ : y = τ(i, j) for some (i, j) /∈ g} be the set of

indices that τ assigns to links which are not in g. Assume, without loss of generality that

|Y (g)| = m×n−r(g), for some 1 ≤ r(g) ≤ m×n, where r(g) is the number of links in graph

g. For 2 cities and 2 sources, for a graph g, if the only missing link is (1, 2), then Y (g) = {3}
and r(g) = 3.

Observe that τ orders all possible links, independent of g, where as Y (g) does depend on

g.

We can see how the above definitions work on an example. Suppose that 2 cities and 2

sources, form a completely connected bipartite graph g2. For graph g2, Y (g2) = ∅.
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Figure 3

Now we cut the link between c2 and s1, to obtain g3.
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Figure 4
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Although link (1, 2) does not exist in g3 it is still labelled equally by τ . τ(1, 2) = 3,

meaning that Y (g3) = {3}.
We will make use of graphs g2 and g3 in many examples throughout the paper.

2.2 Some useful matrices

Now we define some matrices which we will use during our analysis.

For β, γ ≥ 0, let A = [aij]n×n be such that,

aij =

{
2β + γ, for i = j

γ , for i 6= j

A has 2β + γ on the diagonal and γ off the diagonal.

A =


2β + γ

. γ

.

γ .

2β + γ


n×n

Let B = βIn×n, where In×n is the identity matrix of size n. Using matrices A and B, we

construct the partitioned matrix D = [dij](m×n)×(m×n) such that:

D =


A

. B

.

B .

A


(m×n)×(m×n)

D has matrix A on its diagonal and matrix B off the diagonal. If we want to write it

term by term,
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dij =



2β + γ, for i = j

γ , for i 6= j, s.t. (i, j) = (z1n+ z2, z1n+ z3) for z1, z2, z3 ∈ N
s.t. z2 6= z3, 1 ≤ z2, z3 ≤ n− 1 and z1 ≤ m− 1

β , for i 6= j, s.t. i+ j = (1 + z1)n+ 1 + 2z2, for z1, z2 ∈ N
s.t. z1 ≤ m− 1, z2 ≤ m

0 , otherwise

For example for 2 cities and 2 sources,

D4×4 =


2β + γ γ β 0

γ 2β + γ 0 β

β 0 2β + γ γ

0 β γ 2β + γ


The interpretation, when we use it to find the equilibrium quantities flowing from sources

to cities, will be that the column z and the row z in D corresponds to the link (i, j) in g

such that τ(i, j) = z. Hence, column 1 and row 1 corresponds to the link (1, 1), column 2

and row 2 corresponds to the link (2, 1), column 3 and row 3 corresponds to the link (1, 2),

and column 4 and row 4 corresponds to the link (2, 2).

Let D−j be the matrix obtained by deleting row j and column j from D. For J ⊂ N+,

let D−J be the matrix obtained by deleting each row j ∈ J and column j ∈ J from D.

We will denote D−Y (g) by Dg. We obtain Dg by deleting each row y ∈ Y (g) and column

y ∈ Y (g) from D. These rows and columns belong to links that are not in g. Then, Dg has

size r(g)× r(g).

For g2, since Y (g2) = ∅, Dg2 = D4×4. For g3, as Y (g3) = {3}, Dg3 is formed by taking

out the third column and third row of D4×4.

Dg3 =

 2β + γ γ 0

γ 2β + γ β

0 β 2β + γ


Let B = 2B be the matrix obtained from B by multiplying it with the scalar 2. Similarly

we construct the partitioned matrix F = [fij](m×n)×(m×n) such that:
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F =


A

. B

.

B .

A


(m×n)×(m×n)

F has matrix A on its diagonal and matrix B off the diagonal. If we want to write it

term by term,

fij =



2β + γ, for i = j

γ , for i 6= j, s.t. (i, j) = (z1n+ z2, z1n+ z3) for z1, z2, z3 ∈ N
s.t. z2 6= z3, 1 ≤ z2, z3 ≤ n− 1 and z1 ≤ m− 1

2β , for i 6= j, s.t. i+ j = (1 + z1)n+ 1 + 2z2, for z1, z2 ∈ N
s.t. z1 ≤ m− 1, z2 ≤ m

0 , otherwise

For example for 2 cities and 2 sources,

F4×4 =


2β + γ γ 2β 0

γ 2β + γ 0 2β

2β 0 2β + γ γ

0 2β γ 2β + γ


Similarly, let F−j be the matrix obtained by deleting row j and column j from F . Let

N+ be the set of positive integers. For J ⊂ N+, let F−J be the matrix obtained by deleting

each row j ∈ J and column j ∈ J from F . We will denote F−Y (g) by Fg. We obtain Fg by

deleting each row y ∈ Y (g) and column y ∈ Y (g) from F. These rows and columns belong

to links that are not in g. Then, Fg has size r(g)× r(g).

For g1, since Y (g2) = ∅, Fg2 = F4×4. For g3, as Y (g3) = {3}, Fg3 is formed by taking out

the third column and third row of F4×4.

Fg2 =

 2β + γ γ 0

γ 2β + γ 2β

0 2β 2β + γ


Before going further we show that for β, γ > 0, D−J is positive definite, and F−J is

positive semi-definite for any J ⊂ N+.
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Proposition 1 For β, γ > 0, D−J is positive define for any J ⊂ N+.

Proposition 2 For β, γ > 0, F−J is positive semi-definite for any J ⊂ N+.

Now we define the column vector that shows the quantities flowing at each link. Let

Q = [ez] be the column vector of quantities extracted such that for qij, the quantity extracted

from source si by cj, eτ(i,j) = qij. For 2 cities and 2 sources:

Q =


q11

q21

q12

q22


Let Q−j be the vector obtained by deleting row j from Q. For J ⊂ N+, let Q−J be the

vector obtained deleting each row j ∈ J and column j ∈ J from Q. For Y (g) ⊂ N, let Qg be

the matrix obtained by deleting each row y ∈ Y (g) from Q. Then Qg has size r. Qg is the

link by link profile of extractions. For the two graphs given above:

Qg1 =


q11

q21

q12

q22

 Qg2 =

 q11

q21

q22


Let Q(m×n) be the set of all non-negative real valued column vectors of size (m× n). Let

Qrbe the set of all non-negative real valued column vectors of size r.

