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Abstract

We study the importance of anticipated learning - about both environmental damages

and abatement costs - in determining the level and the method of controlling greenhouse

gas emissions. We also compare active learning, passive learning, and parameter un­

certainty without learning. Current beliefs about damages and abatement costs have an

important effect on the optimal level of emissions, However, the optimal level of emis­

sions is not sensitive either to the possibility of learning about damages. or to the type of

learning (active or passive), Taxes dominate quotas, but by a small margin,
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1 Introduction

Many pollutant stock externality problems - notably the problem of controlling greenhouse

gasses - are complicated by the uncertainty of abatement costs and environmental damages. In

setting environmental policies, a regulator who has imperfect information about these economic

and environmental costs and damages should recognize that information may improve over

time. We construct a model of a stock externality that includes endogenous learning about both

abatement costs and stock-related damages. We calibrate the model to describe the prohlem of

global warming and solve it numerically. The results show how uncertainty and learning affect

both the optimal level of control and the comparison of taxes and quantity restrictions.

Several papers ([7], [8], [13], and [26]) compare taxes and quotas for the control of stock

externalities when firms and the regulator have asymmetric information about abatement costs.

The main result from Weitzman's [37] static model continues to hold: a steeper marginal en­

vironmental damage curve, or a flatter marginal abatement cost curve favors the use of quotas.

These models assume that the regulator knows the parameters of the damage function.

We extend these models to describe the situation where the regulator does not know but

learns about - the true relation between pollutant stocks and environmental damages. We

identify the effect of parameter uncertainty in the absence of learning by solving a certainty

equivalent version of this model. The possibility of learning about these uncertain parameters

causes a qualitative change in the optimization problem. This difference enables us to identify

the effect of learning, as distinct from the intrinsic effect of parameter uncertainty.

The uncertainty about both abatement costs and stock-related damages, coupled with the

belief that we will obtain better information over time, is central to the current debate over

efforts to reduce carbon emissions. If we were convinced that this uncertainty would persist

indefinitely, we could model it like any other form of randomness. The possibility that we

will learn more about the relation between greenhouse gasses and global warming complicates

the debate. If we incur large abatement costs now and later learn that global warming is not a

serious problem, we will have wasted resources. If we delay cutting emissions and later learn

that global warming is a serious problem, we will suffer avoidable damages.

Chichilnisky and Heal [1] explain why anticipated learning may lead to greater initial abate­

ment when irreversibilities are important. Ulph and Ulph [36] explain why the relation between

learning and the amount of abatement is ambiguous. Their numerical results suggest that under

plausible circumstances, anticipated learning decreases initial abatement, and that usually the
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magnitude of the effect of learning is small. Our results are consistent with [36], although our

model is very different.

The uncertainty about abatement costs is also an important component of the debate. Op­

ponents of the Kyoto Protocol frequently claim that the economic cost of reducing emissions

is large; proponents point to reasons (e.g. positive externalities in innovation) why abatement

costs will be small. We do not know the actual costs.

Much of the existing literature concerning climate change uncertainty assumes that it will

eventually be resolved! (e.g., Kennedy [18], Kolstad [19] [20], Manne and Richels [21], Nord­

haus and Popp [30], Peck and Teisberg [31]). Nordhaus and Popp [30] and Peck and Teisberg

[31] consider the difference between "act and learn" and "learn and act". All these papers focus

on the effect of passive learning; the exogenous arrival of information decreases uncertainty.

Passive learning may occur all at once as in Kennedy [18], Kolstad [19], or more gradually as a

function of time as in Kolstad [20].2

The assumption of passive learning ignores the possible impact of the regulator's decisions

on the learning process. Policy decisions will affect future levels of stock, and the magnitude

of these levels may affect the amount of information that the regulator acquires. The regulator

is unlikely to manipulate global carbon stocks in order to learn the true relation between stocks

and damages.3 However, the regulator should recognize that there is a relation between control

decisions and learning.

Kelly and Kolstad [17] consider active learning about the relation between greenhouse gas

levels and global mean temperature changes. Their simulations show that abatement is sensitive

to the state of knowledge, and they find that learning occurs slowly.

We model active learning about stock-related damages. There are two main differences in

focus between our paper and [17], in addition to many technical differences. First, we allow

for uncertainty and learning about abatement costs as well as stock-related damages. Arguably,

uncertainty about abatement costs is as important an issue as uncertainty about environmental

damages. Second, we compare the use of taxes and quotas in this setting. Our paper contributes

to two related but distinct literatures, the control of emissions under learning about damages,

and the control of emissions under asymmetric information and learning about abatement costs.

1Pizer [32] considers persistent uncertainty. He studies an open-loop equilibrium, where no teaming occurs.

2Another literature emphasizes the role of learning and irreversibilities in abatement capital and pollution

stocks; see Fisher and Narain [5].

3Por some problems, particularly where the stock decays rapidly, that kind of active learning might make sense.
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Our model has several key features. (i) It allows for the possibility that additional stocks

cause very large increases in damages, even if current expected damages are moderate. (ii)

There is an objective stochastic relation between stocks and damages. The regulator does not

know one of the parameters of this relation. By observing stocks and stock-related damages

the regulator learns about the unknown parameter, but does not learn its exact value in finite

time. (iii) Our model makes it easy to distinguish between the intrinsic effect of parameter

uncertainty, and the effect of anticipated learning about the uncertain parameter(s). Thus,

we can isolate the effect of learning. We can also distinguish between the effect of active

and passive learning. (iv) The firms have better information than the regulator concerning

abatement costs. These costs change over time, and may be serially correlated. Under some

circumstances, the regulator is able to learn about abatement costs, but firms always remain

better informed about them.

Our principal policy conclusion is that the optimal level of emissions is insensitive to the

anticipation of (either active or passive) learning about environmental damages. This conclu­

sion is important, because both opponents and proponents of imposing stricter abatement rules

now have used this anticipated learning to support their position. Our results suggest that this

hope for improved science may be a red herring in the discussion of current abatement policies.

Those policies should be based on our current beliefs about the relation between carbon stocks

and environmental damages - i.e. on the best current science - rather than on our beliefs that

information will improvc.4 Of course, this conclusion is based on a particular parameterization

of a particular model.

The next section discusses some basic ideas that are important in understanding our model

and results. We then describe how the regulator learns about stock-related damages and abate­

ment costs. Using previously published data and conjectures about global warming, we cali­

brate the model, and then solve it to show how learning affects the optimal level of emissions

and the choice between taxes and quotas.

40ur model has nothing to say about the argument that we should postpone abatement until technological

improvements reduce abatement costs.
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2 Background

Since we draw on ideas from several specialized fields, we begin with a basic discussion. Here

we explain the intuition for the ranking of taxes and quotas when there is asymmetric infor­

mation about abatement costs. Then we describe the difference between active and passive

learning, and we discuss the role of the Principal of Certainty Equivalence.

In a period, the firm - but not the regulator - knows the current marginal abatement cost

function. If faced with an emissions tax, the firm sets marginal abatement costs equal to the

tax. Thus, under taxes the regulator chooses the current level of marginal cost and regards

emissions as random. Under quotas the regulator chooses the current level of emissions and

regards the level of marginal cost as random.5 This difference causes the expected payoffs to

differ under the two policies.

The convexity of damages means that a mean-preserving spread in emissions (or stocks)

increases expected damages. Steeper marginal damages - i.e. a more convex damage function

- increase the importance of controlling emissions (or stocks) exactly, and therefore favor the

use of quotas. When marginal abatement costs are steeper, it is more important for the firm to

be able to adjust emissions in light of the current cost shock. Thus, steeper marginal abatement

costs favor the use of taxes.

It is more important to control emissions (and stocks) exactly when the stock is more per­

sistent. Thus, a more persistent stock favors the use of quotas. Since current emissions cause

damages in the future, a higher discount factor increases the importance of controlling exactly

the current level emissions. Thus, a higher discount factor increases the range of other pa­

rameter values for which a quota is preferred. However, the ranking of policy depends on the

comparison of the present discounted value of abatement costs plus damages under the two

policies. A larger discount factor increases the present discounted streams under both policies,

and therefore can increase the magnitude by which either policy is prefen'ed to the other. The

effect on policy ranking of the degree of autocorrelation between cost shocks depends on the

information structure. We return to this issue in Section 3.3.

