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Abstract

We study the importance of anticipated learning ~ about both environmental damages
and abatement costs — in determining the level and the method of controlling greenhouse
gas emissions. We also compare active learning, passive learning, and parameter un-
certainty without learning. Current beliefs about damages and abatement costs have an
important effect on the optimal level of emissions. However, the optimal level of emis-
sions is not sensitive either to the possibility of learning about damages, or to the type of

learning (active or passive). Taxes dominate quotas, but by a small margin.
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1 Introduction

Many pollutant stock externality problems -~ notably the problem of controlling greenhouse
gasses — are complicated by the uncertainty of abatement costs and environmental damages. In
setting environmental policies, a regulator who has imperfect information about these economic
and environmental costs and damages should recognize that information may improve over
time. We construct a model of a stock externality that includes endogenous learning about both
abatement costs and stock-related damages. We calibrate the model to describe the problem of
global warming and solve it numerically. The results show how uncertainty and learning affect
both the optimal level of control and the comparison of taxes and quantity restrictions.

Several papers ([7], [8], [13], and [26]) compare taxes and quotas for the control of stock
externalities when firms and the regulator have asymmetric information about abatement costs.
The main result from Weitzman’s [37] static model continues to hold: a steeper marginal en-
vironmental damage curve, or a flatter marginal abatement cost curve favors the use of quotas.
These models assume that the regulator knows the parameters of the damage function.

We extend these models to describe the situation where the regulator does not know — but
learns about — the true relation between pollutant stocks and environmental damages. We
identify the effect of parameter uncertainty in the absence of learning by solving a certainty
equivalent version of this model. The possibility of learning about these uncertain parameters
causes a qualitative change in the optimization problem. This difference enables us to identify
the effect of learning, as distinct from the intrinsic effect of parameter uncertainty.

The uncertainty about both abatement costs and stock-related damages, coupled with the
belief that we will obtain better information over time, is central to the current debate over
efforts to reduce carbon emissions. If we were convinced that this uncertainty would persist
indefinitely, we could model it like any other form of randomness. The possibility that we
will learn more about the relation between greenhouse gasses and global warming complicates
the debate. If we incur large abatement costs now and later learn that global warming is not a
serious problem, we will have wasted resources. If we delay cutting emissions and later learn
that global warming is a serious problem, we will suffer avoidable damages.

Chichilnisky and Heal [1] explain why anticipated learning may lead to greater initial abate-
ment when irreversibilities are important. Ulph and Ulph [36] explain why the relation between
learning and the amount of abatement is ambiguous. Their numerical results suggest that under

plausible circumstances, anticipated learning decreases imitial abatement, and that usually the



magnitude of the effect of learning is small. Our results are consistent with [36], although our
model is very different.

The uncertainty about abatement costs is also an important component of the debate, Op-
ponents of the Kyoto Protocol frequently claim that the economic cost of reducing emissions
is large; proponents point to reasons (e.g. positive externalities in innovation) why abatement
costs will be small. We do not know the actual costs.

Much of the existing literature concerning climate change uncertainty assumes that it will
eventually be resolved’ (e.g., Kennedy [18]. Kolstad [19] [20], Manne and Richels [21], Nord-
haus and Popp {30], Peck and Teisberg [31]). Nordhaus and Popp [30] and Peck and Teisberg
[31] consider the difference between “act and learn” and “learn and act”. All these papers focus
on the effect of passive learning; the exogenous arrival of information decreases uncertainty.
Passive learning may occur all at once as in Kennedy {18}, Kolstad [19], or more gradually as a
function of time as in Kolstad [20}.?

The assumption of passive learning ignores the possible impact of the regulator’s decisions
on the learning process. Policy decisions will affect future levels of stock, and the magnitude
of these levels may affect the amount of information that the regulator acquires. The regulator
is unlikely to manipulate global carbon stocks in order to learn the true relation between stocks
and damages.” However, the regulator should recognize that there is a relation between control
decisions and learning.

Kelly and Kolstad [17] consider active learning about the relation between greenhouse gas
levels and global mean temperature changes. Their simulations show that abatement is sensitive
fo the state of knowledge, and they find that learning occurs slowly.

We model active learning about stock-related damages. There are two main differences in
focus between our paper and [17], in addition to many technical differences. First, we allow
for uncertainty and learning about abatement costs as well as stock-related damages. Arguably,
uncertainty about abatement costs is as important an issue as uncertainty about environmental
damages. Second, we compare the use of taxes and quotas in this setting. Our paper contributes
to two related but distinct literatures, the control of emissions under learning about damages,

and the control of emissions under asymmetric information and learning about abatement costs.

"Pizer [32] considers persistent uncerfainty. He studies an open-foop equilibrium, where no learning occurs.

2 Another literature emphasizes the role of learning and irreversibilities in abatement capital and pollution
stocks; see Fisher and Narain {5].

*For some problems, particularly where the stock decays rapidty, that kind of active leaming might make sense.



Our mode! has several key features. (i) It allows for the possibility that additional stocks
cause very large increases in damages, even if current expected damages are moderate. (ii)
There is an objective stochastic relation between stocks and damages. The regulator does not
know one of the parameters of this relation. By observing stocks and stock-related damages
the regulator learns about the unknown parameter, but does not learn its exact value in finite
time, (iii) Our model makes it easy to distinguish between the intrinsic effect of parameter
uncertainty, and the effect of anticipated learning about the uncertain parameter(s). Thus,
we can isolate the effect of learning. We can also distinguish between the effect of active
and passive leaming. (iv) The firms have better information than the regulator concerning
abatement costs. These costs change over time, and may be serially correlated. Under some
circumstances, the regulator is able to learn about abatement costs, but firms always remain
better informed about them.

Qur principal policy conclusion is that the optimal level of emissions is insensitive to the
anticipation of (either active or passive) learning about environmental damages. This conclu-
sion is important, because both opponents and proponents of imposing stricter abatement rules
now have used this anticipated learning to support their position. Our results suggest that this
hope for improved science may be a red herring in the discussion of current abatement policies.
Those policies should be based on our current beliefs about the relation between carbon stocks
and environmental damages ~ i.e. on the best current science — rather than on our beliefs that
information will improve.? Of course, this conclusion is based on a particular parameterization
of a particular model.

The next section discusses some basic ideas that are important in understanding our model
and results. We then describe how the regulator learns about stock-related damages and abate-
ment costs. Using previously published data and conjectures about global warming, we cali-
brate the model, and then solve it to show how learning affects the optimal level of emissions

and the choice between taxes and quotas.

4Our model has nothing to say about the argument that we should postpone abatement until technological

improvements reduce abatement costs.



2 Background

Since we draw on ideas from several specialized fields, we begin with a basic discussion. Here
we explain the intuition for the ranking of taxes and quotas when there is asymmetric infor-
mation about abatement costs. Then we describe the difference between active and passive
learning, and we discuss the role of the Principal of Certainty Equivalence.

In a period, the firm — but not the regulator — knows the current marginal abatement cost
function. I faced with an emissions tax, the firm sets marginal abatement costs equal to the
tax. Thus, under taxes the regulator chooses the current level of marginal cost and regards
emissions as random. Under quotas the regulator chooses the current level of emissions and
regards the level of marginal cost as random.” This difference causes the expected payoffs to
differ under the two policies.

The convexity of damages means that a mean-preserving spread in emissions (or stocks)
increases expected damages. Steeper marginal damages —i.e. a more convex damage function
- increase the importance of controlling emissions (or stocks) exactly, and therefore favor the
use of guotas. When marginal abatement costs are steeper, it is more important for the firm to
be able to adjust emissions in lght of the current cost shock. Thus, steeper marginal abatement
costs favor the use of taxes.

It is more important to control emissions (and stocks) exactly when the stock is more per-
sistent. Thus, a more persistent stock favors the use of quotas. Since current emissions cause
damages in the future, a higher discount factor increases the importance of controlling exactly
the current level emissions. Thus, a higher discount factor increases the range of other pa-
rameter values for which a quota is preferred. However, the ranking of policy depends on the
comparison of the present discounted value of abatement costs plus damages under the two
policies. A larger discount factor increases the present discounted streams under both policies,
and therefore can increase the magnitude by which either policy is preferred to the other. The
effect on policy ranking of the degree of autocorrelation between cost shocks depends on the
information structure. We return to this issue in Section 3.3.