Given a vector of flows Qg, for a city cj, we will denote by Ej(Qg) the total amount

extracted by cj. For a source si we will denote by Oi(Qg) the total outflow from si.

3 Payoffs

We will assume that the utility function of players are additively separable into value and

cost of extraction. Hence, for a given Qg ∈ Qr,

uj(Qg) = vj(Ej(Qg))−
∑

si∈Ng(cj)

Tij(Qg),
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where vj(Qg) is the value obtained from consuming Ej(Qg) and Tij(Qg) is the cost of ex-

traction by cj from source si. We will use quadratic value and cost functions, which will

decrease the computational load and help us focus on the effects of the network structure on

the equilibrium quantities.

We will assume quadratic costs of extraction, which is uniform for all sources. Hence, for

β > 0 the total cost of extraction from a given source si would be

Ti(Qg) = β(Oi(Qg))
2

We assume that each player pays her share of the cost proportional to her extraction.

The cost of extraction qij by cj from si would be

Tij(Qg) = βqij(Oi(Qg))

We will assume uniform cost functions among sources, but the results would continue to

hold as long as the costs are quadratic at each source.

We will analyze two cases, with two different value functions.

3.1 Linear Values

For α, β > 0, let

uj(Qg) = αEj(Qg)− β
∑

si∈Ng(cj)

qij [Oi(Qg)]

for all cities cj ∈ C. As the value function is linear, the utility is separable with respect to

each source

uj(Qg) =
∑

si∈Ng(cj)

qij[α− βOi(Qg)]

Then, for all cj ∈ C and for all si ∈ Ng(cj), the marginal utility to cj of extraction from

si is:

∂uj
∂qij

= α− 2βqij − β
∑

ck∈Ng(si)\{cj}

qik

The marginal utility at extraction qij depends only on the other levels of extraction at

source si.
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3.2 Concave Values

For α, β, γ > 0, let

ũj(Qg) = αEj(Qg)−
γ

2
(Ej(Qg))

2 − β
∑

si∈Ng(cj)

qij (Oi(Qg))

for all cities cj ∈ C. Now, the utility is not separable with respect to each source. For all

cj ∈ C and for all si ∈ Ng(cj), the marginal utility to cj of extraction from si is:

∂ũj
∂qij

= α− (2β + γ)qij − γ
∑

sl∈Ng(cj)\{si}

qlj − β
∑

ck∈Ng(si)\{cj}

qik

Neither the marginal utilities are separable source by source. The marginal utility at qij

does depend on the amounts extracted by cj from sources other than si.

4 The Water Extraction Game

Given a network g, each city cj maximizes its utility by extracting a non-negative amount of

water through its links from the sources in Ng(cj). So, the set of players are the set of cities

C. The set of strategies of a city cj is Qj = QNg(cj). We denote a representative strategy

of cj by Qj ∈ Qj. Given that there are r(g) links in g, the strategy space of the game is

Qg =
∏
cj∈C

Qj = Qr(g).

For each city j, in the water extraction game with linear values, we will assume that each

player has utility uj(Qg). Then a best response Q′j of city cj to Qg ∈ Qg is such that,

for all links (i, j), q′ij =


α−β

∑
ck∈Ng(si)\{cj}

qik

2β
, if

∂uj

∂qij
|Qg ≥ 0

0 , if
∂uj

∂qij
|Qg < 0

In the water extraction game with concave values, we assume their utility to be ũj(Qg).

Then a best response Q′j of city cj to Qg ∈ Qg is such that,

for all links (i, j), q′ij =


α−γ

∑
sl∈Ng(cj)\{si}

qlj−β
∑

ck∈Ng(si)\{cj}
qik

2β+γ
, if

∂uj

∂qij
|Qg ≥ 0

0 , if
∂uj

∂qij
|Qg < 0
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5 The Equilibrium

5.1 Linear Values

For the linear case, the first order condition for qij does not depend on the amounts extracted

from sources other than si. Then we can separate the optimization problem source by source.

Meaning that equilibrium extractions from a source si depend only on how many players are

connected to si.

Theorem 3 Water extraction with linear values has a unique Nash equilibrium, such that

for any link (i, j) the equilibrium flow q∗ij = α
(mi(g)+1)β

Example Suppose we have the graph g2. Let α = β = 1. Then the equilibrium flows

of the water extraction game are q∗11 = q∗21 = q∗12 = q∗21 = 1
3
.

Suppose the graph was g3. Now, at equilibrium q∗11 = 1
2
, and q∗21 = q∗22 = 1

3
. So, the

deletion of the link (1, 2) does not change the extraction levels on source s2.

5.2 Concave Values

We will write the equilibrium conditions of the water extraction game with concave values

as a linear complementarity problem. Given a matrix M ∈ Rt×t and a vector p ∈ Rt, the

linear complementarity problem LCP (p;M) consists of finding a vector z ∈ Rt satisfying:

z ≥ 0,

p+Mz ≥ 0,

zT (p+Mz) ≥ 0

Given a graph g, the first order equilibrium conditions of the game define a LCP (−α1r;Dg)

where 1 is a column vector of 1’s of size r(g).4

4The water extraction game with linear values also forms a linear complementarity problem. But it is
simpler to find equilibrium flows source by source in that case, rather than work with matrices derived from
the network structure.
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Qg ≥ 0,

−α1r +DgQg ≥ 0,

QT
g (q +DgQg) ≥ 0

Samelson et al. (1958) shows that a linear complementarity problem LCP (p;M) has a

unique solution for all p ∈ Rt if and only if all the principal minors of M are positive. Positive

definite matrices satisfy this condition and we showed in Proposition 1 that Dg is positive

definite. Then the equilibrium conditions have a unique solution.

We further check for the second order conditions for each agent, which reveals that the

solution of the LCP (−α1r;Dg) is indeed the equilibrium of the game.

Theorem 4 Water extraction with concave values has a unique Nash equilibrium.

Example Suppose we have the graph g2. Let α = β = γ = 1. Then the link flows at

equilibrium are q∗11 = q∗21 = q∗12 = q∗22 = 0.2.