In our model, future observations of stocks and damages enable the regulator to learn about

the true relation between these variables. Since the "signal" (damages) depends on the stock,

5In common with most papers on this topic, we assume that the quota is binding with probability 1. Costello

and Karp [3] examine a model with flow-dependent damages, in which the regulator can use a non-binding quota

to learn about abatement costs.
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and since the regulator can influence the evolution of the stock, he is able to influence the

future information. If the regulator understands this relation, learning is "active". If instead

he takes the future signals as exogenous, learning is "passive". The regulator is unlikely to

manipulate global carbon stocks in order to provide better information about how these stocks

affect environmental damages. That is, he is likely to behave almost as if future signals were

exogenous. If he does so, active and passive learning would lead to almost the same control

mle. It is easier to solve the model of passive rather than active learning. Of course, if future

information really is unrelated to stock levels, the model of passive learning is more accnrate.

For these reasons, we also consider the model of passive lcarning.

We assume that abatement costs are quadratic in abatement, which is defined as the "business­

as-usual" (BAD) level of emissions minus the actual level of emissions. BAD emissions are

realizations of a random process, and in each period the firm but not the regulator knows the

current value of this random variable. This formulation means that the cost shock affects the

intercept but not the slope of marginal costs. We also assume that environmental damages are

quadratic in carbon stocks.

These functional assumptions mean that the model with passive learning satisfies the Princi­

pal of Certainty Equivalence, and this in turn means that the expected stock and flow trajectories

(but not their higher moments) are identical under optimal taxes and quotas. In this case, the

ranking of taxes and quotas depends on higher moments of the trajectories. This Certainty

Equivalence property does not hold in the model of active learning; however, as explained

above, we expect that in the case of global warming, the two models would lead to similar

results. In that case, the Certainty Equivalence property holds approximately under active

learning.

The functional assumptions greatly facilitate the solution to the model of passive learning,

but not the model of active learning - which requires different methods. Since the functional

assumptions are unimportant for the latter model, and since some readers might regard them as

unattractive, it is worth explaining why we use them. There are two reasons.

First, these assumptions lead to a relatively simple calibration of the model. Since our

results are model- and parameter-specific, this transparency is important. The calibration de­

pends on the assumed magnitude of abatement cost and of environmental damage. We can

easily determine how robust the policy implications are to these magnitudes.

Second, the functional assumptions imply the (exact or approximate) equivalence of ex-
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pected trajectories under taxes and quotas. If the research objective was to understand how

different policies affect thc optimal level of abatement, this Certainty Equivalence property

would obviously be a disadvantage (since it renders the comparison trivial). However, if our

goal is to compare the two policies given the same target level of stock trajectories, the Certainty

Equivalence property is a great advantage. In a general model, such a comparison might be

sensitive to the particular target trajectory. For example, quotas might achieve a higher payoff

given the target that is optimal under quotas, and taxes might achieve a higher payoff given the

target that is optimal under taxes. This kind of sensitivity cannot arise in our model, where the

optimal targets are (exactly or approximately) the same.

3 The Model

We discuss environmental damages first. The regulator learns about an unknown parameter that

determines the stochastic relation between stocks and damages. Our formulation has two im­

portant features: the vmiability of damages increases with the stock, and the marginal damage

can be extremely large but never negative. We then discuss how the regulator learns about

abatement cost shocks by using a tax, and we present the regulator's optimization problem. We

explain how this model enables us to distinguish the intrinsic effect of parameter uncertainty

from the effect of anticipated learning. We also explain how to modify the model to replace

active with passive learning.

3.1 Uncertain Environmental Damages

Let 5, be the stock of pollutants, and Xt be the flow of emissions in period t. All time dependent

variables are constant within a period. The pollutant stock 5t decays at a constant rate. With

the fraction t. > 0 of the pollutant stock lasting into the next period, the growth equation for

5, is:

In period t the stochastic stock-related environmental damage equals

D(St, Wt; g) = eg (5, - S) 2 0.1" Wt·~ i.i.d. lognormal ( - a; ,a~). (l)
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The slope of marginal damages is 2e9 • For our purposes, the important variable is e9 rather

than g, but the formulation in equation (1) provides a convenient way to introduce parameter

uncertainty. The parameter g (and therefore, the slope of marginal damages) is unknown, and

Wt is a random damage shock. Damage is convex in the pollutant stock (Dss > 0); 5 is the

stoek level associated with zero environmental damage. For example, 5 is the pre-industrial

CO2 level.6 The distributional assumption about W imply7 ;

2

E(w) = 1, Var(w) =ea~ -1, E(lnw) = _0-;, Var(lnw) =o-~.

The relation between stocks and damages is both uncertain and stochastic. The random

shock Wt prevents the regulator from ever learning the true value of the unknown parameter g.

The regulator does not know whether a high level of damage is caused by a large value of g or

by a large realization of the random variable w. Future observations on damages and stocks

lead to better estimates of g.

The regulator begins with a prior belief on g, summarized in a normal distribution with

d · 2mean g, an vanance 0-g,t:

(2)

The subscript t denotes information (a belief) at the beginning of period t. Given distribution

(2), eg has a lognormal distribution with expected value Gt =: exp(g, + ~o-.~,,) and varianee

exp(2gt + o-;,t) (exp(o-;,,) - 1). Since damages are a product of independent lognormally

distributed variables, the subjective expectation of damages, given the current stock and current

beliefs, is lognonnally distributed with mean and variance:

1 2 (. -)2 ( -)2E[D(S"Wt;g)!rl,j=exp(gt+ 20-g,t) 5t -S =Gt 5t -S ,

Var [D(St,wt; g)!rlt ] = exp(2gt +o-:,t) [exp(a:,t+a~) -1] (5, - 5)4.

(3)

(4)

The information set is rl, =: [5" gt, a;,t], the current pollutant stock level, and the subjective

mean and variance of g. Both the expectation and the variance of environmental damages are

increasing in each element of the information set (for 5 t > 5).
6We obtain the special case in which environmental damages are caused by the flow rather than the stock of

pollutants, by setting the stock persistence .1 = 0 and defining Sas the flow level associated with zero damages.
7See Greene [6l page 69. Note that the convention here is that the parameters of the lognormal random variable

w denote the mean and variance of lnw - not the mean and variance of w.
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This model of damages has two appealing features. First, a higher stoek increases the prob­

ability of extremely high damages, associated with extreme events. Some physical scientists

believe that the greatest threat of greenhouse gasses is that they increase the probability of such

events. Second, the slope of the marginal damage of stoeks, 2e9 , is always positive and might

be arbitrarily large. Marginal expected damages are proportional to (St - S) and expected

damages are proportional to (St s) 2. The difference in the magnitudes of these two expee­

tations implies that this model allows for the possibility that a small increase in stock can cause

a large increase in expected damages, even if expected damages at the current stock level are

moderate.s

The coefficient of variation (CV) of damages is increasing in both a~,t and a3:

(5)

3.2 Learning about Environmental Damages

Environmental damages in period t depend on the pollutant stock St, the true value of 9 and

the damage shock Wt. After observing damages and the current stock, the regulator updates his

belief about g. The natural logarithm of damages, from equation (I), is normally distributed.

The "moment estimator" of g, denoted ii" is

with variance a~ = a3.

The Bayesian regulator updates his priors using the moment estimator. The postelior 9 is

normally distributed with the posterior mean gtH and posterior variance a~,tH given by

(6)

(7)

8In an earlier working paper [14] we modeled damages as

D(S" Wt; g) = 9 (St - 5) 2 + w"~ Wt ~ i.i.d. normal (0, O"~), Vt ~ 0.

We abandoned this fonnularion because it ha... neither of the two features described in the text.
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where 0-;,0 is the prior at the beginning of the initial period, t = O. (Greene [6], pages 407-410).

The posterior mean gtH depends on the prior g" the magnitude of uncertainty (0-;" and o-~),

and on the data 5, and D, (via g,). The posterior variance 0-;,H1 depends on t, o-~, and 0-;,0' but

not on the data. Note that the subjective variance of the slope of marginal damages, 2e9 , does

depend on the data. (See equation (4).)

The variance of 9 decreases monotonically with time. A regulator who begins with an

imprecise estimate of 9 (0-;,0 is large) initially puts a large weight on the moment estimator.

As time progresses the regnlator becomes more convinced abont the true value of g, and puts

less weight on the moment estimator. A smaller value of o-~ means that the new observations

are more infonnative, so the regulator learns more quickly about the true value of g. Learning

about damages is "active" because the amount of new information depends on stocks (via g,),
a variable which the regulator is able to influence.