In our model, future observations of stocks and damages enable the regulator to learn about

the true relation between these variables. Since the “signal” (damages) depends on the stock,

In commen with 1108t papers on this topic, we assume that the quota is binding with probabitity 1. Costello
and Karp {3} examine a model with flow-dependent damages, in which the regulator can use a non-binding guota

0 learn about abatement costs.



and since the regulator can influence the evolution of the stock, he is able to influence the
future information. If the regulator understands this relation, learning is “active”. If instead
he takes the future signals as exogenous, learning is “passive”. The regulator is unlikely to
manipulate global carbon stocks in order to provide better information about how these stocks
affect environmental damages. That is, he is likely to behave almost as if future signals were
exogenous. If he does so, active and passive learning would lead fo almost the same control
rule. It is easier to solve the model of passive rather than active learning. Of course, if future
information really is unrelated to stock levels, the model of passive Ieaming is more accurate.
For these reasons, we also consider the model of passive learning.

We assume that abatement costs are quadratic in abatement, which is defined as the “business-
as-usual” (BAU) level of emissions minus the actual level of emissions. BAU emissions are
realizations of a random process, and in each period the firm but not the regulator knows the
current value of this random variable. This formulation means that the cost shock affects the
intercept but not the slope of marginal costs. We also assume that environmental damages are
quadratic in carbon stocks,

These functional assumptions mean that the model with passive learning satisfies the Princi-
pal of Certainty Equivalence, and this in turn means that the expected stock and flow trajectories
(but not their higher moments) are identical under optimal taxes and quotas. In this case, the
ranking of taxes and quotas depends on higher moments of the trajectories. This Certainty
Equivalence property does not hold in the model of active learning; however, as explained
above, we expect that in the case of global warming, the two models would lead to similar
results.  In that case, the Certainty Equivalence property holds approximately under active
learning.

The functional assumptions greatly facilitate the solution to the model of passive learning,
but not the model of active learning — which requires different methods. Since the functional
assumptions are unimportant for the latter model, and since some readers might regard them as
unattractive, it 1s worth explaining why we use them. There are two reasons.

First, these assumptions lead to a relatively simple calibration of the model. Since our
results are model- and parameter-specific, this transparency is important. The calibration de-
pends on the assumed magnitude of abatement cost and of environmental damage. We can

casily determine how robust the policy implications are to these magnitudes.

Second, the functional assumptions imply the (exact or approximate) equivalence of ex-




pected trajectories under taxes and quotas. If the research objective was to understand how
different policies affect the optimal level of abatement, this Certainty Equivalence property
would obviously be a disadvantage (since it renders the comparison frivial). However, if our
goal is to compare the two policies given the same target level of stock trajectories, the Certainty
Equivalence property is a great advantage. In a general model, such a comparison might be
sensitive to the particular target trajectory. For example, quotas might achieve a higher payoff
given the target that is optimal under quotas, and taxes might achieve a higher payoff given the
target that is optimal under taxes. This kind of sensitivity cannot arise in our model, where the

optimal targets are (exactly or approximately) the same.

3 The Model

We discuss environmental damages first. The regulator learns about an unknown parameter that
determines the stochastic relation between stocks and damages. Our formulation has two im-
portant features: the variability of damages increases with the stock, and the marginal damage
can be extremely large but never negative. We then discuss how the regulator learns about
abatement cost shocks by using a tax, and we present the regulator’s optimization problem. We
explain how this model enables us to distinguish the intrinsic effect of parameter uncertainty
from the effect of anticipated learning. We also explain how to modify the model to replace

active with passive learning.

3.1 Uncertain Environmental Damages

Let S, be the stock of pollutants, and z, be the flow of emissions in period . All tirne dependent
variables are constant within a period. The pollutant stock 5 decays at a constant rate. With
the fraction A > 0 of the pollutant stock lasting into the next period, the growth equation for
St is:

St+1 = ﬁSt “+ Lt
In period ¢ the stochastic stock-related environmental damage equals

2
D(Sy,wei g) = e (S; 5‘)? wy, Wy~ i.i.d. lognormal (—%’i,ai) . (1)



The slope of marginal damages is 2e?. For our purposes, the important variable is 9 rather
than g, but the formulation in equation (1) provides a convenient way to introduce parameter
uncertainty. The parameter g (and therefore, the slope of marginal damages) is unknown, and
wy 18 a random damage shock. Damage is convex in the pollutant stock (Dss > 0); S is the
stock level associated with zero environmenta! damage. For example, S is the pre-industrial
CO, level.® The distributional assumption about w imply”:
2
E{w)=1, Var(w)=e¢% —1, E(lnw) = m%?, Var (lnw) = o2.

The relation between stocks and damages is both uncertain and stochastic. The random
shock w, prevents the regulator from ever learning the true value of the unknown parameter g.
The regulator does not know whether a high level of damage is caused by a large value of g or
by a large realization of the random variable w. Future observations on damages and stocks
lead to better estimates of g.

The regulator begins with a prior belief on g, summarized in a normal distribution with

: 2 .
mean g; and variance o ;!

g~ N (gt3 O’;,t) . (2)

The subscript { denotes information (a belief) at the beginning of period . Given distribution
(2), e has a lognormal distribution with expected value G; = exp{g: + %aﬁ}t) and variance
exp(2g, + o7,) (exp(o2,) — 1). Since damages are a product of independent lognormally
distributed variables, the subjective expectation of damages, given the current stock and current

beliefs, is lognormally distributed with mean and variance:

1 = _
E [D(Sy, wi; 9)1%] = exp(g; + 50“;) (8 — 3)2 =G, (S — S)z, (3)

Var [D(Sy, wi; 9)14] = exp(2g: + 0],) [explo], + o2) — 1] (S: — 5’)4 i 4)

The information set is 0, = [St, gt Gg,t] , the current pollutant stock level, and the subjective
mean and variance of g. Both the expectation and the variance of environmental damages are

increasing in each element of the information set (for S; > S).

“We obtain the special case in which environmental damages are caused by the fiow rather than the stock of

poflutants, by setting the stock persistence A = 0 and defining S as the flow level associated with zero damages.
"See Greene [6] page 69. Note that the convention here is that the parameters of the lognormal random variable

w denote the mean and variance of Inw — not the mean and variance of w.
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This model of damages has two appealing features. First, a higher stock increases the prob-
ability of extremely high damages, associated with extreme events. Some physical scientists
believe that the greatest threat of greenhouse gasses is that they increase the probability of such
events. Second, the slope of the marginal damage of stocks, 2e9, is always positive and might
be arbitrarily large. Marginal expected damages are proportional to (S; — S) and expected
damages are proportional to (S; — §)°. The difference in the magnitudes of these two expec-
tations implies that this model allows for the possibility that a small increase in stock can cause
a large increase in expected damages, even if expected damages at the current stock level are
moderate.”

The coefficient of variation (C'V') of damages is increasing in both ¢ , and &2

CV [D(Se wi 9] = [explo), +02) — 1}% : (5

3.2 Learning about Environmental Damages

Environmental damages in period £ depend on the pollutant stock Sy, the true value of ¢ and
the damage shock w;. After observing damages and the current stock, the regulator updates his
belief about g. The natural logarithm of damages, from equation (1), is normally distributed,

The “moment estimator” of ¢, denoted g, is

~ Dg (T?‘
= I
gt (Sf — 8)2 9

with variance o3 = o7,

The Bayesian regulator updates his priors using the moment estimator. The posterior g is

normally distributed with the posterior mean gy, and posterior variance Ug}t 1 given by

2 2

o o
— w g.t -
Gt T Gt + g O (6)
02407, e
2 2 2 2
2 L. Tgt% 2 _ 95079
T+t = 73 + g2 Ogt = 75 T (?)
o +ap, 0% +to),

11y an earlier working paper {14] we modeled damsages as
D{S,wis9) =g (8 — 5’)2 +wi, we ~ iid normal (0,67%), V> 0.

We abandoned this formulation because it has nefther of the two features described in the text.



where o*;{ﬂ is the prior at the beginning of the initial period, ¢ = 0. (Greene [6], pages 407-410).
The posterior mean g;.; depends on the prior g;, the magnitude of uncertainty (Cfr;)!t and o),
and on the data S; and D, (via §;). The posterior variance g;f +1 depends on ¢, o2, and o2 ¢, but
not on the data. Note that the subjective variance of the slope of marginal damages, 2e, does
depend on the data. (See equation (4).)

The variance of g decreases monotonically with time. A regulator who begins with an
imprecise estimate of g (0*350 is large) initially puts a large weight on the moment estimator.
As time progresses the regulator becomes more convinced about the true value of g, and puts
less weight on the moment estimator. A smaller value of ¢ means that the new observations
are more informative, so the regulator learns more quickly about the true value of g. Learning
about damages is “active” because the amount of new information depends on stocks (via §,),
a variable which the regulator is able to influence.

The unknown slope of marginal damages is twice the value of e9; the regulator’s expec-
tation of this parameter is G, = exp(g; + %oﬁ’t). Since o, is deterministic and decreases
monotonically, it might seem that the current expectation of future values of ; would decrease.