Suppose the graph was g3. Now at equilibrium, q∗11 = 0.2857, q∗21 = 0.1429, and q∗22 =

0.2857. Under concave values of extraction, the deletion of the link (1, 2) does change the

extraction levels on source s2, and moreover city c1 extracts less from the source she shares

with city c2.

5.2.1 The Equilibrium Quantities

Let Q∗g be an equilibrium of the water extraction game with concave values. There might

be some links in g, such that they carry zero flow at equilibrium Q∗g. Marginal utilities of

extractions from those links need not be zero at Q∗g.

q∗ij > 0⇒ ∂ũj
∂qij

= 0

q∗ij = 0⇒ ∂ũj
∂qij
≤ 0

To calculate the equilibrium quantities, first we need to weed out the links with zero flow.

Let ρ : L → N+ be a lexicographic order on L respecting τ such that ρ relabels the (i, j)

16



pairs from 1 to r(g) by skipping those links which are not in g.5 Now we delete from Q∗g, the

entries that correspond to links with no flow.

Let Z
(
Q∗g
)

= {z ∈ N+ : z = ρ(i, j) for some (i, j) s.t. q∗ij = 0}. Let
∣∣Z (Q∗g)∣∣ = t∗, then

Q∗
g−Z(Q∗g)

is a vector of size r(g)− t∗ obtained from Q∗g by deleting the zero entries. It is the

vector of equilibrium quantities for links over which there is a strictly positive flow from a

source to a city.

Let’s remember the first order conditions. For all (i, j) ∈ g,

∂ũj
∂qij

= α− (2β + γ)qij − γ
∑

sl∈Ng(cj)\{si}

qlj − β
∑

ck∈Ng(si)\{cj}

qik = 0

Then for any equilibrium Q∗g of the water extraction game with concave values,

Dg−Z(Q∗g).Q
∗
g−Z(Q∗g) = α.1

where 1 is a column vector of 1’s of size r(g)− t∗.
Given a network g let Q∗g be the equilibrium at g. Then we denote by g − Z(Q∗g) the

network obtained from g by deleting the links which have zero flow at Q∗g.

Theorem 5 Given two networks g and g′. Let Q∗g and Q∗g′ be the equilibrium of the water

extraction game with concave values in g and g′, respectively. If g − Z(Q∗g) = g′ − Z(Q∗g′),

then Q∗g−Z(Q∗g) = Q∗g′−Z(Q∗
g′ )

.

At equilibrium there might be links which carry no flows. For the cities of such links,

the marginal utilities of extraction from them are not positive. They are indifferent between

having such a link or not. Theorem 5 tells us such links with zero flows play no role while

5Explicitly, ρ : L→ N+ is such that:

(i) ∃(i, j) ∈ L such that ρ(i, j) = 1,

(ii) (i, j) 6= (k, l)⇒ ρ(i, j) 6= ρ(k, l),

(iii) j < l⇒ ρ(i, j) < ρ(k, l) for all (i, j), (k, l) ∈ L,

(iv) i < k ⇒ ρ(i, j) < ρ(k, j) for all (i, j), (k, j) ∈ L,

(v) if ∃(i, j)s.t.ρ(i, j) = z > 1 then ∃(k, l) ∈ L s.t. ρ(k, l) = y − 1.
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determining equilibrium. They are strategically redundant. Let’s see how this result an

example. Take graph g1.
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Let α = β = γ = 1. Then for g1,

Dg1 =


3 1 1 0 0

1 3 1 0 0

1 1 3 1 1

0 0 1 3 1

0 0 1 1 3


The first order equilibrium conditions form a linear complementarity problem LCP (−15;Dg1),

where 15 is the vector of 1’s of size 5. Then the link flows at equilibrium are q∗11 = q∗12 = 1
4
,

q∗13 = 0 and q∗23 = q∗33 = 1
4
. The cities c1 and c2 have no other connections except s1. At

equilibrium the marginal cost of extraction from source s1 is higher than s2 and s3. The

difference is too large for city c3 to make any profitable use of the link (1, 3). The links that

carry positive flows give zero marginal utility to their users.

Dg1−Z(Q∗g1
).Q
∗
g1−Z(Q∗g1

) − 14 =


3 1 0 0

1 3 0 0

0 0 3 1

0 0 1 3




1/4

1/4

1/4

1/4

−


1

1

1

1

 =


0

0

0

0


Actually, the equilibrium flows on active links can also be obtained with a matrix oper-
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ation.

Dg1−Z(Q∗g1
).Q
∗
g1−Z(Q∗g1

) = 14
3 1 0 0

1 3 0 0

0 0 3 1

0 0 1 3



q∗11

q∗12

q∗23

q∗33

 =


1

1

1

1


3I4×4 +


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0


Q∗g1−Z(Q∗g1

) = 14

If we let

Gg1 =


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0


Then,

Q∗g1−Z(Q∗g1
) =

1

3

[
I4×4 −

(
1

3
Gg1

)2
]−1 [

I4×4 −
1

3
Gg1

]
Now we cut the link (1, 3) and denote the new graph by g1 − (1, 3).
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For α = β = γ = 1, Theorem 5 tells us that the flows at equilibrium are q∗11 = q∗12 = 1
4

and q∗23 = q∗33 = 1
4
. At the equilibrium in g1, the marginal utility to city c3 from extraction
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via (1, 3) was negative. Deleting it does not change the equilibrium quantities on other links,

because the marginal utility on them is the same as in graph g1.

We can generalize the marginal utility argument used in this example. It will help us

give a network interpretation for the flow quantities at equilibrium Q∗
g−Z(Q∗g)

on any given

graph g.

5.2.2 Decomposition of Dg−Z(Q∗g)

As Dg−Z(Q∗g) is a symmetric matrix, whose diagonal entries are 2β + γ, and non-diagonal

entries are either 0, γ, or β we can separate it into (2β + γ)I, and a symmetric matrix G∗,

where I is the identity matrix of size r(g)−t∗. For example for graph g3 all links have positive

flows at equilibrium. Then,

G∗g3 =

0 γ 0

γ 0 β

0 β 0


For any graph g, G∗ has diagonal entries as 0 and non-diagonal entries are either 0, γ

or β. G∗ can be interpreted as the weighted adjacency matrix of the network obtained from

g, where the active links (i, j) of g with q∗ij > 0 at Q∗g are the vertices, and the cities and

sources in g are the edges. An edge in the derived matrix has weight β if it is a source and

weight γ if it is a city. From now on we will call G∗ the equilibrium dual of g. We will use

it to denote both the graph derived from g as explained above and the adjacency matrix of

that graph.