The unknown slope of marginal damages is twice the value of e9 ; the regnlator's expec­

tation of this parameter is G, == exp(g, + ~o-;,,). Since o-;,t is detenninistic and decreases

monotonically, it might seem that the current expectation of future values of G t would decrease.

However, we have (See Appendix 7.2 for details.):

Remark 1 The regulator's current beliefabout e9 is an unbiased estimate ofthe belief that he

will hold in the future: E,GHT = G" 'i7 ::0: O.

3.3 Learning about Abatement Cost

This section compares finns' abatement cost and emission response under taxes or quotas.

Suppose the representative finn's business-as-usual (BAU) level of emissions in period t is

x~ = x + e, where et is a random shock.9 With an actual emission level x, < x~. the finn's

abatement cost is a quadratic function of abatement A (Xt) = ~ (x~ - X,)2 with b > O. The

finn's benefit (its cost saving) from higher emission equals the abatement costs that it avoids.

Defining the cost shock 0, == be" we write the benefit as a linear-quadratic function, concave in

9Tn (15] we study the case where business-as-usual emissions change endogenously due to finn's investment

in abatement capital. There we ignore the uncertainty of environmental damages.
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the emission with an additive cost shock lO

B(Xt,B,) = 1+ (a+Bt)xt - ~xZ.

The cost shock B, is the finn's private infonnation, and it follows an AR(I) process:

/1, ~ i.i.d (0, O'~) , 'it :c: 1, (8)

with -1 < P < 1. The regulator has a subjective prior with mean 00 and variance 0'5 on the

initial cost shock Bo. The i.i.d. random process {/1t} (t :c: 1) has mean 0 and common variance

O'~ and is uncorrelated with Bo.

The finn observes B, before making its current emission decision. If the regulator sets a unit

tax Pt on emissions, finns in each period maximize the abatement cost saving minus the tax

payment:

Max ilt = B (x" Bt) - p,X, = [I + (a + Bt) Xt - ~xz] - PtXt·
~ 2

The finns' first order condition implies that the optimal emission under a tax is

, a - Pt Bt
x, =-b-+b' (9)

The flow of emissions and thus the future pollutant stock St+l is stochastic since it depends on

the cost shock.

Under taxes, the regulator infers the value of B'-1 with a one period lag, using equation

(9) and the observed X;_I' The regulator's posterior beliefs about the cost shock satisfy

ETax (Bt IB,-I) = pB'-1 and VarTax (B,IBt-d = O'~ (t :c: 1). Learning about the cost shock

is "passive" rather than "active": the level of the tax does not affect the amount of cost-related

infonnation that the regulator aequires. Hereafter, when discussing taxes we take the regula­

tor's eontrol variable to be the expected level of emissions, z" rather than the tax Pt. Using

equation (9) we have

ETax (*'B ) a - P, 1ETax (B IB )Zt = xt I t-l = -b- + b t t-l . (10)

If finns have heterogenous cost shocks, and are allowed to trade quotas, the equilibrium

quota price eonveys the same information as does the equilibrium response to an emissions

lOThe parameters satisfy f = _£x2 and a = bx. We ignore the effect of iJ on f since f has no effect on the

regulator's controL
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tax. If firms cannot trade quotas (or do not wish to do so because of transactions costs or

because thcy are homogenous) then the regulator never learns the current value of the cost

shock. Thus, there is an important informational difference between tradable and non-tradable

quotas. Our previous paper [13] explores this difference in a model without uncertainty about

damages. That paper shows that the informational advantage of taxes is a major reason that

they dominate non-traded quotas. In the interests of brevity, here we consider only the case

where quotas are not traded. Given the hostility (from some quarters) to international trade in

carbon permits, we think that this is the relevant comparison. The assumption that quotas are

not traded favors the use of taxes when p ¥ o.
Under a non-tradable quota, the regulator does not learn about cost shocks. The regulator's

subsequent beliefs of the cost shock satisfy EQuoto (litleo) = pteo. Since II appears linearly in

the regulator's objective function, the expected payoff does not depend on the variance of II. If

p = 0, neither policy provides an informational advantage.

Appendix 7.1 summarizes the equations of motion and the expectations of abatement costs

under taxes and quotas.

3.4 Optimal Regulation

The regulator always uses taxes or always uses quotas. II He chooses the policy level in each

period based on current information, in order to maximize the expectation of the discounted

stream of future cost savings minus environmental damages:

00

E t l:.::w {B (xt+j, lIt+j) - D (S'+j, wt+j; g)}.
j=O

(11)

The discount factor is fJ. The regulator anticipates learning about g. A tax-setting regulator

anticipates learning about the cost shock II. Et is the expectations operator conditional on the

regulator's information. This information consists of Ot == [St, gt, O';,t] and Ei (IItlli,t) (i=tax

or quota) with Ii" equal to lit_lOr eo. The regulator takes expectations with respect to the cost

shock II, the damage shock w, and the unknown damage parameter g.

Maximization of the expression in (11) results in a value function Ji (.) (i={tax, quota})

11 Since we rely on numerical methods, we could consider more sophisticated policies, such as a two-part tax,

In order to focus on the policy choice under leaming, we restrict the regulator to the limited policy menu of taxes

and quotas.
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satisfying the following dynamic programming equation (DPE)I2:

J; [5" g" a~", E i (O,IIi,t)] = Max {Ei [B (x" Ot) IIi,,] - E [D(S" w,; g) ID,]
c'

+fJEtJf+l [SH1, gHJ, a~,Hl' Ei (OHdIi,t+J)]} (12)

The control variable c' is the quota level x, under quotas, and the expected emission z, under

taxes, The superscript i = (taxes, quotas) on the expectations operator emphasizes that

information may be different under taxcs and quotas.

The maximization problem with quotas is a special case of the problem with taxes, obtained

by setting Ilt == 0 == a~. Thus, we focus on the problem with taxes. The regulator chooses

the optimal control z, in each period, and then observes firms' emission responses and envi­

ronmental damages. These observations enable the regulator to update the priors on the cost

shock 0, and on g. In setting the optimal control z" the regulator considers its effect on cur­

rent expected abatement costs and on future state variables. The control variable z, affects the

current abatement costs and the pollutant stock SHI directly. Although z, has no direct effect

on the posterior gH1> it influences future beliefs aboutg due to the dependence of gH2 on S'+J'

The independence of the posterior mean gt+J and variance a~,H1 on z, leads to the necessary

condition

Using the definition of zt, equation (10) , the optimal tax level equals the negative discounted

shadow value of future pollutant stocks:

3.5 Isolating the Effect of Anticipated Learning

Parameter uncertainty changes the optimal level of abatement, even in the absence of antici­

pated learning about damages. We refer to this change as the "intrinsic effect" of parameter

uncertainty. The anticipation of learning may cause an additional change ("the learning ef­

fect") in the level of abatement. The learning effect can differ depending on whether learning

is active or passive.

12The time subscript for J denotes changes in the variance Va·rTax (fhIBt-d between t = 0 and t ? 1. The

value function is independent of the variance under quotas.
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This section considers two simpler versions of our model. The first version models pa­

rameter uncertainty without learning of any kind, in order to distinguish between the intrinsic

effect of parameter uncertainty and the learning effect. The second version models uncertainty

with passive learning. This model clarifies the distinction between active and passive learning,

and it helps in understanding the relation between taxes and quotas uuder active learning. It

is also useful for interpretation of numerical results described below. This model may also

be of independent interest, since it shows how to modify the standard linear-quadratic optimal

control problem to include exogenous learning about parameters.

3.5.1 Parameter Uncertainty without Learning

If the regulator never expects to acquire information about the uncertain parameter g, that pa­

rameter is like any other random variable. In this case, we can solve the optimization problem

by replacing the damage function in equation (1) with

D(St) = G1 (St 5)2; _ ( 1 2 )G 1 = exp gl + -ag ] ,
2 '

using equation (3) and E (w) = 1.

This certainty equivalent13 version of the problem with unknown 9 is identical to the linear­

quadratic model studied in a number of previous papers. There is a closed form solution to this

problem, given in terms of the solution to a Riccati matrix equation (Karp and Zhang [13]). The

assumption that G] is convex in the unknown parameter means that greater uncertainty about

9 (a larger value of a;,I) increases the expected slope of marginal damages (= 2G1), leading

to higher abatement. This change is the intrinsic effect of parameter uncertainty. This control

problem satisfies the Principle of Certainty Equivalence (see Section 2), which implies that the

expected (stock and flow) trajectories under taxes and quotas are identical.