However, we have (See Appendix 7.2 for details.):

Remark 1 The regulator’s current belief about €9 is an unbiased estimate of the belief that he
will hold in the futwre: E,Gy., = G, V1 > 0.

3.3 Learning about Abatement Cost

This section compares firms’ abatement cost and emission response under taxes or quotas.
Suppose the representative firm’s business-as-usual (BAU) level of emissions in period ¢ ts
22 = % + 0, where 6, is a random shock.® With an actual emission level 7, < z?, the firm’s
abatement cost is a quadratic function of abatement A (z;) = 2 (z? — :(:,3)2 with b > 0. The
firm’s benefit (its cost saving) from higher emission equals the abatement costs that it avoids.

Defining the cost shock #;, = b0,, we write the benefit as a linear-quadratic function, concave in

Yt {151 we study the case where business-as-usual emissions change endogenously due to firm's investment

in abatement capital. There we ignore the uncertainty of environmenta} damages.



the emission with an additive cost shock'®

b
B (ii’t, 93) = f + (G:‘?‘t?g) Ty — “2‘2')?

The cost shock 6y is the firm’s private information, and it follows an AR{1) process:
O = plo1 + i3 g~ idd (0.07), Vi1, (8)

with ~1 < p < 1. The regulator has a subjective prior with mean f and variance oZ on the
initial cost shock #y. The i.i.d. random process {4} (¢ > 1) has mean 0 and common variance
o7, and is uncorrelated with 6.

The firm observes 8, before making its current emission decision. If the regulator sets a unit
tax p; on emissions, firms in each period maximize the abatement cost saving minus the tax
payment:

]
I\@?X Oy = Bz, 6) — psze = |f+{a+0)z 5«%“3} — Diy-

The firms’ first order condition implies that the optimal emission under a tax is

— #
xima bpf’—}——b—t.

(9}

The flow of emissions and thus the future pollutant stock S, is stochastic since it depends on
the cost shock.

Under taxes, the regulator infers the value of #,_; with a one period lag, using equation
(9) and the observed z} ;. The regulator’s posterior beliefs about the cost shock satisfy
ETee (8,00, 1) = pb—y and Var?® (6,]6,.,) = 33, {t > 1). Learning about the cost shock
is “passive” rather than “active”; the level of the tax does not affect the amount of cost-related
information that the regulator acquires. Hereafter, when discussing taxes we take the regula-
tor's control variable to be the expected level of emissions, z;, rather than the tax p;. Using

equation {9) we have

H - ‘i ax
2= BT (a}lf1) = = + TET7 (B1f60) (10)

If firms have heterogenous cost shocks, and are allowed to trade quotas, the equilibrium

quota price conveys the same information as does the equilibrium response to an emissions

19The parameters satisfy f = —~£3° and ¢ = LE. We ignore the effect of § on f since f has no effect on the

regulator’s controb.
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tax. If firms cannot trade quotas (or do not wish to do so because of transactions costs or
because they are homogenous) then the regulator never learns the current value of the cost
shock. Thus, there is an important informational difference between tradable and non-tradable
quotas. Our previous paper [13] explores this difference in a model without uncertainty about
damages. That paper shows that the informational advantage of taxes is a major reason that
they dominate non-traded quotas. In the interests of brevity, here we consider only the case
where quotas are not traded. Given the hostility (from some quarters) to international trade in
carbon permits, we think that this is the relevant comparison. The assumption that quotas are
not traded favors the use of taxes when p #£ 0.

Under a non-tradable quota, the regulator does not learn about cost shocks. The regulator’s
subsequent beliefs of the cost shock satisfy E9¥* (8,6y) = p'f,. Since § appears linearly in
the regulator’s objective function, the expected payoff does not depend on the variance of 8. If
p = 0, neither policy provides an informational advéntage.

Appendix 7.1 summarizes the equations of motion and the expectations of abatement costs

under taxes and quotas.

3.4 Optimal Regulation

The regulator always uses taxes or always uses quotas.!! He chooses the policy level in each
period based on current information, in order to maximize the expectation of the discounted

stream of future cost savings minus environmental damages:

oo

Ec Y BB (Teag ue5) — D (Seajswersi 9)} - (11)
j=0

The discount factor is 3. The regulator anticipates learning about g. A tax-setting regulator

anticipates learning about the cost shock #. F, is the expectations operator conditional on the

regulator’s information. This information consists of O, = [St, gt ag,t} and E* (6,]1; ;) (i=tax

or quota) with [+ equal to §,_,0r #;. The regulator takes expectations with respect to the cost

shock #, the damage shock w, and the unknown damage parameter g.

Maximization of the expression in (11) results in a value function J* (-} (i={tax, quota})

Since we rely on numerical methods, we could consider more sophisticated policies, such as a two-part tax.
In order to focus on the policy choice under learning, we restrict the regulator to the limited policy menu of taxes

and quotas.

11



satisfying the following dynamic programming equation (DPE)*:

Jf [Sﬁ bt Uﬁ,m E (gf]z,t):[ = M?}X {Eé [B{w,0:) [ia] — E[D(St, we; 9)1%]
+.!3E:J§+1 [3t+1s Gt+1; U§,t+1= E (Br1s Hi,t+1)} } (12)

The control variable ¢ is the quota level z; under quotas, and the expected emission z under
taxes. The superscript ¢ = (tazes, quotas) on the expectations operator emphasizes that
information may be different under taxes and quotas.

The maximization problem with quotas is a special case of the problem with taxes, obtained
by setting 4 = 0 = aﬁ. Thus, we focus on the problem with taxes. The regulator chooses
the optimal control z in each period, and then observes firms’ emission responses and envi-
ronmental damages. These observations enable the regulator to update the priors on the cost
shock #; and on g. In setting the optimal control z;, the regulator considers its effect on cur-
rent expected abatement costs and on future state variables. The control variable z, affects the
current abatement costs and the pollutant stock S;.; directly. Although z; has no direct effect
on the posterior g..1, it influences future beliefs about ¢ due to the dependence of g,.0 on S¢ 1.
The independence of the posterior mean gy, and variance o7 ., on z leads to the necessary
condition

ajgﬂ [Stﬂ; Gt+1, U;,tﬂa E (9t+iuist+1)]
0841

1 .
Zp = E a -+ F* (Qﬁgfi’i) 4 ﬁEf (13)

Using the definition of z, equation (10}, the optimal tax level equals the negative discounted
shadow value of future pollutant stocks:

oI [St+1, Gei1 0§,¢+1» I l%)}
St '

P}f = — (3 E;

3.5 Isolating the Effect of Anticipated Learning

Parameter uncertainty changes the optimal level of abatement, even in the absence of antici-
pated learning about damages. We refer to this change as the “intrinsic effect” of parameter
uncertainty. The anticipation of learning may cause an additional change (“the learning ef-
fect”) in the level of abatement. The learning effect can differ depending on whether learning

1s active or passive.

“The time subscript for J denotes changes in the variance Var”® (§;]6;_;) between t = G and ¢ > 1. The

value function is independent of the variance under quotas.
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This section considers two simpler versions of our model. The first version models pa-
rameter uncertainty without learning of any kind. in order to distinguish between the intrinsic
effect of parameter uncertainty and the learning effect. The second version models uncertainty
with passive leamning. This model clarifies the distinction between active and passive learning,
and it helps in understanding the relation between taxes and quotas under active learning. It
is also useful for interpretation of numerical results described below. This model may also
be of independent interest, since it shows how to modify the standard linear-quadratic optimal

control problem to include exogenous learning about parameters.

3.5.1 Parameter Uncertainty without Learning

If the regulator never expects to acquire information about the uncertain parameter g, that pa-
rameter is like any other random variable. In this case, we can solve the optimization problem

by replacing the damage function in equation (1) with
N 1
D(S) =G (S~ 5); G = exp(g: + 5&*3,1),

using equation (3) and F (w) = 1.

This certainty equivalent'® version of the problem with unknown g is identical to the linear-
quadratic model studied in a number of previous papers. There is a closed form solution to this
problem, given in terms of the solution to a Riccati matrix equation (Karp and Zhang [13]). The
assumption that (7 is convex in the unknown parameter means that greater uncertainty about
g (a larger value of 03,1) increases the expected slope of marginal damages (= 2G}), leading
to higher abatement. This change is the intrinsic effect of parameter uncertainty. This control
problem satisfies the Principle of Certainty Equivalence (see Section 2), which implies that the

expected (stock and flow) trajectories under taxes and quotas are identical.

