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ABSTRACT

We examine crop choice as a dynamic optimization problem over an infinite time horizon, taking 
into account the effects over time that corn-soybean rotations have on soil quality, which 
manifest in yield and therefore profit impacts.  We show how the efficient decision rule depends 
on model parameters and how it compares to those characteristic of static models of supply.  The 
model is parameterized for a representative acre of Iowa cropland and used to predict actual crop 
choices in a panel of over 6500 Iowa plots during 1979–1997 surprisingly well.
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A ubiquitous decision in agricultural production is farmers’ crop allocation and rotation 

decisions.  These decisions ultimately determine crop supply response.  The traditional way of 

modeling the basic economic problem is to view land as a fixed, unadulterated input at the 

beginning of each season, a view that works well with static models that are predominantly used 

in applied work.  While crop rotations are incorporated into some programming models, they do 

not account for the sequential nature of planting decisions.  That is, they take multi-year rotation 

rules as a single decision as if future prices were known in advance, as if the problem were static.

The static view is plainly contrary to a large agronomic literature that shows higher average 

yields and lower costs resulting from rotating crops, plus the fact that most farmers actually do 

rotate crops.  Indeed, USDA’s Agricultural Resource Management Survey data show that 

farmers rarely depart from planned rotations even amid large changes in relative prices.1 The 

most prevalent and salient example is rotation of corn and soybeans: soybeans fix nitrogen that is 

used by the subsequent year’s corn crop, thereby reducing fertilizer costs.  Rotating crops also 

reduces the incidence and severity of pest infestations, because different crops play host to 

different insects and diseases.  Experimental evidence shows higher yields for corn following 

soybeans than for corn following corn and similarly higher yields for soybeans following corn. 

Experimental evidence also shows lower marginal productivity of fertilizer inputs to corn yield 

following soybeans as compared to corn.

When would an optimizing farmer consider altering a planned rotation schedule?  Or, more 

generally, given past plantings and current and expected future prices, what would an optimizing 

farmer plant in any given year?  Given answers to these basic management questions, how would 

we expect crop supply to change in response to temporary or more persistent changes in 

commodity demand and/or input supply?

1 Information about these data is available at http://www.ers.usda.gov/Briefing/ARMS/.
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The agronomy of crop rotations implies that current production opportunities depend on 

historical plantings and expected future production opportunities depend on current plantings. 

Crop plantings, and thus supply response, is a fundamentally dynamic problem.  The decision 

problem becomes more interesting and complex in an environment with highly variable and 

uncertain commodity prices and where price shocks typically persist for many years.  Price 

uncertainties, coupled with irreversible past planting decisions, suggest there are option values 

associated with choosing crop rotations that maximize soil quality and land disposition, such as 

susceptibility to pests.  Thus, altering a planned rotation in response to a temporary change in 

relative prices may be profitable in the short run, but may not maximize expected discounted 

profits over the long run.  These short-run vs. long-run tensions suggest supply response in a 

dynamic model under uncertainty may differ markedly from that implied by static models.

To our knowledge, a systematic analysis of crop rotations under price uncertainty and the 

implications for supply response have not been examined.  There may be considerable interest in 

the question now due to the recent, sharp increases in commodity prices and the subsidization of 

corn-based ethanol.  Price volatility and uncertainty implied in prices of futures options have also 

increased.  And there is some evidence that some corn-soybean rotations have shifted to corn 

monoculture.

A general solution to the crop-rotation problem is extremely complex due to its high 

dimensionality.  Rather than solve the general problem, in this article we develop a relatively 

simple model assuming corn and soybeans are the only two crop choices.  We examine optimal 

policy functions for a representative producer in Iowa, given stochastic price processes estimated 

for these commodities, and rotation and yield-fertilizer response functions derived from 

experimental plot data under various rotation schedules (generously provided by Iowa State 

University).  While the dimensionality of this problem is large, it is solvable using modern 
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computers, and incorporates the most characteristic features affecting rotation decisions in the 

U.S. Corn Belt.

Preliminary findings from our stochastic dynamic programming analysis suggest there is a 

large region of relative prices where it is optimal to plant soybean after corn and corn after 

soybean.  Policy functions suggest a short-to-medium-term supply response that is more inelastic 

than static models would indicate.  The analysis is useful in two key ways.  First, it may provide 

useful rules of thumb for farmers trying to decide between different rotation systems, as well as 

planting decisions in any given year.  Second, it may serve to influence the way supply response 

is modeled more generally within agricultural economics.  This second application has far-

reaching potential implications, influencing the way we assess impacts of many kinds of 

agricultural policies, including conservation-related policies, biofuel and energy policies, as well 

as traditional commodity policies.