Hence,

Dg−Z(Q∗g).Q
∗
g−Z(Q∗g) = [(2β + γ)I +G∗] .Q∗g−Z(Q∗g)

= (2β + γ) [I + aG∗] .Q∗g−Z(Q∗g)

where a = 1
2β+γ

. Remember that Q∗g is the solution to LCP (−α1r;Dg). Then, when we

invert Dg−Z(Q∗g), the matrix multiplication α.
[
Dg−Z(Q∗g)

]−1

1 will give us a strictly positive
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vector. Now, for a ≥ 0,

[I + aG∗] = [I − aG∗]−1 [I − (aG∗)2
]

[I + aG∗]−1 =
[
I − (aG∗)2

]−1
[I − aG∗]

and[
I − (aG∗)2

]−1
=

∞∑
k=0

(aG∗)2k

Substituting this into Dg−Z(Q∗g).Q
∗
g−Z(Q∗g) = α.1,

Q∗g−Z(Q∗g) = aα
[
I − (aG∗)2

]−1
[I − aG∗] .1

= aα

∞∑
k=0

(aG∗)2k [I − aG∗] .1

= aα

[
∞∑
k=0

(aG∗)2k. 1−
∞∑
k=0

(aG∗)2k+1.1

]
The last expression is a centrality measure for the network with adjacency matrix G∗.

Although it is not a standard centrality index, we can understand it by comparing it with a

known one. For a ≥ 0, and a network adjacency matrix G∗, let

M(G∗, a) = [I − aG∗]−1 =
∞∑
k=0

(aG∗)k

If M(a,G∗) is non-negative, its entries mij(G
∗, a) counts the number of paths in the

network, starting at i and ending at j, where paths of length k are weighted by ak.

Definition 1 For a network adjacency matrix G, and for scalar a > 0 such that M(G, a) =

[I − aG]−1 is well-defined and non-negative, the vector Katz-Bonacich centralities of param-

eter a in G is:

b(G, a) = [I − aG∗]−1 .1

In a graph with z nodes, the Katz-Bonacich centrality of node i,

bi(G, a) =
z∑
j=1

mij(G, a)

counts the total number of paths in G starting from i.

Using the Katz-Bonacich centrality as a benchmark, let’s define the link centrality of a

network of commons g.
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Definition 2 For scalars α, a ≥ 0, a network of commons g and its equilibrium dual G∗,

such that [I + aG∗]−1 is well-defined and non-negative, the vector link centralities of in g is:

l(G, a) = aα [I + aG∗]−1 .1

Hence, in the expression

aα

[
∞∑
k=0

(aG∗)2k. 1−
∞∑
k=0

(aG∗)2k+1.1

]
the first summation counts the total number of even paths that start from the corresponding

node in G∗, and the second summation counts the total number of odd paths that start from

it.

The first sum tells that the equilibrium extraction from a link is positively related with

the number of even length paths that start from it. The links which have an even distance

between them are strategical complements. In contrast, the negative sign on the second sum-

mation means the equilibrium extraction from a link is negatively related with the number

of odd length paths that start from it. The links which have an odd distance between them

are strategical substitutes.

For example, in graph g2,
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links (1, 1) and (2, 2) are strategical complements. The extraction from source s2 by city c2

increases incentives for city c1 to extract more from source s1, because the former increases

the marginal cost on s2. This makes s1 a better option. Links (1, 1) and (2, 1) are strategical

substitutes, because extraction from one decreases the marginal value of water to city c1.

This decreases city’s incentives to extract more.

In general, the links of a city are substitutes for each other (e.g. (1, 1) and (2, 2) at graph

g1). Similarly, the links of a source are substitutes for each other, too (e.g. (1, 1) and (1, 2)
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at graph g1). If two cities are sharing a source, then their links to sources they don’t share

are complements (e.g. (1, 1) and (2, 2) at graph g1). Moreover, if a link (i1, j1) is a strategic

substitute of a link (i2, j2) and (i2, j2) is a strategic substitute of (i3, j3), then (i1, j1) and

(i3, j3) are strategic complements. Therefore, the strategic effect depends on the parity of

the distance between two links.

In the water extraction game the adjacency matrix G∗ does not necessarily have binary

entries, neither its non-zero entries are all equal. Each link in G∗ has a weight. While

counting the number of paths, these weights are taken into account as well. The extraction

by a city cj is calculated by summing up the link centralities of the elements in Ng(cj).

6 The Efficient Extraction

We will assume that cities have comparable and identical utilities. Such an assumption is not

far fetched from reality, in particular for the many commons which are not end products.6

Indeed in most setups, commons receive their value from being a productive input for firms

that supply to a market (Weitzman (1974), Funaki and Yamato(1999)).

6.1 Linear Values

When cities value water linearly, the sum of their utilities is

U =
∑
cj∈C

uj(Qg) = α
∑

(i,j)∈g

qij − β
∑
si∈S

(Oi(Qg))
2

Then the first order condition implies that at an efficient vector of flows Qe
g ,for any

source si, Oi(Q
e
g) = α

2β
.

As the values are linear, it does not matter to whom the water goes, as long as no source’s

total outflow exceeds the efficient amount.

Example Suppose we have the graph g1. Let α = β = 1. Then the efficient flows are

{qe11, q
e
21, q

e
12, q

e
21 ≥ 0 : qe11 + qe12 =

1

2
and qe21 + qe22 =

1

2
}

6Though such a comparison lacks sense for commons which are imperative for their users. To compare
a catastrophically dehydrated city with a well provided one would be inacceptable, both in economic and
ethical terms.
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Suppose the graph was g2. Now, the efficient flows are

{qe11, q
e
21, q

e
21 ≥ 0 : qe11 =

1

2
and qe21 + qe22 =

1

2
}

There exists a continuum of flows which give an efficient outcome in both graphs. All the

efficient flows lead to the same amounts of outflows from sources.