3.5.2 Passive Learning

The simplest way to model passive learning, and the closest to our model of active learning, is to

assume that in each period the regulator receives a signal i ~ N (g, 02). With this assumption,

BThe certainty equivalent version of a problem with an unknown parameter (here g) replaces that parameter
with a known parameter (here, g; + f%i). By solving the certainty equivalent version, we obtain the solution
to the original problem. In order to distinguish the certainty equivalent approach of solving the problem with
parameter uncertainty and no learning, from the Principle of Certainty Fquivalence in the linear-quadratic control

problem, we capitalize the latter,

I3



the model from Section 3.2 is unchanged, except that the exogenous random variable 7, replaces
the endogenous random variable g;. Learning is “passive” here, because the signal does not
depend on anything that the regulator can influence, such as the stock of pollution. Remark 1
continues to hold. (The current belief about €9 is an unbiased estimate of future beliefs.)

The control problems with both active and passive learning have four state variables, (g;,
0%, 8¢ E'(Bp1llise1)). Under passive learning, the state g, changes exogenously. This fact

git’
leads to an important simplification of the solution, summarized in the following proposition.

Proposition 1 Under passive learning: (i) The value function is quadratic in w, = (S, Ei6;).
That is, the value function is of the form Vi + ¥1w + w'Vow, { = (tazes, quotas). The
(scalar, vector and matrix) W, § = 0,1, 2 are functions of ¢; and O‘;i. (i) The vector and
matrix functions ¥ and Wy are identical under taxes and quotas. This fact implies that the
control rules for quotas and for expected emissions under taxes are identical linear functions
of w; under passive learning. (iii) The scalar function U depends on whether the regulator
uses taxes or quotas. (iv) In the special case where E:8, = 0 we can obtain the optimal control

rule by solving a pair of recursive scalar fixed point problems, that do not depend on p or oﬁ.

(See Appendix 7.2 for the proof.) Proposition ! tells us something about the outcome under
passive learning, and this information gives us a clue about the outcome under active learning.
The fact that expected trajectories are identical under taxes and quotas {(under passive learning)
suggests that they should be very similar under active leaming — as indeed is the case for our
simulations.

The control problem under active learning cannot be solved in closed form, and because
the state has four dimensions, the “curse of dimensionality” is a serious issue. Any method
that alleviates this numerical problem is useful. Proposition 1.1 means that we get “closer to” a
closed form solution under passive learning. We still need to approximate the unknown (scalar-
vector- and matrix-valued) functions ¥;, j = (,1,2. However, these functions depend on
only two arguments, and the recursive relation that defines them is quite simple; in particular,
it does not involve maximization. We can obtain an exact solution for these functions in
the Hmiting (steady state) case where agﬁt = . Therefore, this numerical problem is much
simpler than the problem of approximating the four-dimensional value function under active
Jearning. Proposition l.iv is important because it means that if we are interested in the case

where Eff; = 0 (a restriction that is reasonable at least for the first period), we can obtain the
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control rule by solving a much simpler numerical problem involving recursive scalar fixed point

problems.

4 Calibration and Model Solution

We calibrate the model to describe the problem of controlling C'(O, emissions in order to limit
the possible damages caused by global warming. Most global warming models contain a more
complex relation between greenhouse gas stocks and environmental damages; in some respects
these models reflect more accurately the current state of art of the physical sciences.

A characteristic of this model — in addition to the features described in the previous section -
is its greater transparency. Itis easy to discover how assumptions about the likely consequences
of increased carbon stocks and about abatement costs determine the optimal level and method of
abatement, and to explore the role of learning. Our model is consistent with the more complex
models, because our calibration uses much of the same data and opinions.

Table 1 contains the baseline parameter values. We discuss the main assumptions behind
these values here, and provide the details in Appendix 7.3. We then describe the solution

method, relegating details to Appendix 7.4,

4.1 Calibration

Perhaps the most controversial issue concerns the relation between carbon stocks and environ-
mental damages. Calibration of the damage function requires three parameters, S (the stock at
which damages are 0), g, and o2, In addition, we need two state variables, the initial mean and
variance g; and 0’;’31. We set S equal to the pre-industrial level of stocks. The choice of the
other four variables is less obvious.

Most readers would find it difficult to decide whether a particular value of g should be
considered large or small. Therefore, we assume that stock related damages are proportional
to Gross World Preduct (GWP), and we define ¢ as the percentage reduction of GWP due to
a doubling of stocks from their pre-industrial level. We state our assumptions about mode}
parameters in terms of ¢, a parameter about which readers can form an opinion. We use a

stationary model, so we treat GWP as constant.”* Nordhaus [28] surveys opinions of damages

14Since income will probably grow, this stationarity assumption means that our model understates true damages,

if those damages are really proportional to income. Our other stationarity assumption is that abatement costs do
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Parameter Note Value

B a continuous discount rate of 3% 0.7408

A an annual decay rate of 0.0083 (.9204

p cost correlation coefficient 0.96

f constant in the benefits, billion $ -13089.03

a intercept of the marginal benefit, 224.26
$/(ton of carbon)

b slope of the marginal benefit, 19212
billion $/(billion tons of carbon)?

2e9 true slope of the marginal damage, 0.0604
billion $/(billion tons of carbon)?

o, standard deviation of cost shock, 5.5945
$/(ton of carbon)

afJ vartance of In(damage shock) 0.6349

g zero damage stock, billion tons of carbon 590

State Space:

S pollutant stock, billion tons of carbon (781, 2190)

g mean of the belief about g (—6.3029, —2.0544)
e9: billion $/(billion tons of carbon)?

o3 variance of the belief about g (0, 0.6349)

Ef expectation about the cost shock,
$/(tons of carbon) (—39.1615, 39.1615)

Initial State Variables:
8, g,02, B} = [781,—4.8137,0.6349, 0]

Table I: Parameter values and region of interest in the state space.
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associated with an estimated 3°C warming, a temperature change associated with a doubling
of CO, stocks. The opinions about ¢ range from 0 to 21 percent of GWP with mean 3.6 and
coefficient of variation 1.6 (Table 2 in Roughgarden [34]).

In order to make our model consistent with this survey, we assume that the true value of ¢ is
3.6, and that the coefficient of variation of damages is 1.6; this assumption gives us two pieces
of information. We also assume that 0’;,1 equals the posterior after one observation, beginning
with diffuse priors. This assumption implies that 7 | = o7, so parameter uncertainty and the
inherent randomness of damages contribute equally to the coefficient of variation of damages.'
With these three assumptions, we can assign values to g, o2 and a‘g)i. Fiﬁally, we assume that
the regulator’s initial belief is that ¢ = 1.33, a value used in previous numerical studies ([17]
[20] [29]). This assumption implies a numerical value for the imitial mean, g:.

Thus, our baseline assumes that the regulator currently underestimates the true level of
damages. This case seems to be the most interesting, but we also studied scenarios in which
the regulator correctly estimates or over-estimates the true damages.

We assume that the expected BAU level of emissions is constant, in order to use a stationary
model. We choose this constant so that our model predicts a BAU level of C'O; stocks of 1500
GtC in 2100, consistent with the IPCC 1592a scenario (IPCC [10], page 23). We then calibrate
a quadratic abatement cost function that approximates (very closely) Nordhaus’ [29] formula
for expected abatement costs, for levels of abatement ranging from 0 to 75% of BAU emissions.

In our model, the actual BAU level of emissions is a random variable which is linearly
related to the cost shock #. We use 13 observations of historical emissions, at ten-year intervals,
to estimate a detrended model of emissions. Using these estimates and the assumed relation
between the innovation in emissions and the random variable 8, we obtain values of p and aﬁ.

We set the length of a period equal to 10 years. This choice means that for a reasonable
yearly discount rate, the single period discount factor is relatively small, making it easier to

achieve convergence. It also implies that policy levels cannot change frequently.

not change over time.

The state vector in our model includes ag‘t, which is deterministic and monotonic in time. Therefore, we could
include a deterministic trend without increasing the dimension of our state vector. This change would require
additional assumptions about growth frends, and in our view would reduce the fransparency and usefulness of the

model, without adding real information.
BRecall that a smaller value of o2 implies that learning occurs more guickly. Given a particular level of the

coefficient of variation of damages, an increase in the uncertainty about g {increase cf;i), requires an increase in

the speed of learning.
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4.2 Solving the model

In order to solve the model, we use neural networks to approximate the value function J (-).
We also experimented with alternative functional families including ordinary polynomials and
Chebyshev polynomials (Judd [12]). We found that for this problem the neural network ap-
proximation has a higher speed of convergence and less severe “curse of dimensionality”.

We divide the state space [S, g, 02, Ff] into 16-12-8-8 = 12288 points. The poltutant stock
ranges from 781GtC (the current CO, concentration) to 2190GtC (the IPCC 1S92e scenario).
Assuming that ¢, the percentage loss in GWP frotn C'O, doubling, lies between 0.3 and 21 (the
minimum non-zero and maximum expert opinions respectively in Nordhaus [28]), we obtain a
range for the parameter g. The variance ag lies between 0 and 0.6349, the posterior variance
after one observation, beginning with a diffuse prior. We bound the cost shock 6 using a 95%
confidence interval, based on our estimation that uses historical emissions.