Model

We consider planting decisions for a standardized unit of land.  At a sufficiently small scale, 

planting decisions on an individual unit of land, such as a field, crop choice is a discrete decision, 

even though when aggregated across all units for a given farm, or in a county or state, the 

decision will approximate a continuous decision (e.g. what fraction and which parcels of land to 

allocate to corn, soybeans, wheat, and so on).  To focus squarely on the issue of rotational 

dynamics, we assume no time or capital allocation constraints, spatial interaction effects, or 

farm-level liquidity constraints that would force us to approach planting decisions at the farm 

level.  Instead, each unit of land is regarded as an independent “profit center” and, by 

maximizing profit from harvesting crops on each unit of land, the farm maximizes its value as a 

whole.
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There is some arbitrariness about how big or small an individual unit of land may be.  It 

should usually be treated as a contiguous parcel of land that is typically growing only one crop 

per season.  We might think of this as a “field” where, for agronomic reasons, it would not make 

sense for a farmer to plant different crops on the same field.  If this is not the case, then the 

“field” should be conceptually subdivided into smaller parcels for which the farmer almost 

always plants only one crop or the other.  For purposes of this first analysis we will abstract 

away from the size of the unit more carefully.  The data to which we compare are model refer to 

specific points where the discrete crop choice is indicated. 

Our agronomic data on crop rotations, which are critical to calibration of the model, are from 

an experiment station in Northeast Iowa.  As such, the model we develop is most salient to that 

region of the country and nearby regions with similar soils and climate.

The main features we want the model to be capable of predicting are 1) the pattern of 

planting, 2) total yields, and 3) revenues earned from these yields.  We want the model to 

provide accurate predictions not only for individual farms, but also in aggregate at both the 

county and state level, and also to match the overall time series properties of planting, yields and 

revenues earned.  Correctly predicting planting is not a sufficient condition for accurate 

prediction of yields and revenues, because there are macro shocks (weather shocks, or loss of 

yield due to pests, and so forth) that lead to strong spatial correlation in yields, which also have 

an effect on the overall market price.

In this preliminary model, instead of separating prices and yields we model crop revenues per 

acre, or price-times-yield.  This simplification captures price-yield correlations stemming from 

spatially-correlated weather and pest outcomes.  Historical revenue-per-acre data also appear 

stationary, despite a significantly increasing trend in yields. 

Consider economically efficient crop choice, dt, and fertilizer use, at, for an acre of arable 

land, on which either soybean, dt = 0, or corn, dt = 1, may be produced.  Crop yields and thus 
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revenues expected in the current year are influenced by crop choices made in earlier years.  In 

general, a long history of crop choices and soil management choices may influence current 

expectations.  Incorporating a long crop history would greatly increase the state space and render 

a solution computationally infeasible.2 Moreover, conditional on the previous year’s crop, crop 

choices in early years are not statistically significant determinants of yield in simple regression 

analyses of experimental crop yields.  We therefore assume expected revenues depend on an 

adjustment factor that depends on current and past crop choices, as well as current fertilizer 

applications, denoted f(dt, at, dt-1).  

Unit-level expected revenues are also tied to expected prices and the covariances between 

yield shocks and price shocks.  To account for both the autocorrelation of prices and these 

covariances, we model current expected revenues for the individual unit as being tied to 

expectations about state-level revenues per acre, which are widely available and observed.  State-

level revenues per acre equal the average price received in Iowa multiplied by the realized yield, 

and we denote these by rc,t and rs,t for corn and soybeans, respectively.  Crop revenues, like 

prices, display strong autocorrelation so that past prices strongly influence expectations about 

current prices.  Conditional on the last year’s revenue per acre, earlier years are not significant 

predictors of current price, so we assume current state-level revenues follow a first-order vector 

autocorrelation process,

(1-a) rc,t = α + β1rc,t-1 + β2rs,t-1+ εc,t

 
(1-b) rs,t = κ + γ1rc,t-1 + γ2rs,t-1+ εs,t 

(1-c) VAR(εc,t) = σc
2, VAR(εs,t) = σs

2,  COV(εc,t, εs,t)= σc,s

Thus, unit-level revenues in period t are given by 

2 Hennessy (2007) considers a framework that can encompass a broader set of possible rotation schedules but does 
not consider sequential decision making under uncertainty.
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(2) ( ) [ ] ( )11,1,,1,1,1 ,,0,,,, −−−−−− = tttstctststcttt dafrrrErrddaR  if soybean planted in t

[ ] ( )11,1,, ,,1, −−−= tttstctc dafrrrE  if corn planted in t.