3.5.2 Passive Learning

The simplest way to model passive learning, and the closest to our model of active learning, is to

assume that in each period the regulator receives a signal 'fit ~ N(g, a~). With this assumption,

13The certainty equivalent version of a problem with an unknown parameter (here g) replaces that parameter

with a known parameter (here, 91 + ~). By solving the certainty equivalent version, we obtain the solution

to the original problem. In order to distinguish the certainty equivalent approach of solving the problem with

parameter uncertainty and no learning, from the Principle of Certainty Equivalence in the linear-quadratic control

problem, we capitalize the latter.
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the model from Section 3.2 is unchanged, except that the exogenous random variable TJ' replaces

the endogenous random variable 9'. Learning is "passive" here, because the signal does not

depend on anything that the regulator can influence, such as the stock of pollution. Remark I

coutinues to hold. (The current belief about e9 is an unbiased estimate of future beliefs.)

The control problems with both active and passive learning have four state variables, (9"

a~", 5" Ei (O'+111i,l+l))' Under passive learning, the state 9, changes exogenously. This fact

leads to an important simplification of the solution, summarized in the following proposition.

Proposition 1 Under passive learning: (i) The value function is quadratic in w, == (5" EiO,)'.

That is, the value function is of the fonn wn+ Wl'W + W'W2W, i = (taxes, quotas). The

(scalar, vector and matrix) Wj, j = 0,1,2 are functions of 9t and a~". (ii) The vector and

matrix functions WI and W2 are identical under taxes and quotas. This fact implies that the

control rules for quotas and for expected emissions under taxes are identical linear functions

of w, under passive learning. (iii) The scalar function Wodepends on whether the regulator

uses taxes or quotas. (iv) In the special case where EiOt = °we can obtain the optimal control

rule by solving a pair ofrecursive scalar fixed point problems, that do not depend on p or a~.

(See Appendix 7.2 for the proof.) Proposition 1 tells us something about the outcome under

passive learning, and this information gives us a clue about the outcome under active learning.

The fact that expected trajectories are identical under taxes and quotas (under passive learning)

suggests that they should be very similar under active learning - as indeed is the case for our

simulations.

The control problem under active learning cannot be solved in closed form, and because

the state has four dimensions, the "curse of dimensionality" is a serious issue. Any method

that alleviates this numerical problem is useful. Proposition 1.1 means that we get "closer to" a

closed form solution under passive learning. We still need to approximate the unknown (scalar­

vector- and matrix-valued) functions Wj, j = 0,1,2. However, these functions depend on

only two arguments, and the recursive relation that defines them is quite simple; in particular,

it does not involve maximization. We can obtain an exact solution for these functions in

the limiting (steady state) case where a~" = 0. Therefore, this numerical problem is much

simpler than the problem of approximating the four-dimensional value function under active

learning. Proposition l.iv is important because it means that if we are interested in the case

where EtO, = °(a restriction that is reasonable at least for the first period), we can obtain the
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control rule by solving a much simpler numerical problem involving recursive scalar fixed point

problems.

4 Calibration and Model Solution

We calibrate the model to describe the problem of controlling CO2 emissions in order to limit

the possible damages caused by global warming. Most global warming models contain a more

complex relation between greenhouse gas stocks and environmental damages; in some respects

these models reflect more accurately the current state of art of the physical sciences.

A characteristic of this model- in addition to the features described in the previous section­

is its greater transparency. It is easy to discover how assumptions about the likely consequences

of increased carbon stocks and about abatement costs determine the optimal level and method of

abatement, and to explore the role of learning. Our model is consistent with the more complex

models, because our calibratiou uses much of the same data and opinions.

Table I contains the baseline parameter values. We discuss the main assumptions behind

these values here, and provide the details in Appendix 7.3. We then describe the solution

method, relegating details to Appendix 7.4.

4.1 Calibration

Perhaps the most controversial issue concerns the relation between carbon stocks and environ­

mental damages. Calibration of the damage funetion requires three parameters, S (the stock at

which damages are 0), 9, and a~. In addition, we need two state variables, the initial mean and

variance 91 and a;,1' We set S equal to the pre-industrial level of stocks. The choice of the

other four variables is less obvious.

Most readers would find it difficult to decide whether a particular value of 9 should be

considered large or small. Therefore, we assume that stock related damages are proportional

to Gross World Product (GWP), and we define rP as the percentage reduction of GWP due to

a doubling of stocks from their pre-industrial level. We state our assumptions about model

parameters in terms of rP, a parameter about which readers can form an opinion. We use a

stationary model, so we treat GWP as constant. 14 Nordhaus [28] surveys opinions of damages

14Since income will probably grow, this stationarity assumption means that our model understates true damages,

if those damages are really proportional to income. Our other stationarity assumption is that abatement costs do
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EO

Parameter Note
.~-----

(3 a continuous discount rate of 3%

t. an annual decay rate of 0.0083

p cost correlation coefficient

f constant in the benefits, billion $

a intercept of the marginal benefit,

$/(ton of carbon)

b slope of the marginal benefit,

billion $/(billion tons of carbon)2

2e9 true slope of the marginal damage,

billion $/(hillion tons of carbon)2

!YM standard deviation of cost shock,

$/(ton of carbon)

!Y~ variance of In(damage shock)

S zero damage stock, billion tons of carbon

State Space:

S pollutant stock, billion tons of carbon

9 mean of the belief about g

eg , billion $/(hillion tons of carbon)2

variance of the belief about g

expectation about the cost shock,

$/(tons of carbon)

Initial State Variables:

Value

0.7408

0.9204

0.96

-13089.03

224.26

1.9212

0.0604

5.5945

0.6349

590

(781, 2190)

(-6.3029, -2.0544)

(0, 0.6349)

39.1615)

-4.8137,0.6349,

Table I, Parameter values and region of interest in the state space.
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associated with an estimated 3°C warming, a temperature change associated with a doubling

of CO2 stocks. The opinions about 1> range from 0 to 21 percent of GWP with mean 3.6 and

coefficient of variation 1.6 (Table 2 in Roughgarden [34D.

In order to make our model consistent with this survey, we assume that the true value of 1> is

3.6, and that the coefficient of variation of damages is 1.6; this assumption gives us two pieces

of information. We also assume that a;,l equals the posterior after one observation, beginning

with diffuse priors. This assumption implies that a;,1 = a~, so parameter uncertainty and the

inherent randomness of damages contribute equally to the coefficient of variation of damages. 15

With these three assumptions, we can assign values to g, (Y~ and (Y.;,I' Finally, we assume that

the regulator's initial belief is that 1> = 1.33, a value used in previous numerical studies ([17]

[20] [29D. This assumption implies a numerical value for the initial mean, gl.

Thus, our baseline assumes that the regulator currently underestimates the true level of

damages. This case seems to be the most interesting, but we also studied scenarios in which

the regulator correctly estimates or over-estimates the true damages.

We assume that the expected BAU level of emissions is constant, in order to use a stationary

model. We choose this constant so that our model predicts a BAU level of CO2 stocks of 1500

GtC in 2100, consistent with the IPCC IS92a scenario (IPCC [10], page 23). We then calibrate

a quadratic abatement cost function that approximates (very closely) Nordhaus' [29] formula

for expected abatement costs, for levels of abatement ranging from 0 to 75% of BAU emissions.

In our model, the actnal BAU level of emissions is a random variable which is linearly

related to the cost shock e. We use 13 observations of historical emissions, at ten-year intervals,

to estimate a detrended model of emissions. Using these estimates and the assumed relation

between the innovation in emissions and the random variable e, we obtain values of p and a~.

We set the length of a period equal to 10 years. This choice means that for a reasonable

yearly discount rate, the single period discount factor is relatively small, making it easier to

achieve convergence. It also implies that policy levels cannot change frequently.

not change over time.

The state vector in our model includes a;,t, which is deterministic and monotonic in time. Therefore, we could

include a deterministic trend without increasing the dimension of our state vector, This change would require

additional assumptions about growth trends, and in our view would reduce the transparency and usefulness of the

model, without adding real infonnation,
15Recall that a smaller value of (T~ implies that learning occurs more quickly. Given a particular level of the

coefficient of variation of damages, an increase in the uncertainty about 9 (increase 17;,1)' requires an increase in

the speed of learning,
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4.2 Solving the model

In order to solve the model, we use neural networks to approximate the value funetion J (.).

We also experimented with alternative funetional families including ordinary polynomials and

Chebyshev polynomials (Judd [12]). We found that for this problem the neural network ap­

proximation has a higher speed of eonvergence and less severe "curse of dimensionality".