We find the optimal control for each grid point through numerical maximization. The state
variables in the next period depend on the possible realization of damages I; and the cost shock
tir- In solving the dynamic program, we evaluate the expectations in equation (12) using 10
Monte Carlo simulations on random variables D, and p;. The choice of ten simulations is a
comnpromise between approximation time/complexity and approximation accuracy. In taking
expectations, we use the regulator’s subjective beliefs — not the objective expectations, which

require knowing the true value of g.

5 Results

We discuss the mean trajectories, the effect of learning, and then the comparative statics of
the model. Our baseline case assumes that the true value of ¢ is —3.5005 (corresponding to
¢ = 3.6, the mean estimate in Nordhaus [28]) and that the initial belief about ¢ is g, = —4.8137
with G’;E = ().6349 (corresponding to ¢ = 1.33, a value used in previous studies ([17] [20]
[29]). Recall that ¢ equals the percentage loss in GWP due to doubling of carbon stocks.

To simulate the outcome, we use this control rule and M draws of sequences of damage
and abatement cost shocks; in some cases we use M = 100, and then to check accuracy we
use M = 1000. These random sequences are drawn from the distributions given by equations
(1) and (8). In each period, the realization of damages depends on the true value of g. Stocks

and beliefs evolve as we described above. We average over the M realizations of trajectories in
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order to obtain the mean trajectories for stocks, beliefs, and emissions.

5.1 Trajectory Simulation

Figure | shows the expected stock trajectory over 1000 years (100 periods). The right panel
shows the trajectory under BAU and under four optimal trajectories corresponding to known
values of ¢. When ¢ is known, the Principle of Certainty Equivalence holds, so the expectation
of the emission stock trajectories is the same under taxes and quotas. We solve the problem
with known ¢ by solving a standard linear-quadratic control problem.

The high damage estimate (¢ = 21) causes optimal steady state stocks to reach only 39.91%
of the BAU level. Steady state stocks are about 330.6 GItC (or 19.6%) lower when ¢ == 3.6
rather than 1.33. Thus, our baseline case implies that in the absence of learning, the belief that

¢ = 1.3 when it actually equals 3.6 would have serious consequences.
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Figure 1: Pollutant stock over time.

The left panel of Figure 1 shows the expected stock trajectory when the Bayesian regulator
begins by believing that ¢ = 1.33, and the true value is 3.6. The expected trajectories under
taxes and quotas are not exactly the same, but their difference is not visible at the scale used
in Figure 1. Both the tax and quota trajectories converge to the same steady state as under cer-
tainty. The fact that the two policies have nearly the same expected trajectories was explained

in Section 3.5, The fact that they converge to the steady state under certainty is not surprising,
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since the subjective variance on g approaches 0.

We also compared the expected trajectory when the regulator is certain that ¢ == 3.6 (i.e. the
optimal trajectory under complete parameter cerfainty), with the expected trajectory when the
regulator begins by thinking that ¢ = 1.33 and its true value is ¢ = 3.6. These two trajectories
never differ by more than a couple of percent.

The two important results are: (1) the choice of taxes or quotas leads to essentially the same
expected stock trajectory, and (ii) the expected stock trajectory when the Bayesian regulator
begins by being much too optimistic about damages, remains close to the optimal trajectory

when the regulator knows the true relation between stocks and damages.
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Figure 2: Evolution of belief on the unknown damage parameter over time.

The left panel of Figure 2 shows the expected trajectory for the subjective mean of g and
the right panel shows the trajectory for the corresponding values of ¢. The graphs under taxes
and quotas are nearly identical, so we show only one graph. This similarity of mean beliefs
is not surprising, since new information depends on the stocks, and the trajectory of stocks is
similar under taxes and quotas. The subjective mean converges rather slowly to the true value.
It takes five observations (50 years) for the subjective mean to travel approximately 80% of the
distance between the initial mean and the true value, and 21 observations (210 years) to travel
95% of this distance.'®

16K elly and Kolstad {17} used a different criteria for convergence of beliefs: the expected amount of time it
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As we noted above, the expected stock trajectory with learning remains close to the optimal
trajectory under certainty. Thus, even though it appears that learning occurs slowly, it never-
theless occurs quickly enough to keep stocks from straying far from the optimal level. The
explanation for this is simply that stocks also change quite slowly. For the first 50-70 years,
the optimally regulated stocks are similar when the regulator is certain that ¢ = 1.33 or certain
that ¢ == 3.6, although those trajectories subsequently diverge (see the right panel of Figure
1). Even though learning is slow, a substantial amount has occurred before the stock moves far
from its optimal level under certainty.

We also conducted a number of simulations to compare the variability (rather than the mean)
of emissions under taxes and quotas. Emissions under taxes are always more variable, because
they respond to the actual value of the cost shock. An increase in p causes a substantial increase
in the variability of emissions under taxes. The information set is much more variable when

the regulator learns about the cost shock and these shocks are highly serially correlated.

5.2 The effect of anticipated learning

We emphasized the distinction between the intrinsic effect of parameter uncertainty (i.e., un-
certainty - but no learning ~ about the stochastic relation between stocks and damages), and the
effect of anticipated learning. Section 3.5 explains how this model can distinguish between the
two. Here we begin with an assessment of the magnitude of parameter uncertainty. We then
illustrate the intrinsic effect of parameter uncertainty, and the effect of anticipated learming.

Recall that in calibrating the model, we assumed that the coefficient of variation of damages
(associated with doubling of greenhouse gas stock from the pre-industrial level) is 1.6, and that
the initial estimate of the loss resulting from this doubling is ¢ = 1.33 percent of GWP. We
also assumed that parameter uncertainty and the random damage shock contribute equally to
the uncertainty about damages, implying an initial value of 0“2,1 = 64.

There are several ways to assess whether our calibration implies a large or a small amount
of parameter uncertainty. We can consider the range of possible values of ¢ — either before
reaching the steady state or in the steady state; we can obtain an approximate 95% confidence
interval for ¢; or we can consider the effect of 9’3,1 on the certainty equivalent value of ¢.

Given our state space for ¢ and o}, the range of ¢ is [.3,21]. If we take into account the

would take the regulator to reject the hypothesis that the unknown parameter equals the inifial prior. Using this

criteria, they aiso found that convergence to the true belief was siow,
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fact that in the steady state G‘; = (0, the steady state range of ¢ is reduced to [.2,15.3]. An
approximate 95% confidence interval for ¢ is [.27,6.6].7 The certainty equivalent damage
coefficient is G = exp{g + %03). We can calculate the value of g that corresponds to ¢ = 1.33
under parameter certainty (ag = (). Using this same value of g, but now letting G; == {1.64 (our
baseline estimate) implies that ¢ = 1.83, an increase of about 38%.

These calculations give somewhat different impressions regarding the magnitude of uncer-
tainty about ¢ implicit in our calibration. However, they all suggest that uncertainty about ¢ is
not negligible. We now consider whether this uncertainty is potentially important. Columns
3-6 of Table 2 show the optimal level of emissions and abatement in the first (ten-year) period
under parameter certainty, for four (known) values of ¢. This table and Figure 1 show that
both the optimal level of first period emissions and the stock trajectories are quite sensitive to
¢. This observation, and the fact that our model includes non-negligible uncertainty about ¢,
means that anticipated learning about ¢ is potentially important.

We emphasized in Section 3.5.1 that we can model parameter uncertainty without learning
by solving a certainty equivalent problem, i.e. by changing the value of ¢ (which is linearly re-
lated to ¢). Since optimal emissions are sensitive to ¢, parameter uncertainty (without learning)
is important. For example, increasing ¢ from 1.33 to 1.83 (a 38% increase) raises abatement
from 9.8% to 13.11% (a 34% increase).

The last two columns of Table 2 show the emissions and abatement levels (in the first ten
year period) under active and passive learning. The entries in these two columns should be
compared to the entries in the column labelled ¢ == 1.33. (Our baseline calibration used the
assumption that the initial belief is ¢ = 1.33.) This comparison shows that the anticipation of

learning decreases abatement, but by a small amount.’®

7We obtain this approximate confidence interval by taking two standard deviations around the initial point
estimate of g, using the fact that G is proportional to the initial expectation of ¢ (see equation (18) in Appendix

7.3). We set the damage shock w equal to its expected value.
¥ The algorithm that we used to solve the problem under active learning uses neural networks, and is quite

complex. Using Proposition 1, we were able to solve the passive learning problem using a simpler algorithm,
described in more detail in Appendix 7.2. When we use different numerical methods to solve the two problems,
the emissions levels are not directly comparable.