6.2 Concave Values

When cities have concave values, the network structure determines the efficient levels of

extraction in a non trivial fashion. The sum of utilities is

Ũ =
∑
cj∈C

ũj(Qg) = α
∑

(i,j)∈g

qij −
γ

2

∑
cj∈C

(Ej(Qg))
2 − β

∑
si∈S

(Oi(Qg))
2

Then the first order condition that an efficient vector of flows Qe
g has to satisfy is,

for all (i, j) ∈ g

{
if qeij 6= 0, then α = γEj(Q

e
g) + 2βOi(Q

e
g)

if qeij = 0, then α < γEj(Q
e
g) + 2βOi(Q

e
g)

Hence given a city cj, and 2 different sources si, sk ∈ Ng(cj)

qeij, q
e
kj 6= 0 =⇒ Oi(Q

e
g) = Ok(Q

e
g)

qeij = 0 and qekj 6= 0 =⇒ Oi(Q
e
g) > Ok(Q

e
g)

Similarly, given a source si, and 2 different cities cj, ck ∈ Ng(si)

qeij, q
e
ik 6= 0 =⇒ Ej(Q

e
g) = Ek(Q

e
g)

qeij = 0 and qeik 6= 0 =⇒ Ej(Q
e
g) > Ek(Q

e
g)

Observe that this is also a linear complementarity problem with LCP (−α1r;Fg). But

Fg is positive semi-definite, and not necessarily positive definite. We are not guaranteed a

unique solution. Indeed, we will see that, in general, there exists a continuum of solutions

to the problem of efficient flows. To solve it, we first characterized the first order conditions

above and now we look at the Hessian of the sum Ũ . The Hessian matrix of Ũ is so that

HŨ = −Fg. As Fg is positive semi-definite, HŨ is negative semi-definite. Meaning that any

Qe
g that satisfies the first order conditions maximizes Ũ .
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Example Suppose we have the graph g2. Let α = β = γ = 1. Observe that g2 has no

minimally invasive subgraphs. Indeed, it is complete. Then the efficient flows are

{qe11, q
e
21, q

e
12, q

e
21 ≥ 0 : qe11 + qe12 =

1

3
, qe21 + qe22 =

1

3
, qe11 + qe21 =

1

3
and qe12 + qe22 =

1

3
}

There exists a continuum of flows which give an efficient outcome. The total extractions at

each city and the total outflows at each source are the same for all the efficient flow levels.

Now we will find a vector of extractions that satisfies the first order conditions of efficiency.

Given a subgraph g0 = 〈S0 ∪ C0, L0〉 of g, consider the efficient amount of extractions and

outflows in its completed graph ←→g0 . Clearly the levels are identical across cities and across

sources. Let
←→
E0 be the efficient amount of total extraction by a city in ←→g0 and

←→
O0 the

efficient amount of total outflow from a source in←→g0 . If |S0| = n0 and |C0| = m0, then direct

calculation shows that

←→
E0 =

αn0

γn0 + 2βm0

and
←→
O0 =

αm0

γn0 + 2βm0

These values depend only on the source/city ratio. For two graphs g0 = 〈S0 ∪ C0, L0〉
and g1 = 〈S1 ∪ C1, L1〉,

|S0|
|C0|

=
|S1|
|C1|

⇒
←→
E0 =

←→
E1 and

←→
O0 =

←→
O1

We will use the efficient levels of the complete graph as benchmarks while calculating the

efficient amounts in non-complete bipartite graphs.

The feasible set of flows in a graph g0 is a subset of the feasible set of flows in its completed

graph←→g0 . Then given efficient levels of extraction
←→
E0 and outflow

←→
O0 at←→g0 , if these amounts

are possible in g0, then they must be efficient for g0 also.

Proposition 6 Let g0 = 〈S0 ∪ C0, L0〉 be a connected subgraph of g. If the extraction of
←→
E0

by each city in C0 is possible without exceeding the outflow
←→
O0 in any source in S0, then

these levels are efficient in g0.

Now we show that if a subgraph g0 = 〈S0 ∪ C0, L0〉 of g has no minimally invasive

subgraph, then the extraction of
←→
E0 by each city in C0 is possible without exceeding the

outflow
←→
O0 in any source in S0
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Proposition 7 Let g0 = 〈S0 ∪ C0, L0〉 of g be an invasive subgraph. If g0 has no minimally

invasive subgraphs, then the extraction of
←→
E0 by each city in C0 is possible without exceeding

the outflow
←→
O0 in any source in S0.

We prove Proposition 7 by induction. We start with a city cj of a graph g0 with no

invasive subgraphs. This city must be able to extract
←→
E0 , without exceeding the outflow

←→
O0 in any of its sources. If not, that city with its sources would have formed a minimally

invasive subgraph in g0. Next, we add a new city to this subgraph and iteratively show that

such extractions must be possible for all invasive subgraphs of g0 that contain cj. As g0 is

an invasive subgraph of itself, this proves that such extractions are possible in g0.

To prove the iteration we manipulate the flows in the following way. Let α = 7
2
, β = 1

and γ = 1. Suppose that our graph is g4 in Figure 5.
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Then according to Proposition 7, extraction 1.5 by each city is possible without exceeding

outflow 1.0 in any source. Let’s take c1. Let’s take the vector of flows (q11, q21) = (0.5, 1).

Then c1 extracts 1.5 without exceeding 1 at any of its sources. Let’s depict those flows on

the graph, by writing the quantities that correspond to each link.
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In Figure 6, s2 supplies 1.0 to c1. To extend the argument to the subgraph that contains

c2, we manipulate the flows, so that the slack in source s1 can be transferred to city c2 through

the path that connects s1 with c2. Such a change of flows should be possible, because if not,

we could find a minimally invasive subgraph, which leads to a contradiction.
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6.3 Decomposing the network

Now we will break down the given network g, so that the commons problem in each subnet-

work is independent from the other ones. We will sequentially cut out minimally invasive

subgraphs. Hence, they will not have any minimally invasive subgraphs of their own. We

will continue until we reach a subgraph which has no minimally invasive subgraphs. Then,

given Proposition 7, in each subgraph, the efficient amounts of total extractions at each city

and total outflows at each source will be equal to the efficient amounts in their completed

graphs.