We divide the state space [S, g, 0-;, Eli] into 16 ·12·8·8 = 12288 points. The pollutant stock

ranges from 781GtC (the current CO2 concentration) to 2190GtC (the IPCC IS92e scenario).

Assuming that cP, the percentage loss in GWP from CO2 doubling, lies between 0.3 and 21 (the

minimum non-zero and maximum expert opinions respectively in Nordhaus [28]), we obtain a

range for the parameter g. The variance 0-; lies between 0 and 0.6349, the posterior variance

after one observation, beginning with a diffuse prior. We bound the cost shock Ii using a 95%

confidence interval, based on our estimation that uses historical emissions.

We find the optimal control for each grid point through numerical maximization. The state

variables in the next period depend on the possible realization of damages D t and the cost shock

fJ,t. In solving the dynamic program, we evaluate the expectations in equation (12) using 10

Monte Carlo simulations on random variables D t and fJ,t. The choice of ten simnlations is a

compromise between approximation time/complexity and approximation accuracy. In taking

expectations, we use the regulator's subjective beliefs - not the objective expectations, which

require knowing the true value of g.

5 Results

We discuss the mean trajectories, the effect of learning, and then the comparative statics of

the model. Our baseline case assumes that the true value of g is -3.5005 (corresponding to

cP = 3.6, the mean estimate in Nordhaus [28]) and that the initial belief about g is gl = -4.8137

with o-.~,l = 0.6349 (corresponding to cP = 1.33, a value used in previous studies ([17] [20]

[29]). Recall that cP equals the percentage loss in GWP due to doubling of carbon stocks.

To simulate the outcome, we use this control rule and M draws of sequences of damage

and abatement cost shocks; in some cases we use M = 100, and then to check accuracy we

use M = 1000. These random sequences are drawn from the distributions given by equations

(1) and (8). In each period, the realization of damages depends on the true value of g. Stocks

and beliefs evolve as we described above. We average over the AI realizations of trajectories in
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order to obtain the mean trajectories for stocks, belicfs, and emissions.

5.1 Trajectory Simulation

Figure I shows the expected stock trajectory over 1000 years (100 periods). The right panel

shows the trajectory under BAD and under four optimal trajectories con'esponding to known

values of ¢. When ¢ is known, the Principle of Certainty Equivalence holds, so the expectation

of the emission stock trajectories is the same under taxes and quotas. We solve the problem

with known ¢ by solving a standard linear-quadratic control problem.

The high damage estimate (¢ = 21) causes optimal steady state stocks to reach only 39.91 %

of the BAD level. Steady state stocks are about 330.6 GtC (or 19.6%) lower when ¢ = 3.6

rather than 1.33. Thus, our baseline case implies that in the absence of learning, the belief that

¢ = 1.3 when it actually equals 3.6 would have serious consequences.

BAU

Tax

Time
'"OL'~,,--CMCc-~X-'"c' ---f.--c"c.~'mc--"'oo--coo~'M

Time

Figure I: Pollutant stock over time.

The left panel of Figure I shows the expected stock trajectory when the Bayesian regulator

begins by believing that ¢ = 1.33, and the true value is 3.6. The expected trajectories under

taxes and quotas are not exactly the same, but their difference is not visible at the scale used

in Figure I. Both the tax and quota trajectOlies converge to the same steady state as under cer­

tainty. The fact that the two policies have nearly the same expected trajectories was explained

in Section 3.5. The fact that they converge to the steady state under certainty is not surprising,
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since the subjective variance on g approaches O.

We also compared the expected trajectory when the regulator is certain that q, = 3.6 (i.e. the

optimal trajectory under complete parameter certainty), with the expected trajectory when the

regulator begins by thinking that q, = 1.33 and its true value is q, = 3.6. These two trajectories

never differ by more than a couple of percent.

The two important results are: (i) the choice of taxes or quotas leads to essentially the same

expected stock trajectory, and (ii) the expected stock trajectory when the Bayesian regulator

begins by being much too optimistic about damages, remains close to the optimal trajectory

when the regulator knows the true relation between stocks and damages.

Figure 2: Evolution of belief on the unknown damage parameter over time.

The left panel of Figure 2 shows the expected trajectory for the subjective mean of g and

the right panel shows the trajectory for the corresponding values of q,. The graphs under taxes

and quotas are nearly identical, so we show only one graph. This similarity of mean beliefs

is not surprising, since new information depends on the stocks, and the trajectory of stocks is

similar under taxes and quotas. The subjective mean converges rather slowly to the true value.

It takes five observations (50 years) for the subjective mean to travel approximately 80% of the

distance between the initial mean and the true value, and 21 observations (210 years) to travel

95% of this distance. 16

16Kelly and Kolstad [17} used a different criteria for convergence of beliefs: the expected amount of time it
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As we noted above, the expected stock trajectory with learning remains close to the optimal

trajectory under certainty. Thus, even though it appears that learning occurs slowly, it never­

theless occurs quickly enough to keep stocks from straying far from the optimal level. The

explanation for this is simply that stocks also change quite slowly. For the first 50-70 years,

the optimally regulated stocks are similar when the regulator is certain that 1J = 1.33 or certain

that 1J = 3.6, although those trajectories subsequently diverge (see the right panel of Figure

I). Even though learning is slow, a substantial amount has occurred before the stock moves far

from its optimal level under certainty.

We also conducted a number of simulations to compare the variability (rather than the mean)

of emissions under taxes and quotas. Emissions under taxes are always more variable, because

they respond to the actual value of the cost shock. An increase in p causes a substantial increase

in the variability of emissions under taxes. The information set is much more variable when

the regulator learns about the cost shock and these shocks are highly serially correlated.

5.2 The effect of anticipated learning

We emphasized the distinction between the intrinsic effect of parameter uncertainty (i.e., un­

certainty - but no learning - about the stochastic relation between stocks and damages), and the

effect of anticipated learning. Section 3.5 explains how this model can distinguish between the

two. Here we begin with an assessment of the magnitude of parameter uncertainty. We then

illustrate the intrinsic effect of parameter uncertainty, and the effect of anticipated learning.

Recall that in calibrating the model, we assumed that the coefficient of variation of damages

(associated with doubling of greenhouse gas stock from the pre-industrial level) is 1.6, and that

the initial estimate of the loss resulting from this doubling is 1J = 1.33 percent of GWP. We

also assumed that parameter uncertainty and the random damage shock contribute equally to

the uncertainty about damages, implying an initial value of 0';,1 = .64.

There are several ways to assess whether our calibration implies a large or a small amount

of parameter uncertainty. We can consider the range of possible values of 1J - either before

reaching the steady state or in the steady state; we can obtain an approximate 95% confidence

intcrval for 1J; or we can consider the effect of 0';,1 on the certainty equivalent value of 1J.
Given our state spacc for 9 and 0';, the range of 1J is [.3, 21]. If we take into account the

would take the regulator to reject the hypothesis that the unknown parameter equals the initial prior. Using this

criteria, they also found that convergence to the true belief was slow.
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fact that in the steady state (J~ = 0, the steady state range of <P is reduced to [.2,15.3]. An

approximate 95% confidence interval for <P is [.27,6.6].'7 The certainty equivalent damage

coefficient is G = exp(g + ~(J~). We can calculate the value of g that corresponds to <p = 1.33

under parameter certainty (J~ = 0). Using this same value of g, but now letting a~ = 0.64 (our

baseline estimate) implies that <p = 1.83, an increase of about 38%.

These calculations give somewhat different impressions regarding the magnitude of uncer­

tainty about <p implicit in our calibration. However, they all suggest that uncertainty about <p is

not negligible. We now consider whether this uncertainty is potentially important. Columns

3-6 of Table 2 show the optimal level of emissions and abatement in the first (ten-year) period

under parameter certainty, for four (known) values of <p. This table and Figure 1 show that

hoth the optimal level of first period emissions and the stock trajectories are quite sensitive to

<p. This observation, and the fact that our model includes non-negligible uncertainty about <p,

means that anticipated learning about <p is potentially important.

We emphasized in Section 3.5.1 that we can model parameter uncertainty without learning

by solving a certainty equivalent problem, i.e. by changing the value of G j (which is linearly re­

lated to <p). Since optimal emissions are sensitive to <p, parameter uncertainty (without learning)

is important. For example, increasing <p from 1.33 to 1.83 (a 38% increase) raises abatement

from 9.8% to 13.11 % (a 34% increase).