In order fo obtain comparable numbers, we sobved the passive learning model with the {complex} algorithm
used for active learning. [In this case, we find that the first period emissions under active and passive fearning
are virtually identical. Thus, the difference in the emissions levels reported in the last two columns of Table 2 is

probably due to the difference in aumerical methods, and not to the difference between active and passive learning.
The fact that the two methods of solving the passive learning model lead to such similar control levels, inspires
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. active passive
BAU | ¢=036¢=133|¢=236¢=21 . ‘
learning learning
emissions 116.73 | 113.96 | 105.26 89.4 26.06 105.8 105.54
bat t
ShiemeEn 235% | 98% | 234% | 777% | 9.3% 9.6%
(% of BAU)

tax ($/tC) 5.32 22.03 5250 | 174.19 20.99 21.50

Fable 2: First Period Emission, Abatement Level, and Tax

Under both active and passive learning, the current belief about the damage parameter is an
unbiased estimate of future beliefs (Remark 1). This feature might appear to suggest that the
regulator acts as if beliefs will not change — a conjecture that would explain the insensitivity
of the optimal control to the amount of learning. This explanation is not correct, as it would
imply that the certainty equivalent (no learning} model and the model of passive learning lead
to exactly the same control rule. By comparing the functional equations that determine the
control rules in the two cases (see Appendix 7.2), we can verify that the control rules are not
identical. Anticipated learning does change optimal behavior ~ but not by very much.

The last row of Table 2 shows the tax level that supports the optimal (expected) level of
emissions. Decanio [4] describes recent attempts to estimate the level of carbon tax that would
be needed to achieve reductions in emissions. The Energy Modeling Forum at Stanford Uni-
versity estimated that a tax of between $50 and $260 per metric ton — with an average of $170
-~ would induce a 20% emissions reduction, relative to 1990 levels. The Interagency Analytic
Team of the US government estimated that a tax of between $89 and $160 per metric ton would
stabilize emissions at 1990 levels, by the year 2010. Our point estimate of $52.5 for a 23.4%

reduction is lower than those estimates, but is of a similar order of magnitude.

5.3 Ranking taxes and quotas

We explained that the expected stock and emission trajectories are identical under raxes and
quotas if the damage parameter is known with certainty, if it is unknown and there is no learning,

or if it is unknown and there is passive learning. Even in these cases, the expected payoffs

confidence in our numerical resafts,
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differ under the two policies, as explained in Section 2. Numerical experiments show how
active learning affects the comparison of payoffs.

We compared the sensitivity of the policy ranking by varying one of the parameters or
initial conditions, holding the others constant. In all cases, taxes dominate quotas, always by a
fraction of one percent of 1998 GWP. For the baseline parameters, the difference between the
value function under taxes and under quotas is approximately 0.13% of 1998 GWP. The largest
difference in value functions (0.4% of 1998 GWP) occurred when we set the cost variance equal
to its maximum allowable value. Thus, with a yearly discount rate of .03, our baseline estimate
of the annual savings resulting from the use of taxes rather than quotas is {0.13).03 = 0.00
39% of 1998 GWP, or approximately $113 million (1998 dollars). Our highest estimate of the
annual savings from using taxes rather than quotas is about $340 million.

Several previous studies also found a slight preference for taxes rather than quotas. In cases
where there is a large welfare difference under the two policies, the model does not satisfy the
Principle of Certainty Equivalence (Hoel and Karp [8] and Pizer [33]). Thus, alarge difference
in welfare under the two policies seems to require that the endogenous targets also be different
under the two policies. To the extent that policy-makers even consider the choice between
taxes and quotas, they probably want to hold the target level of emissions fixed.

Under active learning, a higher stock level decreases the preference for taxes. (Under pas-
sive learning or parameter uncertainty without learning, the Principal of Certainty Equivalence
implies that the welfare comparison is independent of the stock level.) As the marginal en-
vironmental damage increases with the pollutant stock, it becomes more important to control
emissions exactly (as occurs under a quota) rather than choosing only the mean of emissions
(as occurs under a tax). The magnitude of the effect is small: doubling the stock causes only a
0.3% reduction in the difference in expected payoffs under taxes and quotas.

A higher expected value of g (g1), corresponding to steeper expected marginal damages,
favors the use of a quota. Section 2 explained this result. An increase in o, favors the
use of taxes. This result 1s surprising, because we know that a higher value of "3,1 has the
same effect as a higher value of gy in the certainty equivalent version of the model. A possible
explanation is that greater uncertainty about g makes marginal damages uncertain under either
taxes or quotas, eroding the feature (described in Section 2) that favors the use of quotas.

Higher objective randomness of damages (higher o2,) — unlike higher subjective uncertainty

{(higher 5;1} — favors quotas. An increase in objective randomness increases the probability of
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a very bad damage shock. The increased danger of a bad cost shock, associated with higher
value of a2, makes it more important to be able to control the stock level. Since quotas enable
the regulator to control stocks more precisely (relative to taxes), a higher value of o favors
quotas.

As noted above, the informational difference between taxes and (non-tradable) quotas is an
important reason that the emissions trajectories differ under the two policies. A larger variance
in the cost shock (gf,.) magnifies this informational difference. The payoff difference is much
more sensitive to changes in oﬁ, compared to changes in other parameters.

We also investigated the sensitivity of the policy ranking with respect to other parameter
values. The comparative statics are the same as described in Section 2, so we do not repeat

them here.

6 Conclusions

The high degree of uncertainty about the relation between environmental damages and stocks
of greenhouse gasses is central to the debate concerning the optimal level and method of green-
house gas abatement. The fact that we anticipate learning about this relation complicates the
decision. This anticipation can be used as an excuse to delay action, in order to avoid unnec-
essary sacrifices, or as a reason to make additional efforts, in case we learn that the situation is
more serious than we expected.

We used a simple model in order to study this dilemma. The model neglects many complex-
ities of the science of global warming. However, it captures, in a nearly transparent manner,
beliefs about probable orders of magnitude concerning abatement costs, environmental dam-
ages, and levels of uncertainty. In addition, the model allows for nearly catastrophic damages;
it restricts damages to be positive regardless of the magnitude of uncertainty; and it implies that
both the variance and the mean of damages increase with the stock. The model enables us to
identify the effect of anticipated learning, as distinct from parameter uncertainty, and also to
distinguish between active and passive learning. We obtained three main conclusions that have
a direct bearing on the global warming debate.

The most important conclusion is that although anticipated leaming (either active or passive)
leads to slightly lower abatement (higher emissions), the effect is extremely small. Some pol-

icy discussions have emphasized that the anticipation of “better science” should influence our
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current decisions. Our results suggest that the importance of this issue has been exaggerated.
Environmentalists who favor current abatement, or those who oppose the sacrifices needed to
achieve this abatement, should base their positions on their beliefs about the expected relative
magnitudes of environmental damages and abatement costs. These considerations have an im-
portant effect on the optimal level of abatement, but the possibility of more precise knowledge
in the future has a very smail effect.

Since we assumed that damages are convex in the unknown parameter, uncertainty about
that parameter (in the absence of learning) increases the optimal level of abatement. The
amount of parameter uncertainty in our calibration is consistent with a 34% increase in first
period abatement levels, suggesting that anticipated learning could be significant. The models
under both active and passive learning are gualitatively different than the model with parameter
uncertainty and no learning. However, for the parameters that are relevant for global warming,
the quantitative difference in the model outcomes is small. In future work we intend to iden-
tify the region of parameter space for which the degree and type of learning is quantitatively
tmportant.

Our calibration implies that we will learn slowly about the true relation between stocks and
damages. However, these stocks will also change slowly. Our second policy conclusion is
that even if our current beliefs about global warming are too optimistic, we may be able to
learn quickly enough to keep the stock level close to the full-information optimal level. This
conclusion is based on a model that assumes a continuous relation between stocks and damages.
If there is an unknown threshold level of stocks above which damages are truly catastrophic,
our model is not appropriate. The conclusion might also be true but irrelevant, in the absence
of political will to base abatement decisions on current science.

Third, for all “reasonable” parameter values, taxes are a better instrument than quotas. In
our setting, much of this superiority is due to the fact that taxes provide more information about
abatement costs than do quotas. Tradeable quotas eliminate this informational advantage.
Previous work suggests that taxes would nevertheless remain superior to quotas. However, the
magnitude of the payoff difference is small, when the target level of emissions does not depend
on the policy tool. In other words, the policy tool used to achieve a particular target level of

emissions may not matter much, although of course the target level is important,
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7 Appendix: Technical Information

This appendix summarizes information about equations of motion and the expectation of abate-
ment costs under taxes and quotas. We give proofs for Remark 1 and Proposition 1. We then
provide the details of the model calibration and of the method of solution of the numerical

problem.