Step 1 : Take g. Suppose g = 〈S ∪ C,L〉 has no minimally invasive subgraph. Then the

efficient total extraction by a city cj, Ej(Q
e
g), and the efficient total extraction from a source

si,Oi(Q
e
g), is equal to the extraction of a city in a complete bipartite graph with nodes S∪C,

and we are done.

Suppose g = 〈S ∪ C,L〉 has a minimally invasive subgraph g0 = 〈S0 ∪ C0, L0〉. Then, the

efficient total extraction by a city cj ∈ C0 is
←→
E0 , and the efficient total extraction from a

source si ∈ S0 is
←→
O0.

Step 2: Now, for the rest of the cities and sources apply Step 1 to g − g0.

In this way we will obtain a series of regions g0, g1... of g, with a non-decreasing source

per city ratio. In each of them, the efficient levels of extractions would equal to the levels in

their respective completed graphs.

27



So, given a subgraph g0 = 〈S0 ∪ C0, L0〉 obtained from the above decomposition, the

efficient extraction by a city in g0 is

←→
E0 =

αn0

γn0 + 2βm0

and the efficient outflow from each source in g0 is

←→
O0 =

αm0

γn0 + 2βm0

These levels satisfy the first order conditions within each region. Moreover, less resource-

ful regions have lower amounts of extractions per city and higher amounts of outflows per

source. Since there are no flows between different regions the first order conditions hold for

graph g as well.

The idea of redundant links reappears while calculating efficiency. Take two graphs g and

g′ such that their decomposition gives the same subgraphs. The efficient amounts of total

extractions at each city and total outflows at each source are the same for both of them.

Example Suppose we have the graph g1. Let α = β = γ = 1. The decomposition would

give us two regions, g1
1 and g1 − g1

1. Then the efficient flows are

{qe11, q
e
12, q

e
13, q

e
23, q

e
33 ≥ 0 : qe11 =

1

5
, qe12 =

1

5
, qe13 = 0, qe23 =

1

4
and qe33 =

1

4
}

Suppose the graph was g1− (1, 3). The decomposition leads to the same subgraphs. The

efficient flows are

{qe11, q
e
12, q

e
23, q

e
33 ≥ 0 : qe11 =

1

5
, qe12 =

1

5
, qe23 =

1

4
and qe33 =

1

4
}

The link (1, 3) is redundant from an efficiency point of view, just as it was for equilibrium.

7 Discussion

We have analyzed a situation where the tragedy of the commons is embedded in a network.

We have shown that when players have concave valuations, their equilibrium actions will

depend on the whole structure. The quantity extracted by a user from a source depends

on the centrality of the links she has. The centrality index which determines the quantities
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is calculated using the equilibrium dual of the original network. Then the quantity flowing

from a resource to a city is positively proportional to the total number of even paths and

negatively proportional to the total number of odd paths starting from it.

We next characterize the efficient amounts of extractions. Again when players have

concave valuations, these amounts depend on the whole network. We find a network decom-

position which separates the efficiency problem into subgraphs. These subgraphs, which we

call regions, are taken out from the network starting with the one with the lowest source/city

ratio. Each region consumes only from its sources. The sources are distributed between re-

gions, so that the less resourceful ones are assigned to the most possible number of sources.

The model we studied can also be used to analyze Cournot competition among firms

which are linked through markets. If we think of cities as firms with quadratic costs, and

sources as markets with linear demands, the results in this paper shows what the equilibrium

quantities would be in such a setup. The efficiency in our story would be equivalent to the

profit maximization of a cartel that the suppliers might form.

A further research agenda would be the case where the sources, which can be thought

as exporters of the resources, behave strategically as well. Their strategies can be prices

they charge and/or quantities they sell through each of their links. The users would be the

consumers of the market, buying according to the prices charged. Such a model would be a

close approximation of the international petrol and natural gas markets.
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Appendix

Proof of Proposition 1 We first show that for the matrix D we can find a matrix R

with independent columns such that D = RTR.7 We will write columns of R so that the

entries in D appear in squareroots in R. For example, let’s take D4×4:

D4×4 =


2β + γ γ β 0

γ 2β + γ 0 β

β 0 2β + γ γ

0 β γ 2β + γ


We write R as

R =



√
β 0 0 0

0
√
β 0 0

0 0
√
β 0

0 0 0
√
β

√
γ
√
γ 0 0

0 0
√
γ
√
γ

√
β 0

√
β 0

0
√
β 0

√
β


Then clearly D4×4 = RTR. Now, we generalize this to all possible D.

Let R = [rij][3(m×n)]×(m×n) be such that,

rij =



√
β , for i = j√
γ
n

, for i 6= j, s.t. (i, j) = (z1n+ (m× n) + z2, z1n+ z3) for z1, z2, z3 ∈ N
s.t. 1 ≤ z2, z3 ≤ n and z1 ≤ m− 1√

β
m

, for i 6= j, s.t. (i, j) = (z2m+ 2(m× n) + z1 + 1, z3n+ z2 + 1), for z1, z2, z3 ∈ N
s.t. z1, z3 ≤ m− 1, and z2 ≤ n− 1

0 , otherwise

If we let K =
√
βI(m×n)×(m×n), L =

√
γ
n
1n×n, where 1n×n is the square matrix of 1’s of

size n, and we define M = [mij](m×n)×n such that,

7This is equivalent to checking that D is positive definite. For other characterizations of positive definete-
ness see Strang (1988).
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mij =


√

β
m

, for (i, j) = ((z1m+ z2, z1 + 1), for z1, z2 ∈ N
s.t. z1 ≤ n− 1, and 1 ≤ z2 ≤ m

0 , otherwise

Then R can be written as a partitioned matrix,

R =



K

L

. 0

.

0 .

L

M ... M


[3(m×n)]×(m×n)

,

As K is a diagonal matrix of size m×n, the row space of R has dimension m×n, meaning

that the column space also has dimension m × n. Then the columns of R are independent.