The last two columns of Table 2 show the emissions and abatement levels (in the first ten

year period) under active and passive learning. The entries in these two columns should be

compared to the entries in the column labelled <p = 1.33. (Our baseline calibration used the

assumption that the initial belief is <p = 1.33.) This comparison shows that the anticipation of

learning decreases abatement, but by a small amount. 18

17We obtain this approximate confidence interval by taking two standard deviations around the initial point

estimate of g. using the fact that G 1 is proportional to the initial expectation of ¢ (see equation (18) in Appendix

7.3). We set the damage shock w equal to its expected value.

18The algorithm that we used to solve the problem under active learning uses neural networks, and is quite

complex. Using Proposition 1, we were able to solve the passive learning problem using a simpler algorithm,

described in more detail in Appendix 7.2. \Vhen we use different numerical methods to solve the two problems,

the emissions levels are not directly comparable,

In order to obtain comparable numbers, we solved the passive learning model with the (complex) algorithm

used for active learning, In this case, we find that the first period emissions under active and passive learning

are virtually identicaL Thus, the difference in the emissions levels reported in the last two columns of Table 2 is

probably due to the difference in numerical methods, and not to the difference between active and passive learning.
The fact that the two methods of solving the passive learning model lead to such similar control levels, inspires
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! active passIve
BAU I ¢ = 0.3 ¢ = 1.33 ¢ = 3.6. ¢ = 21

learning learning

emissions I 116.73 113.96 105.26 89.4 i 26.06 105.8 105.54i I

abatement
I

2.35% 9.8% 23.4% 77.7% 9.3% 9.6%
(% ofBAU)

tax ($/tC) 5.32 I 22.03 52.50 174.19 20.99 21.50

Table 2: First Period Emission, Abatement Level, and Tax

Under both active and passive learning, the current belief about the damage parameter is an

unbiased estimate of future beliefs (Remark 1). This feature might appear to suggest that the

regulator acts as if beliefs will not change - a conjecture that would explain the insensitivity

of the optimal control to the amount of learning. This explanation is not correct, as it would

imply that the certainty equivalent (no learning) model and the model of passive learning lead

to exactly the same control rule. By comparing the functional equations that determine the

control rules in the two cases (see Appendix 7.2), we can verify that the control rules are not

identical. Anticipated learning does change optimal behavior but not by very much.

The last row of Table 2 shows the tax level that supports the optimal (expected) level of

emissions. Decanio [4] describes recent attempts to estimate the level of carbon tax that would

be needed to achieve reductions in emissions. The Energy Modeling Forum at Stanford Uni­

versity estimated that a tax of between $50 and $260 per metric ton - with an average of $170

- would induce a 20% emissions reduction, relative to 1990 levels. The Interagency Analytic

Team of the US government estimated that a tax of between $89 and $160 per metric ton would

stabilize emissions at 1990 levels, by the year 2010. Our point estimate of $52.5 for a 23.4%

reduction is lower than those estimates, but is of a similar order of magnitude.

5.3 Ranking taxes and quotas

We explained that the expected stock and emission trajectories are identical under taxes and

quotas if the damage parameter is known with certainty, if it is unknown and there is no learning,

or if it is unknown and there is passive learning. Even in these cases, the expected payoffs

confidence in our numerical results.
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differ under the two policies, as explained in Section 2. Numerical experiments show how

active learning affects the comparison of payoffs.

We compared the sensitivity of the policy ranking by varying one of the parameters or

initial conditions, holding the others constant. In all cases, taxes dominate quotas, always by a

fraction of one percent of 1998 GWP. For the baseline parameters, the difference between the

value function under taxes and under quotas is approximately 0.13% of 1998 GWP. The largest

difference in value functions (0.4% of 1998 GWP) occurred when we set the cost variance equal

to its maximum allowable value. Thus, with a yearly discount rate of 0.03, our baseline estimate

of the annual savings resulting from the use of taxes rather than quotas is (0.13) .03 = 0.00

39% ofl998 GWP, or approximately $113 million (1998 dollars). Our highest estimate of the

annual savings from using taxes rather than quotas is about $340 million.

Several previous studies also found a slight preference for taxes rather than quotas. In cases

where there is a large welfare difference under the two policies, the model does not satisfy the

Principle of Certainty Equivalence (Hoel and Karp [8] and Pizer [33]). Thus, a large difference

in welfare under the two policies seems to require that the endogenous targets also be different

under the two policies. To the extent that policy-makers even consider the choice between

taxes and quotas, they probably want to hold the target level of emissions fixed.

Under active learning, a higher stock level decreases the preference for taxes. (Under pas­

sive learning or parameter uncertainty without learning, the Principal of Certainty Equivalence

implies that the welfare comparison is independent of the stock level.) As the marginal en­

vironmental damage increases with the pollutant stock, it becomes more important to control

emissions exactly (as occurs under a quota) rather than choosing only the mean of emissions

(as occurs under a tax). The magnitude of the effect is small: doubling the stock causes only a

0.3% reduction in the difference in expected payoffs under taxes and quotas.

A higher expected value of 9 (91), corresponding to steeper expected marginal damages,

favors the use of a quota. Section 2 explained this result. An increase in 0';,1 favors the

use of taxes. This result is surprising, because we know that a higher value of 0';,1 has the

same effect as a higher value of 91 in the certainty equivalent version of the model. A possible

explanation is that greater uncertainty about 9 makes marginal damages uncertain under either

taxes or quotas, eroding the feature (described in Section 2) that favors the use of quotas.

Higher objective randomness of damages (higher a~) - unlike higher subjective uncertainty

(higher a;,J - favors quotas. An increase in objective randomness increases the probability of
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a very bad damage shock. The increased danger of a bad cost shock, associated with higher

value of o'~, makes it more important to be able to control the stock level. Since quotas enable

the regulator to control stocks more precisely (relative to taxes), a higher value of o'~ favors

quotas.

As noted above, the informational difference between taxes and (non-tradable) quotas is an

important reason that the emissions trajectories differ under the two policies. A larger variance

in the cost shock (0'2) magnifies this informational difference. The payoff difference is much

more sensitive to changes in 0'2, compared to changes in other parameters.

We also investigated the sensitivity of the policy ranking with respect to other parameter

values. The comparative statics are the same as described in Section 2, so we do not repeat

them here.

6 Conclusions

The high degree of uncertainty about the relation between environmental damages and stocks

of greenhouse gasses is central to the debate concerning the optimal level and method of green­

house gas abatement. The fact that we anticipate learning about this relation complicates the

decision. This anticipation can be used as an excuse to delay action, in order to avoid unnec­

essary sacrifices, or as a reason to make additional efforts, in case we learn that the situation is

more serious than we expected.

We used a simple model in order to study this dilemma. The model neglects many complex­

ities of the science of global warming. However, it captures, in a nearly transparent manner,

beliefs about probable orders of magnitude concerning abatement costs, environmental dam­

ages, and levels of uncertainty. In addition, the model allows for nearly catastrophic damages;

it restricts damages to be positive regardless of the magnitude of uncertainty; and it implies that

both the variance and the mean of damages increase with the stock. The model enables us to

identify the effect of anticipated learning, as distinct from parameter uncertainty, and also to

distinguish between active and passive learning. We obtained three main conclusions that have

a direct bearing on the global warming debate.

The most important conclusion is that although anticipated learning (either active or passive)

leads to slightly lower abatement (higher emissions), the effect is extremely small. Some pol­

icy discussions have emphasized that thc anticipation of "better science" should influence our
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current decisions. Our results snggest that the importance of this issne has been exaggerated.

Environmentalists who favor current abatement, or those who oppose the sacrifices needed to

achieve this abatement, should base their positions on their beliefs abont the expected relative

magnitudes of environmental damages and abatement costs. These considerations have an im­

portant effect on the optimal level of abatement, but the possibility of more precise knowledge

in the future has a very small effect.

Since we assumed that damages are convex in the unknown parameter, uncertainty about

that parameter (in the absence of learning) increases the optimal level of abatement. The

amount of parameter uncertainty in our calibration is consistent with a 34% increase in first

period abatement levels, suggesting that anticipated learning could be significant. The models

under both active and passive learning are qualitatively different than the model with parameter

uncertainty and no learning. However, for the parameters that are relevant for global warming,

the quantitative difference in the model outcomes is small. In future work we intend to iden­

tify the region of parameter space for which the degree and type of learning is quantitatively

important.

Our calibration implies that we will learn slowly about the true relation between stocks and

damages. However, these stocks will also change slowly. Our second policy conclusion is

that even if our current beliefs about global warming are too optimistic, we may be able to

learn quickly enough to keep the stock level close to the full-information optimal level. This

conclusion is based on a model that assumes a continuous relation between stocks and damages.