The expected revenue functions in (2) are given by the deterministic components of the 

autoregressive processes in (1-a) and (1-b).  We assume the errors εc,t and εs,t are mean-zero, 

independent and identically distributed (iid), bivariate-normal random variables.  

To obtain the current profit function we need to subtract costs.  For this preliminary model 

we consider only fertilizer expenditures.  While other costs and inputs are surely important to 

crop decisions and unit profits, fertilizer inputs are the largest single expenditure and interact 

strongly with the agronomic factors associated with crop rotation.  A corn monoculture, for 

example, will require greater levels of fertilizer to obtain the same yield as corn following 

soybean.  Fertilizer is a substitute for rotation and therefore fundamental to our problem.  Profit 

is given by 

(3) ( ) ( ) ttstcttttstcttt karrddaRrrdad −= −−−−−− 1,1,11,1,1 ,,,,,,π ,

where k is the price of fertilizer, which is assumed fixed and constant over time.3

The producer’s objective is to maximize the expected present value of profit (3) over an 

infinite time horizon, subject to the stochastic evolution of revenues.  We can write this infinite 

horizon problem using the recursive Bellman equation that relates the current value function to 

the future value function: 

(4) ( ) ( ) ( )[ ].,,,,,max,, ,,11,1,11,1, , ttstcttstcttttstc drrVdppadEdrrV
tatd

βπ += −−−−−− .

3 In future research it may be interesting and useful to consider stochastic fertilizer prices that may or may not be 
associated with past and current commodity prices.
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V is the maximum expected present value of profit, a function of three state variables, the 

previous season’s corn and soybean revenues and crop choice, which provide all of the 

information necessary to form expectations over prices and yields at the end of the current 

growing season.

Given parameters for the autoregressive process of revenues and a functional form for the 

agronomy-based adjustment function f(dt, at, dt-1), we use value function iteration to find the 

policy functions d*(rc,t, rs,t, dt-1) and a*(rc,t, rs,t, dt-1), which give optimal crop choice and fertilizer 

application rates as a function the three state variables.  Note that, because of the infinite horizon, 

the policy functions do not depend on t.

Parameter Estimates

We estimated the key parameters in our model using two key data sources: publicly available 

data from USDA’s National Agricultural Statistics Service (NASS) on Iowa yields from 1950 to 

2006 and experimental plot data from Northeastern Iowa generously provided by David 

Hennessy.  These experimental plot data, the same data used in Hennessy (2006), include yield 

outcomes during 1979-2002 on many plots with different rotation schedules, with each rotation 

schedule stratified with different fertilizer application rates when corn was planted.  

We used the NASS data for Iowa yields and prices to construct time-series of revenues for 

corn and soybeans (rc,t and rs,t) and used these to estimate the first-order vector autoregressive 

processes in (1-a and 1-b).  We estimated higher order autoregressive processes as well as 

autoregressive-moving average (ARMA) models, but found higher-order coefficients were not 

statistically significant and had AIC and BIC selection criteria that were inferior to the simple 

first-order process.  We chose the first-order model for these reasons plus the fact that adding 

additional state variables to the model greatly increases computational expense.  Coefficient 

estimates and standard errors are reported in table 1.
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To solve the model current revenues assumed 20 values, where as last season’s crop choice 

assumed only two values, either 0 for soybean or 1 for corn.  As a result, there were 800 possible 

combinations of the state variables.  Endpoints for the revenue states were determined by 

simulating the estimated vector autoregressive process over 1000 years and choosing values 

above and below the highest and lowest values realized in the simulation.  We allowed each of 

the revenue disturbance terms assume 15 values and, as a result, the 15-by-15 Markovian 

transition process assumed 225 possible values.

We used the experimental plot data to estimate the revenue adjustment function f().  These 

data include yields and fertilizer inputs from a series of test plots.  These show clear evidence of 

yield benefits from planting corn following soybeans and soybeans following corn.  We 

estimated these effects by pooling all data from all rotation schedules and then limiting it the data 

set to observations with either corn or soybeans in the current and previous year and regressing 

yield on a dummy variable indicating the prior crop.  In the corn regression, we also included a 

quadratic function of the fertilizer application rate and rate-squared, and an interaction with the 

previous year crop dummy. The interaction captures differences in marginal fertilizer 

productivity depending on whether corn follows corn or corn follows soybeans.  We also include 

year fixed effects to capture weather variation and reduced standard errors of the parameter 

estimates. While fertilizer application rates take on just four discrete values, we estimated a 

continuous function to facilitate modeling of continuous application rates within our dynamic 

model. OLS regression results are summarized in table 2.