It is straight forward to check that D = RTR.

Now, we show that D−J can be proven to be positively definite in a similar way. For

example, let’s take Dg3 :

Dg3 =

 2β + γ γ 0

γ 2β + γ β

0 β 2β + γ


We write Rg3 as

Rg3 =



√
β 0 0

0
√
β 0

0 0
√
β

√
γ
√
γ 0

0 0
√
γ

0
√
β
√
β

√
β 0 0


Then clearly Dg3 = (Rg3)

T Rg3 . Now, we generalize this to all possible D−J .

For any J ⊂ N+, we can find a matrix RJ with independent columns such that D−J =

(RJ)TRJ . D−J has dimension m × n − |J |. For any J ⊂ N+, there exists a bipartite graph
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g(J) such that D−J is derived by deleting from D the columns and rows that correspond to

the links which are missing in g(J). Now, let RJ = [tij][3(m×n−|J |)]×(m×n−|J |) be such that,

rij =



√
β , for i = j

√
γ

nz1 (g)
, for i 6= j, s.t. (i, j) = (

∑
0≤k<z1

nk(g) + (m× n− |J |) + z2,
∑

0≤k<z1
nk(g) + z3)

for z1, z2, z3 ∈ N s.t. 1 ≤ z2, z3 ≤ nz1(g) and 1 ≤ z1 ≤ m

√
β

mz1 (g)
, for i 6= j, s.t. (i, j) = (

∑
0≤k<z1

mk(g) + z2 + 2(m× n− |J |),
k=z3∑
k=0

mz3(g) + 1),

for z1, z2, z3 ∈ N s.t. 1 ≤ z1, z3 ≤ m, and 1 ≤ z2 ≤ mz1(g)

0 , otherwise

If we let KJ = βI(m×n−|J |)(m×n−|J |), for i ∈ {1, ...,m}. Li =
√

γ
ni(g)

1ni(g), where 1 is the

square matrix of 1 And for k ∈ {1, ...,m}, we define
[
mk
ij

]
(m×n−|J |)×nk(g)

such that,

mk
ij =


√

β
mz1 (g)

, for i 6= j, s.t. (i, j) = ((
∑

0≤k<z1
mk(g) + z2, z1 + 1), for z1, z2 ∈ N

s.t. 1 ≤ z1 ≤ m, and 1 ≤ z2 ≤ mz1(g)

0 , otherwise

Then RJ can be written as a partitioned matrix,

RJ =



KJ

L1

. 0

.

0 .

Lm

M1 ... Mk


[3(m×n−|J |)]×(m×n−|J |)

As KJ is a diagonal matrix of size m × n − |J | , the row space of RJ has dimension

m × n − |J |, meaning that the column space also has dimension m × n − |J | . Then the

columns of RJ are independent. It is straight forward to check that D−J = (RJ)T RJ .
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Proof of Proposition 2 For any J ⊂ N+, we can find a matrix RJ such that F−J =

(RJ)TRJ . F−J has dimension m × n − |J |. For any J ⊂ N+, there exists a bipartite graph

g(J) such that F−J is derived by deleting from F the columns and rows that correspond to

the links which are missing in g(J). Now, let RJ = [tij][3(m×n−|J |)]×(m×n−|J |) be such that,

rij =



√
γ

nz1 (g)
, for i 6= j, s.t. (i, j) = (

∑
0≤k<z1

nk(g) + (m× n− |J |) + z2,
∑

0≤k<z1
nk(g) + z3)

for z1, z2, z3 ∈ N s.t. 1 ≤ z2, z3 ≤ nz1(g) and 1 ≤ z1 ≤ m

√
2β

mz1 (g)
, for i 6= j, s.t. (i, j) = (

∑
0≤k<z1

mk(g) + z2 + 2(m× n− |J |),
k=z3∑
k=0

mz3(g) + 1),

for z1, z2, z3 ∈ N s.t. 1 ≤ z1, z3 ≤ m, and 1 ≤ z2 ≤ mz1(g)

0 , otherwise

If we let Li =
√

γ
ni(g)

1ni(g), where 1 is the square matrix of 1 And for k ∈ {1, ...,m}, we

define
[
mk
ij

]
(m×n−|J |)×nk(g)

such that,

mk
ij =


√

2β
mz1 (g)

, for i 6= j, s.t. (i, j) = ((
∑

0≤k<z1
mk(g) + z2, z1 + 1), for z1, z2 ∈ N

s.t. 1 ≤ z1 ≤ m, and 1 ≤ z2 ≤ mz1(g)

0 , otherwise

Then RJ can be written as a partitioned matrix,

RJ =



0

L1

. 0

.

0 .

Lm

M1 ... Mk


[3(m×n−|J |)]×(m×n−|J |)

It is straight forward to check that F−J = (RJ)T RJ .

35



Proof of Theorem 1 As the first order condition for qij does not depend on the amounts

extracted from sources other than si, the optimization problem is separable source by source.

Meaning that equilibrium extractions from a source si depend only on how many players are

connected to si.

The equilibrium at each source is unique, because for all players at a source si,

qij =

α− β
∑

ck∈Ng(si)\{cj}
qik

2β

For all links (i, j) ∈ L,

∂2uj
∂q2

ij

= −2β < 0

meaning that the second order conditions are satisfied for all cities.

Around each source si there is a symmetric amount of flow at equilibrium, such that

q∗ij =
α

(mi(g) + 1) β

Proof of Theorem 2 Given a graph g, the equilibrium conditions of the game is a

LCP (−α1r;Dg) where 1 is a column vector of 1’s of size r.

Qg ≥ 0,

−α1r +DgQg ≥ 0,

QT
g (q +DgQg) ≥ 0

Samelson et al. (1958) shows that a linear complementarity problem LCP (p;M) has a

unique solution for all p ∈ Rt if and only if all the principal minors of M are positive. Positive

definite matrices satisfy this condition and we showed in Proposition 1 that Dg is positive

definite. Then the first order equilibrium conditions have a unique solution.