7.1 Summary of equations of motion and expected benefits

Here we summarize the material from Section 3.3. The subjective mean satisfies the following

equation of motion:

BT (0,410 = ET% (p0; + p1041164)

plo = ply + ppo, t=0
= ply =
p (001 + o) = pETI® (1011} + pps, 21

under taxes, and

Fuota (9t+1§§0) = PEQMM (93199)

under quotas. Under taxes, pp = 6y — A has mean 0 and variance o2, pi (t > 1), as defined in
equation (8), has mean 0 and variance cr§.
The firm’s emission response as a function of z is:

1 H
7y {21, 0t) = 2 + b [Gt ~ BT (gﬂgtwl)} =z + %

The regulator’s expectation of the firm’s cost saving in period £ is:

ET" Bz} (2, 6:) 0] 16e-1}

Ry Y.
. f + [CL + ET&&C (95591:4)} 2 — ng 4 Var Q(bgt[gt——])

under taxes, and

B9 [B (w4, 00) [00] = f + [o+ B9 (6:]00)] 2 — 527

under quotas. Under taxes, the firm adjusts emissions to the realized cost shock, increasing

PR Vart (g, 1) : ok b ol
the expected cost saving by 55 which equals 33 when ¢t = § and 3} whent >
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1. However, taxes make the next-period pollutant stock stochastic, increasing expected future

environmental damages (since the damage function is convex in the pollutant stock, by Jensen’s

Inequality).

7.2 Proofs

Proof. (Remark 1) Note that this proof also holds in the case of passive learning. We only need

to show that F;G .1 = Gy The Remark then follows from the rule of iterated expectations.
We find the mean and variance of the normally distributed posterior estimator g;.; under

active learning. Given the prior belief on g, the expected moment estimator (before observing

current damages) under active learning is the prior:

D o’ a?
_— i 3 W " 1 s W
Brge = Ez{ Il*'***~~***"~*m*~m(S!t §)2+m2 } = F {g + Inew; -+ 5 }

2
T
2

2
w

2

O- v
= -+ = Ot

Thus the conditional mean of the posterior estimator gy, ; equals the prior:

o2 o,
E = g+ 2 E (§) = g
1 (gt+1) ) “?"Ug,tgt ) +0§,t : (Ge) = gt

The conditional variance of the posterior estimator g;.; 18

Tot . Tat s’
Vary (giey) = sVary (§i) = — sVarg | g+ Inw, + -2
(02 +a3,) (a2 +02,) 2
4 4
Oyt 2 g Ogt
S 7 SN s 3 T e
ey T T,

(7141 1s lognormally distributed with mean

ol 141 025' 1
El, = Epexp (§t+'i. -+ ““g’"im) = Eyexp (gri1) - exp (‘ﬁz—‘)

2
1 a0 |
= exp |E + =Vars {gi21)] - ex o
P [ ¢ (9141) 5 ¢ {904 E)J P [2 (Uf, + G;;)J

4 2
Gg,t o

= €Xp ig:+ + _;;,zng
' 2 (02 + 0"3,:) 2 (0',3 + o2 )

g:t
0.2
= exp (gg “+ “”*Lg;i{) = Gg.
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Proof. (Proposition 1) To simplify notation, it is convenient to write the dynamic problem

in terms of the states G and o, rather than g, and o7,. Begin with a guess that the value
function is linear-quadratic in w; = (S, Fi8;)":

i 1 'lzi/’n,t ¢12,t
o+ (Vi vae) we + —wy ( wy.
' AR P

Wiag Yoot
Wy (Gt,o‘;,t) - 4

-~
q’2 (Giacgyt)

We use time subscripts on the unknown functions to indicate the time subscript of arguments
of the function. For example, 111, = 11 (G, o).

Using the necessary condition (13), under passive learning the optimal control rule is linear
in S; and Eif,, and is identical under taxes and quotas if and only if the functions ¥4 and ¥y

are the same under taxes and quotas:

s e+ BE (v )]+ 1+ BpEL (hags1)] Eiby + BAE (Y11,441) Se
2= = : (14)
b— BE; (”@f’z‘ll,t+1)

= (1)0 e @1?1:}.

(Under active learning, the value function is not linear-quadratic in w; = (S, £i6,)" and the
optimal control is not linear in wy, because of the dependence of Gy, on 5;. Under parameter
uncertainty without learning, the functions vy ;11,911,041 and 12,441 are non-random constants.
Under passive learning these functions depend on (74,1, which is a random variable at time {.)

Substituting the optimal control under passive learning back into the DPE and equating the

value function coefficients leads to a recursive system of nonlinear matrix equations:

Uy (Gy,0,) = Fo(Gh, Byy (Ger,0004)),
Ty (G, ag’ﬁ) = F (E¥, (Gt+170§¢+1) s B (Gt+170§,t+1)) '
‘I’E (Gt,aﬁ,t) = By (Ei‘pg (Gtw‘rlxgz ) B (G£+1;0§,¢+;) :Et‘l’f) (Gzﬁ;ffﬁ,gﬂ)) .

g1

(The explicit system of mattix equations is cumbersome, so we do not produce it in its entirety
here, but it is available on request.) For functions \Ii; that satisfy these equations, the quadratic
value function satisfies the DPE and the transversality condition, thus establishing Part (i) of
the Proposition. This system of equations is recursive, and the equations for ¥, and ¥, are
identical under taxes and quotas. The control rule {14) is therefore the same under taxes and

quotas, establishing Part (if). The equation for ¥ differs under taxes and quotas because of the
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difference in the dynamic equation for E{6; under taxes and quotas; this fact establishes Part
(iii}.

When Fi#; = 0 the control rule (14) does not depend the function s, but it does depend
on the functions 1/4; and v;. In order to establish Part (iv) we need the formulae that determine
these two function. These equations are:
bﬁﬂ-gEﬂtf)n (Gt+1: aﬁ,m)
b— BEwm (GH-I: 0§,¢+1)
BA [bEw; (Gt+isU§,t+1) + aByhn (Gt+1>‘7§,t+i)] +9G,5. (16)

b~ BEp (Grir,02,,1)

These two functions do not depend on the functions 5, 1095 O v2 or on the parameters p or

11 (Gm CT;g) — 20, (13)

U1 (Gf,agﬁt) -

o}. Equations (15) and (16) can be solved recursively. Thus, we can find the optimal control
rule by solving two scalar fixed point problems. These remarks establish Part (iv). =

Discussion. We solve the fixed point problems in equations {15} and (16} using the collo-
cation method, described in Miranda and Fackler [24]. We use the following procedures from
the toolbox that accompanies their book: FUNDEFN, FUNFITXY, FUNEVAL.

In the limiting case where there is no parameter uncertainty (ag = 0), Gyo; = Gt Inthis
case we have the standard linear-quadratic control problem. We merely remove the expecta-
tions operator in equations (15) and {16). For this limiting case we obtain a closed form (but

complicated) expression for the control rule.

7.3 Model Calibration

Our discount factor for a ten-year period, 5 = 0.7408, implies an annual discount rate of 3%
([17] [26] [29]). Both costs and damages are measured in billions of 1998 US dollars.

COy emissions and stock. The CO, atmospheric stock S; is measured in billions of tons
of carbon equivalent (GtC). The pre-industrial atmospheric stock is about 590GtC as estimated
by Neftel et al. [25] and used in Kelly and Kolstad [17] and Pizer [32]. We take this level to
be the steady state stock given a low level of economic activity. Let e, be total anthropogenic
CO; emissions in period t. Approximately 64% of these emissions contribute directly to the
atmospheric stock ([20] [29]). Remaining emissions are absorbed by oceanic uptake, other

terrestrial sinks, and the carbon cycle (JPCC [10]). The linear approximation of the evolution
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of atmospheric stocks is
Sy — 590 = A (Sy—y ~ 590) + 0.64ey.

We take x; = 0.64e;, the anthropogenic fluxes of CO; into the atmosphere, as the control

variable and rewrite the above equation as
S = ASe.1 + (1 — A) 390 + 2. (17

The estimate of the stock persistence is A = 0.9204 (an annual decay rate of 0.0083 and a
half-life of 83 years). ({17} [20]1 {29

Environmental damage. There is a simple relation between ¢, defined as the percentage
reduction in Gross World Product (GWP) due to a doubling of COs stocks, and the parameters
of our model. In Nordhaus’s survey {28] the expert opinions on ¢ range from 0 to 21 percent
of GWP with mean 3.6 and coefficient of variation 1.6. Our calibration is consistent with these
expert opinions.