If there is an unknown threshold level of stocks above which damages are truly catastrophic,

our model is not appropriate. The conclusion might also be true but irrelevant, in the absence

of political will to base abatement decisions on current science.

Third, for all "reasonable" parameter values, taxes are a better instrument than quotas. In

our setting, much of this superiority is due to the fact that taxes provide more information about

abatement costs than do quotas. Tradeable quotas eliminate this informational advantage.

Previous work suggests that taxes would nevertheless remain superior to quotas. However, the

magnitude of the payoff difference is small, when the target level of emissions does not depend

on the policy tool. In other words, the policy tool used to achieve a particular target level of

emissions may not matter much, although of course the target level is important.
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7 Appendix: Technical Information

This appendix summarizes infonnation about equations of motion and the expectation of abate­

ment costs under taxes and quotas. We give proofs for Remark I and Proposition 1. We then

provide the details of the model calibration and of the method of solution of the numerical

problem.

7.1 Summary of equations of motion and expected benefits

Here we summarize the material from Section 3.3. The subjective mean satisfies the followiug

equation of motion:

under taxes, and

peo = pOo + Pl1o, t = 0

uuder quotas. Under taxes, 110 == 00 - eo has mean 0 and variance a5' J1-t (t :::: 1), as defined in

equation (8), has mean 0 and variance a~.

The finn's emission response as a function of Zt is:

The regulator's expectation of the finn's cost saving in period tis:

ETax {B [x; (Zt, Ot) ,etl let·d
= f [ ETax (n In)] b 2 Var

Tax
(Ot lOt-])+ a + UttUt-! Zt - ~?t + 2b

under taxes, and

EQuata l'B (x 0) Ie 1 = f + fa + EQual", (0 le)J x - ~X2tl t OJ L - t 0 _ t 2 t

under quotas. Under taxes, the finn adjusts emissions to the realized cost shock, increasing

the expected cost saving by VarTaxJ:tiOt.d which equals ~ when t = 0 and ~ when t >
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1. However, taxes make the next-period pollutant stock stochastic, increasing expected future

environmental damages (since the damage function is convex in the pollutant stock, by Jensen's

Inequality).

7.2 Proofs

Proof. (Remark I) Note that this proof also holds in the ease of passive learning. We only need

to show that E,G,+! == Gt • The Remark then follows from the rule of iterated expectations.

We find the mean and variance of the normally distributed posterior estimator gt+l under

active learning. Given the prior belief on g, the expeeted moment estimator (before observing

current damages) under active learning is the prior:

Thus the conditional mean of the posterior estimator gt+J equals the prior:

The eonditional variance of the posterior estimator gt+1 is

Gt+J is lognormally distributed with mean

E ( a~,t+l) E () (a~,t+l )texp gt+J +-2- == texp gt+J 'exp -2-

== exp [Et (gt+l) + ~vaT' (gt+J)] . exp [2 (:l::~,t) ]
exp [g + a;,t -!- a;"a3 ]

. t 2 (a~ + a;,t) . 2 (a~ + a;.t)

( O~t)exp gt + 2 == Gt .
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•
Proof. (Proposition 1) To simplify notation, it is convenient to write the dynamic problem

in tenus of the states Gt and a;,t rather than gt and a.~,t. Begin with a guess that the value

function is linear-quadratic in Wt == (St, E;l1d:

We use time subscripts on the unknown functions to indicate the time subscript of arguments

of the function. For example, ,pll,t == ,pll (Gt ,a;).

Using the necessary condition (13), under passive learning the optimal control rule is linear

in 5, and E;l1t, and is identical under taxes and quotas if and only if the functions W2 and WI

are the same under taxes and quotas:

z; = x; [a + ,BEt (1!I,HIll + [1 + (3pEt (,p12,t+!)l E;l1t + (3i:lEt (,pll,HJl St
b (3Et ( ,pll ,t+!)

= <l'o + <l'lWt·

(14)

(Under active learning, the value function is not linear-quadratic in Wt == (St, E;l1t )' and the

optimal control is not linear in Wt, because of the dependence of GHI on St. Under parameter

uncertainty without learning, the functions VI,t+!, ,pll,t+l and ,p12,HI are non-random constants.

Under passive learning these functions depend on GHl< which is a random variable at time t.)

Substituting the optimal control under passive learning back into the DPE and equating the

value function coefficients leads to a recursive system of nonlinear matrix equations:

W2 (Gt,a;,t) = F2 (Gt,EtW2 (GHh a;,t+1)),

WI (Gt,a;,t) = F I (E,W2 (GHI,a.~,Hj) , EtWj (GHI,a;,HI))'

W~ (Gt,a~,,) = Fo (EtW2 (Gt+ha~,t+!) ,EtWj (Gt+!,a~,HJ ,EtW~ (Gt+!,a~,t+1)).

(The explicit system of matrix equations is cumbersome, so we do not produce it in its entirety

here, but it is available on request.) For functions w:; that satisfy these equations, the quadratic

value function satisfies the DPE and the transversality condition, thus establishing Part (i) of

the Proposition. This system of equations is recursive, and the equations for W2 and WI are

identical under taxes and quotas. The control rule (14) is therefore the same under taxes and

quotas, establishing Part (ii). The equation for W~ differs under taxes and quotas because of the
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difference in the dynamic equation for E;Ot under taxes and quotas; this fact establishes Part

(iii).

When E;Ot = 0 the control rule (14) does not depend the function ,p12, but it does depend

on the functions ,p11 and VI' In order to establish Part (iv) we need the formulae that determine

these two function. These equations are:

(15)

(16)

These two functions do not depend on the functions ,p12, ,p22 or V2 or on the parameters p or

a~. Equations (15) and (16) can be solved recursively. Thus, we can find the optimal control

rule by solving two scalar fixed point problems. These remarks establish Part (iv).•

Discussion. We solve the fixed point problems in equations (15) and (16) using the collo­

cation method, described in Miranda and Fackler [24]. We use the following procedures from

the toolbox that accompanies their book: FUNDEFN, FUNFlTXY, FUNEVAL.

In the limiting case where there is no parameter uncertainty (a~ = 0), Gt+l == Gt . In this

case we have the standard linear-quadratic control problem. We merely remove the expecta­

tions operator in equations (15) and (16). For this limiting case we obtain a closed form (but

complicated) expression for the control rule.

7.3 Model Calibration

Our discount factor for a ten-year period, ,8 = 0.7408, implies an annual discount rate of 3%

([17] [20] [29]). Both costs and damages are measured in billions of 1998 US dollars.

CO2 emissions and stock. The CO2 atmospheric stock St is measured in billions of tons

of carbon equivalent (Gte). The pre-industrial atmospheric stock is about 590GtC as estimated

by Neftel et al. [25] and used in Kelly and Kolstad [l7] and Pizer [32]. We take this level to

be the steady state stock given a low level of economic activity. Let et be total anthropogenic

CO2 emissions in period t. Approximately 64% of these emissions contribute directly to the

atmospheric stock ([20] [29]). Remaining emissions are absorbed by oceanic uptake, other

terrestrial sinks, and the carbon cycle (IPCC [10]). The linear approximation of the evolution

30



of atmospheric stocks is

5t - 590 = Ll. (5t- 1 - 590) + 0.64et·

We take Xt == 0.64et, the anthropogenic fluxes of CO2 into the atmosphere, as the control

variable and rewrite the above equation as

5t = Ll.5H + (1 - Ll.) 590 + Xt· (17)

The estimate of the stock persistenee is Ll. = 0.9204 (an annual decay rate of 0.0083 and a

half-life of 83 years). ([17] [20] [29])

Environmental damage. There is a simple relation between </>, defined as the percentage

reduction in Gross World Product (GWP) due to a doubling of CO2 stocks, and the parameters

of our model. In Nordhaus's survey [28] the expert opinions on </> range from 0 to 21 percent

of GWP with mean 3.6 and coefficient of variation 1.6. Our calibration is consistent with these

expert opinions.

The 1998 estimate of GWP is 29,185 billion dollars (International Monetary Fund [11]),

for a 10 year estimate of GWP of 291,850. The estimated damages due to doubling of CO2

stocks during this period is 291,850Jto. Equating this value to the expected damages given by

equation (3) gives us one calibration equation:

1 1 2 2 1 2291,850</>100 = exp(gl + 2a9,1) (590) =} .0083841</> = exp(gl + 2a9,1) = Gj • (18)

(We have set the time index t = 1.) Equation (18) implies that if the true value of </> is 3.6

(and the regulator knows this, so that a: = 0) then the true slope of marginal damages is

2 (.00838 41</» = 2eg = 6. 0366 x 10-2
.