Let’s check the second order condition. For city ck, denote the Hessian matrix of uk by

Huk
= [hij]nk(g)×nk(g) such that

hij=

{
−2β − γ, for i = j

−γ , for i 6= j
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We will show that for any z ∈ N+, the matrix Hz = [hij]z×z such that

hij =

{
−2β − γ, for i = j

−γ , for i 6= j

is negative definite.

Hz = −(2β + γ)H
′
z, where H ′z = [h′ij]z×z such that,

h′ij =

{
1, for i = j

φ, for i 6= j
, where φ =

γ

2β + γ

If we denote the determinant of Hz by Det(Hz).

Det(Hz) = (2β + γ)(−1)nDet(H ′z)

Now, we show by induction that for all z ∈ N+, Det(H ′z) > 0.

Det(H ′1) = 2β + α > 0. Assume Det(H ′z−1) > 0.

Det



1 φ . . . φ

φ 1 . . . .

. . . .

. . . .

. . . .

φ φ . . . 1


= (1− φ2(n− 1)

1 + (n− 2)φ
)Det(A′z−1)

Then, Hz is negative definite and the water extraction game with concave values has a

unique Nash equilibrium.

Proof of Theorem 3 Assume Q∗g−Z(Qg), Q
∗
g−Z(Q′′g ) are equilibria of the game at g and g′,

respectively. Let

g − Z(Q∗g) = g′ − Z(Q∗g′)

Then,

Dg−Z(Q∗g).Q
∗
g−Z(Q∗g) = α.1=Dg′−Z(Q∗

g′ )
.Q∗g′−Z(Q∗

g′ )
= Dg−Z(Q∗g).Q

∗
g′−Z(Q∗

g′ )

As we showed in Proposition 1 Dg−Z(Q∗g) is positive definite, hence invertible.

Q∗g−Z(Qg) = Q∗g−Z(Q′′g )

37



Proof of Proposition 3 We know that the extraction of
←→
E0 and the outflow

←→
O0 satisfies

the first order conditions in←→g0 . Since g0 and←→g0 have the same set of nodes, they also satisfy

the conditions in g0.

Proof of Proposition 4 By assumption, g0 has no minimally invasive subgraphs.

Take a city cj in g0. Let cj extract a total of
←→
E0 , such that none of the sources supply

more than
←→
O0.

←→
E0 and

←→
O0 are functions of the source/city ratio. If cj is not linked to

enough sources to achieve such an extraction, then city cj and the sources Ng(cj) form a

minimally invasive subgraph in g0, which is a contradiction with g0 having no minimally

invasive subgraphs.

Now, we are going to show by induction that
←→
E0 extraction by a city in g0 such that no

source supplies more than
←→
O0 is possible in any invasive subgraph of g0 that contains cj. As

g0 is an invasive subgraph of itself, this will imply that such levels of extraction is possible

in g0.

We know that it is possible for the invasive subgraph with city cj and the sources Ng(cj).

Take an invasive subgraph gk−1 of g0 that contains k − 1 cities including cj. Suppose that

such levels of extractions are possible in gk−1. Denote by Qgk−1
such a possible amount of

flows in gk−1.

Now take an invasive subgraph gk of g0 that contains k cities, k − 1 which were in gk−1

and a fixed city ck which was not in gk−1.

Assume that in gk,
|Ŝk|
|Ĉk|

< |Ŝ|
|Ĉ| . Then gk is a minimally invasive subgraph of g0, which is

a contradiction.

Then, |Ŝk|
|Ĉk|
≥ |Ŝ|
|Ĉ| . Take Qgk−1

which delivers
←→
E0 to all cities in gk−1. As gk contains gk−1

we can supply the cities in gk−1 with
←→
E0 without exceeding outflow

←→
O0 in any source. Now

let ck extract through its links such that the outflow from each source in Ng(ck) is
←→
O0. If

the total extraction of ck exceeds
←→
E0 , then we are done.

If not, denote by Q1 the flow vector for gk such that flows for the links which were already

in gk−1 equals to Qgk−1
, and the flows for the links which were not in gk−1 equals to 0. Now,

given that ck /∈ gk−1, let Q2 be the flow vector for gk such that

q2
jk =

←→
O0 −Oi(Q

1), for j ∈ Ng(ck)

q2
jl = q1

jl, for l 6= k

38



Since |Ŝk|
|Ĉk|
≥ |Ŝ|
|Ĉ| , there must be a source si in gk not connected to ck, such that its outflow

in Q2 is strictly less than
←→
O0. Let S−k be the set of sources in gk which not connected to ck

and which have outflows in Q2 strictly less than
←→
O0.

S−k = {si ∈ gk : si /∈ Ng(ck) and Oi(Q
2) <

←→
O0}

Suppose that for any source si ∈ S−k and for all paths

P = {(si, c1), (c1, s1), ..., (ct, st), (st, ck)}

that connects si with ck, ∃(cj, sj) ∈ P such that q2
jj = 0. Given such a path P , let sP denote

the source sl such that (cl, sl) ∈ P , q2
ll = 0 and there exists no other source sj in P , closer to

ck than sl such that (cj, sj) ∈ P and q2
jj = 0. Let Ck = {cj ∈gk : ∃ a path P from si to ckfor

some si ∈ S−k and in P , cj is between sP and ck}. Then the invasive subgraph with cities

Ck ∪ ckis minimally invasive in gk, which is a contradiction.

Then there exists a source si ∈ S−k such that there exists a path

P = {(si, c1), (c1, s1), ..., (ct, st), (st, ck)}

that connects siwith ck and min(cj ,sj)∈P q
2
jj 6= 0. Let

d = min
(cj ,sj)∈P

{q2
jj, Oi(Q

2)}

Now, given such a path P , let Q3 be the flow vector for gk such that

q3
i1 = q2

i1 + d,

q3
jj = q2

jj − d,
q3
j(j+1) = q2

j(j+1) + d

q3
tk = q2

tk + d

q3
ll′ = q2

ll′ , for all other links (l, l′)

It is possible to make ck extract at least
←→
E0 by finding such paths from sources in Ŝ−k to ck

and changing the flows as explained above for each path from a source in Ŝ−k to ck. If after

using all such paths, ck could still not extract
←→
E0 , then we could use the reasoning above to

get a contradiction.

Then the desired levels of extractions are possible in g0.
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