The 1998 estimate of GWP is 29,185 billion dollars (International Monetary Fund [11]),
for a 10 year estimate of GWP of 291,850. The estimated damages due to doubling of CO,
stocks during this period is 291,850-2.. Equating this value to the expected damages given by

106
equation (3} gives us one calibration equation:

1 1 1
201,850¢ === = exp(g1 + 507,) (590)7 == .00838 416 == exp(g; + 505 =G (18)

{We have set the time index ¢ = 1.) Equation {18) implies that if the true value of ¢ is 3.6
(and the regulator knows this, so that cr§ = () then the true slope of marginal damages is
2 (.0083841¢) = 2¢9 = 6.0366 x 1072

We obtain our second calibration equation using the coefficient of variation of damages in

Nordhaus’ survey and equation (5):

tap=

CV (¢) = 1.6 = [exp(of, + o) ~ 1]7 = 3.56 = exp(o?, + o2). (19)

We need one more assumption to identify the model parameters. We assume that the regulator
begins with diffuse priors {02, = oc) and has made one observation, so his posterior variance
(using equation (7) is o7, = o2. Using this equation, we can solve equation (19) to obtain
o2y = o} = .63488. Using this value we can rewrite equation (18) as g = —.31744 +

In(8.3841 x 107%¢}. Thus, the value of g; corresponding to the belief that ¢ = 1.33 and the
level of uncertainty o, = . 6348815 g; = —. 31744+ In (8.3841 x 1073(1.33)) = —4.8137.
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Abatement cost. Uncontrolled emissions are expected to rise over time, leading to more
than doubling of carbon stocks. In order to retain a stationary model, we need to assume that
expected BAU emissions, %, are constant. Given the current atmospheric CO, concentration
So = 781GtC (Keeling et al. [16)), using equation (17) the expected future BAU atmospheric
C0O, concentration is
1— A

S,{:AtS{)‘"‘f“ I""WA

[(1— AYB00 + 7.

We choose ¥ = 116.73 GtC so that our model is consistent with the [PCC 1S92a scenario that
projects COy stocks at 1500 GtC in 2100 (IPCC [10], page 23).

We calibrate the abatement cost function as a quadratic approximation to Nordhaus' [29]
formula, A = 0.0686:>87 x 291, 850, where u is the fractional reduction in CO, emissions
and A is the abatement cost. We draw 1000 realizations of « from a uniform distribution with
support [0, 0.75] (the same support that Nordhaus {27] used) and calculate 4 using this formula.
Each value of u implies a value of abatement, ¥ — x = u7, with T = 116.73. We regress A

against (1F)” to obtain a quadratic function for abatement costs:
A{xy) = 0.9606 (116.73 — x,)”.

The R? for this regression is 0.9762, implying that the guadratic function and the function in
Nordhaus’s formula are very similar, for reductions between 0 and 75% of emissions. The

benefit function (the negative of abatement costs), including the additive cost shock is,
B (2, 8;) = —13089.03 + (224.26 + 8,) x, — 0.960627

giving an estimated slope of marginal benefits of b = 1.9212 billion $/GtC2,

Cost correlation and uncertainty. In our model, the cost uncertainty is linearly related to
the BAU level of emissions. We used data on actual emissions to estimate the variance and
autocorrelation of the cost shock. Using maximum likelihood method on data from Marland
et. al, [22] (total global carbon emissions over every 10 years during the period 1867-1996) we

estimated the following model:
e = eg + Kl -+ &y, Ep = PEet -+ Uy, vy~ 1id N (D G’i) .

(Since we have only 13 observations, we view this procedure as merely a means of calibration.)

The estimates are p = 0.96 and v, = 4.55 GtC. We convert the emission uncertainty o, into
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cost uncertainty o, by multiplying it by 0.64 (because z; = 0.64¢;). and then by the slope of
marginal abatement cost b = 1.9212 (because 8§, = b0y). The result is o, = 4.55 x 0.64 x
1.9212 = 5.59458/(ton of carbon). For simplicity, we assume gy = o,. (The regulator’s

subjective prior on §; has the same variance as the subsequent cost shocks.)

7.4 Solving the DPE by Value Function Iterations using Neural Networks

Taylor and Uhlig [35] review a variety of methods to solve the DPE (12). The method of
linear-quadratic approximations (Christiano [2], McGrattan [23]) is not applicable here because
the environment in this problem is far from the steady state. We obtain an approximation of
J () by value function iterations using a specific family of functions @ (-; B) with B being
the parameter vector. The objective is to find the parameter vector B* so that the approximated
value function J (+) = @ (-; B*) comes close to satisfying the DPE (12). We use neural networks
to achieve this approximation. We experimented with alternative functional families including
ordinary polynomials and Chebyshev polynomials (Judd [12}). We found that for this problem
the neural network approximation has a higher speed of convergence and less severe “curse of
dimensionality”.

We divide the state space [S, 4. ag, EQ] into 16 - 12 - 8 - 8 = 12288 points. The range
of the pollutant stock is from 781GtC (the current CO, concentration) to 2190GtC (the IPCC
1592¢ scenario). Assuming that ¢ is between (.3 and 21 (the minimum non-zero and maximum
expert opinions respectively in Nordhaus [28]), we have the parameter g between —6.3029 and
—2.0544. The variance oﬁ lies between 0 and 0.6349, the posterior variance after a diffuse
prior, We bound the estimated cost shock E6 by i% which is (—39.1615, 39.1615), the
95% confidence interval for the cost shock in the long-run.

We denote the vector of state variables (S, g, aﬁ, Eﬁ?)' at grid point n by )_fn and the set
of all grids by 7. Suppose there are n = 1,..., N grid points in state space. With a specific
family of functions ® (+; B), the method of value function iterations begins with an initial guess
of the value Ji~! (fﬂ) ateach grid point. We then find the parameter vector B that minimizes

the sum of squared residuals over the set of grid points in the state space:

B = arggm’ni { {(I) (—5?,1 B) - Ji (_)?n)f} . (20)
n=1

Corresponding to the DPE (12), we denote the current expected payoff at each grid point by
F ( Yﬁ zﬁ) and growth equations of state variables by G (j{}ﬁ Zn} P Dﬂ). Zy, 18 the optimal
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control, which needs to be determined, for the specific grid point n. p, is the realized cost
shock, and D, is the realized environmental damages; both at grid point n. We find the optimal

control z, by solving
Max {F (X %) + BE® [G (X’ﬂ, i fims Dn) ;3‘] b=J(.). @1

and get a new approximation to the optimal value, J* (7&1), at each grid point n.

Given a grid point (initial vector of state variables) ?n, the vector of state variables in the
next period is & (j?n Znl Dn); it depends on the optimal control z, and realizations of the
cost shock 4, and the damage D,,. To evaluate the expectations in equation (21), we use 10
Monte Carlo simulations of the random variables p, and D;.

We find the parameter vector B* by iterating steps (20) and (21) until the approximated

17 (%) - 7 (X)) <107,

Figure 3 depicts a single hidden layer feedforward neural network. The input units corre-

value function converges:

spond to the state variables at each grid point, (z1, 29, 23,24) = (S, 9,07, Ef) = ¥, The
output unit corresponds to the approximated value .J (?n) . Instead of a direct relation between
the inputs and the output, the neural network assumes that there exists one layer of hidden units
L; (7 =1,...,m) between the mput units and the output unit.

Each of the hidden units L; ( j = 1,...,m) receives a signal Ej that is the weighted sum
of all inputs z; (i =1,...,4), Zj = wy; + fol wy;zy, and sends out a signal L; = H (EE)
H is a transfer function. Similarly, the output unit receives a signal J that is the weighted sum
of signals from the hidden units, J = ry + S 7iL;, and sends out a signal J = # (f)
The network is feedforward because signals flow in only one direction. Such a neural network

mapping from inputs Yn to the output J (X}n) can be written as

J (‘)‘(‘n) —H {rG + irj [% (woj + iuﬂ:) } =@ (’)‘(‘n; B). 22)

B ={(w;, rj: t=0,..,4; j =0,...,m) is the vector of parameters in the neural network.

We use the logistic function H (A) = =, X € R, as the transfer function.’” Here for
each hidden unit, A = :(:j; and for the output unit, A = J. Hornik et al. [9] proves the ability of

YWe adopt the same transfer function for the hidden units and the output unit. The transfer functions for

these two levels of units can be different. The usual requirement is that % © R — [0, 1], nondecreasing,
Hmpeoo H{A) = 1, and Hima——oo M (A) = 0. (Homik etal. [9])
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Figure 3: A single hidden layer feedforward neural network.

such a neural network to approximate an unknown mapping arbitrarily well, provided there are
sufficient number of hidden units.

A possible way to choose the number of hidden units is cross-validation (White {38]). To
balance the computation time/complexity and the approximation accuracy, we take 10 hidden
units, resulting in 61 elements in B.

The algorithm in optimizing (20) is Back-Propagation which implements a local gradient
descent (see White [39] for technical details). The algorithm in optimizing (21) is the Quasi-
Newton method with a mixed quadratic and cubic line searching. We implement both optimiza-
tions using MATLAB built-in routines.
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