We obtain our second calibration equation using the coefficient of variation of damages in

Nordhaus' survey and equation (5):

CV (</» = 1.6 = [exp(aI,t + a:')
1

I)' =? 3.56 = exp(a:,1 + a:'). (19)

We need one more assumption to identify the model parameters. We assume that the regulator

begins with diffuse priors (17:,0 = 00) and has made one observation, so his posterior variance

(using equation (7) is 17:,1 = 173. Using this equation, we can solve equation (19) to obtain

17:,1 = 173 = .63488. Using this value we can rewrite equation (18) as g1 = -.31744 +
In (8.3841 x 10-3</». Thus, the value of gj corresponding to the belief that </> = 1.33 and the

level of uncertainty 17:,1 = .63488 is gl = -.31744 + In (8.384 1 x 10- 3 (1.33)) = -4.8137.
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Abatement cost. Uncontrolled emissions are expected to rise over time. leading to more

than doubling of carbon stocks. In order to retain a stationary model, we need to assume that

expected BAU emissions, X, are constant. Given the current atmospheric CO2 concentration

So == 781GtC (Keeling et al. [16]), using equation (17) the expected future BAU atmospheric

CO2 concentration is

S A ts 1 - L'; t '( ) , -1
t == '-' 0 + 1 _ L'; l 1 - L'; 590 -r x, .

Wc choose x == 116.73 GtC so that our model is consistent with the IPCC IS92a scenario that

projects CO2 stocks at 1500 GtC in 2100 (IPCC [10], page 23).

We calibrate the abatement cost function as a quadratic approximation to Nordhaus' [29]

formula, A == 0.0686u2.887 x 291,850, whereu is the fractional reduction in CO2 emissions

and A is the abatement cost. We draw 1000 realizations of u from a uniform distribution with

support [0, 0.75J (the same support that Nordhaus [27] used) and calculate A using this formula.

Each value of u implies a value of abatement, x - ;r == ux, with x == 116.73. We regress A

against (u1')2 to obtain a quadratic function for abatement costs:

A (Xt) == 0.9606 (116.73 - Xt)2 .

The R2 for this regression is 0.9762, implying that the quadratic function and the function in

Nordhaus's formula are very similar, for reductions between 0 and 75% of emissions. The

benefit function (the negative of abatement costs), including the additive cost shock is,

B (Xt, (),) == -13089.03 + (224.26 + (),) Xt - 0.9606x~

giving an estimated slope of marginal benefits of b == 1.9212 billion $IGtC2 •

Cost correlation and unceJ1ainty. In our model, the cost uncertainty is linearly related to

the BAU level of emissions. We used data on actual emissions to estimate the variance and

autocorrelation of the cost shock. Using maximum likelihood method on data from Marland

et. ale [22] (total global carbon emissions over every 10 years during the period 1867-1996) we

estimated the following model:

Vt ~ iid N (0, <7?) .

(Since we have only 13 observations, we view this procedure as merely a means of calibration.)

The estimates are p == 0.96 and <7v == 4.55 Gte. We convert the emission uncertainty <7v into
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cost uncertainty a~ by multiplying it by 0.64 (because Xt == 0.64et). and then by the slope of

marginal abatement cost b = 1.9212 (because Ot == bet). The result is aM = 4.55 x 0.64 x

1.9212 = 5.5945$/(ton of carbon). For simplicity, we assume ao = aw (The regulator's

subjective prior on 00 has the same variance as the subsequent cost shocks.)

7.4 Solving the DPE by Value Function Iterations using Neural Networks

Taylor and Uhlig [35] review a variety of methods to solve the OPE (12). The method of

linear-quadratic approximations (Christiano [2], McGrattan [23]) is not applicable here because

the environment in this problem is far from the steady state. We obtain an approximation of

J (-) by value function iterations using a specific family of functions q; (.; B) with B being

the parameter vector. The objective is to find the parameter vector B* so that the approximated

value function J (.) == q; (.; B*) comes close to satisfying the OPE (12). We use neural networks

to achieve this approximation. We experimented with alternative functional families including

ordinary polynomials and Chebyshev polynomials (Judd [12]). We found that for this problem

the neural network approximation has a higher speed of convergence and less severe "curse of

dimensionality".

We divide the state space [S, g, a;, EO] into 16· 12·8· 8 = 12288 points. The range

of the pollutant stock is from 781GtC (the current CO2 concentration) to 2190GtC (the IPCC

IS92e scenario). Assuming that 1> is between 0.3 and 21 (the minimum non-zero and maximum

expert opinions respectively in Nordhaus [28]), we have the parameter g between -6.3029 and

-2.0544. The variance a; lies between 0 and 0.6349, the posterior variance after a diffuse

prior. We bound the estimated cost shock EO by ± 1~ which is (-39.1615, 39.1615), thev 1~p2

95% confidence interval for the cost shock in the long-run.

We denote the vector of state variables (S, g, a;, EO)' at grid point nby Xn and the set

of all grids by X. Suppose there are n = 1, ... , N grid points in state space. With a specific

family of functions q; (.; B), the method of value function iterations begins with an initial guess

of the value ji-l (Xn) at cach grid point. We then find the parameter vector B' that minimizes

the sum of squared residuals over the set of grid points in the state space:

(20)

Corresponding to the OPE (12), we denote the current expected payoff at each grid point by

F (Xn; Zn) and growth equations of state variables by G (Xn, Zn; !1n, Dn). Zn is the optimal
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control, which needs to be detennined, for the specific grid point n. Pn is the realized cost

shock, and Dn is the realized environmental damages; both at grid point n. We find the optimal

control Zn by solving

and get a new approximation to the optimal value, ji (Xn), at each grid point n.

Given a grid point (initial vector of state variables) Xn, the vector of state variables in the

next period is G (X n, Zn; Pn, D n ); it depends on the optimal control Zn and realizations of the

cost shock Pn and the damage D n. To evaluate the expectations in equation (21), we use 10

Monte Carlo simulations of the random variables Pt and D t .

We find the parameter vector 13' by iterating steps (20) and (21) until the approximated

value function converges:

Ilf (X) - ji-l (X)II < 10-8

Figure 3 depicts a single hidden layer feedforward neural network. The input units corre­

spond to the state variables at each grid point, (Xl, X2, .1'3, .1'4) == (S, g, a;, Ee) == Xn' The

output unit corresponds to the approximated value j (Xn ). Instead of a direct relation between

the inputs and the output, the neural network assumes that there exists one layer of hidden units

Lj (j = 1, ... , m) between the input units and the output unit.

Each of the hidden units L j ( .i = 1, ... , m) receives a signal I j that is the weighted sum

of all inputs Xi (i = 1, ... ,4), I j = WOj + I::~l WijXi, and sends out a signal L j = 1i (I j ).

1i is a transfer function. Similarly, the output unit receives a signal J that is the weighted sum

of signals from the hidden units, J = ro + I:7~1 rjLj , and sends out a signal j = 1i (1).
The network is feedforward because signals flow in only one direction. Such a neural network

mapping from inputs Xnto the output j (Xn) can be written as

13 = (Wij, rj: i = 0, ... ,4; j = 0, ... , m) is the vector of parameters in the neural network.

We use the logistic function 1i (A) = 1+;-" A E R, as the transfer function. '9 Here for

each hidden unit, A = I j ; and for the output unit, A = J Hornik et al. [9] proves the ability of

adopt the same transfer function for the hidden units and the output unit. The transfer functions for

these two levels of units can be different. The usual requirement is that 1{: R --+ [0, 1], nondecreasing,

lim,,-+= 11. (A) = 1, and IimA-+-OO 11. (A) = O. (Hornik et al. [9))
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Figure 3: A single hidden layer feedforward neural network.

such a neural network to approximate an unknown mapping arbitrarily well, provided there are

sufficient number of hidden units.

A possible way to choose the number of hidden units is cross-validation (White [38]). To

balance the computation time/complexity and the approximation accuracy, we take 10 hidden

units, resulting in 61 elements in B.

The algorithm in optimizing (20) is Back-Propagation which implements a local gradient

descent (see White [39] for technical details). The algorithm in optimizing (21) is the Quasi­

Newton method with a mixed quadratic and cubic line searching. We implement both optimiza­

tions using MATLAB built-in routines.
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