The last two parameters are the price of fertilizer, k, and discount factor, β.  Average real 

(2006) prices ($/lb) for anhydrous ammonia ($0.2261-$0.2512), nitrogen solutions (30%) 

($0.1174-$0.1294), urea (45-46% nitrogen) ($0.1799-$0.1961), ammonium nitrate ($0.1697-

$0.1827), and sulfate of ammonium ($0.1372-$0.1589) during 1994-2006 were used to specify 

the base model’s fixed nitrogen price per pound at k = $0.1749.  The BLS PPI was used to 
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convert nominal prices to real prices, and the fertilizer data are from NASS as reported by Huang 

(www.ers.usda.gov/Data/FertilizerUse/).  The base model’s discount factor is from Lence, β = 

0.94931.  We vary these parameters to test the sensitivity of the results to these assumptions.

We solved the model using value-function iteration.  The computer code was written in 

Matlab and used several functions written by Paul Fackler, which he provides free of charge on 

his personal web page (http://www4.ncsu.edu/~pfackler/) site.  (For more information about 

these functions, as well as a general treatment of the theory and practice of constructing and 

solving stochastic dynamic programming models and arbitrage models see Miranda and Fackler). 

Convergence of the value function was achieved after an average of roughly 200 iterations.

Optimal Policy Functions

The baseline policy functions for crop choice are displayed in all of the figures presented below, 

together with policy functions for different model parameters.  Figure 1-A shows the optimal 

crop choices across the revenue state space when the previous year’s crop is corn, and Figure 1-

B shows the optimal choices when the previous year’s crop is soybean.  In 1-B, it is almost 

always optimal to plant corn after soybean.  Increasing the fertilizer price, because fertilizer is 

only used in corn, increases only slightly the incidence of double-cropping soybean.  In 1-A, 

however, it is usually optimal to plant soybeans, but there more revenue combinations where 

double-cropping is optimal.  For larger previous season corn revenues and smaller previous 

season soybean revenues, it is optimal to double-crop corn.  The range of revenue-state 

combinations contracts for higher fertilizer prices, because it costs more to plant corn.

Increasing the discount rate by a factor of two and then by a factor of three had no impact on 

the optimal decision rule and, surprisingly, reducing and increasing the elements of the 

covariance of revenue disturbances had very little impact on the decision rule.  However, 

modifying the parameters of the revenues equations has a profound impact on the optimal 
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decision rule.  The is because the mean and the variance of conditional expectations are affected 

simultaneously.  Figures 2A and 2B show the effects of modifying the soybean revenue equation, 

and figures 3A and 3B show the impacts of changing the corn revenue equation.  All of the 

parameters were modified in accordance with 95% confidence intervals and correlation 

coefficients of the parameter estimates.

Notice how the first modification (indicated with a dot) of the soybean revenue equation 

almost completely eliminates the incidence of double cropping corn.  The change reduces 

expected end-of-season soybean revenues by 1.4%, on average, but reduces the variance of 

expected end-of-season soybean revenues by 8.8%.  This very slight reduction in volatility 

significantly reduces the value of waiting to plant soybean, even though the foregone gains of 

planting corn are increased.  The second modification (indicated with a circle) has the opposite 

effects on the mean and variance of conditional soybean revenue expectations.  This change 

increases expected end-of-season soybean revenues by 2.5%, on average, and increases the 

variance of expected end-of-season soybean revenues by 11.5%.  This a larger jump in volatility, 

which increases the value of waiting to plant soybean, an option value that is further enhanced by 

the increase in the foregone gains associated with planting corn now.  Similar effects occur with 

respect to modifications of the corn revenue equation.

Figures 4A and 4B show the decision rules for various forms of myopic decision rules.  The 

first modification (indicated with a dot) examines a static, single-period, expected profit 

maximization model of crop rotation that accounts for last season’s crop choice.  The second 

modification (indicated with a circle) examines a static, single-period, expected profit 

maximization model that does not account for last season’s crop choice.  Notice how corn is 

double cropped much more as the degree of myopia is increased, demonstrating quite remarkably 

the benefit of viewing the rotation problem in its correct context, as a dynamic optimization 

problem.
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Finally, figure 5 demonstrates how our parameterized model agreed with actual crop choices. 

Crop choices were simulated using the base model’s optimal policy function and compared to the 

crop choices made by individuals on over 6,500 plots reported in National Resources Inventory 

data for Iowa during 1979-1997.  Not all years are reported so, for those years the policy 

function was used to estimate the crop choice.  Overall, our simple model did an astounding job 

of correctly predicting actual crop rotations.

Conclusion

We examine crop choice as a dynamic optimization problem over an infinite time horizon, taking 

into account the effects over time that corn-soybean rotations have on soil quality, which 

manifest in yield and therefore profit impacts.  We show how the efficient decision rule depends 

on model parameters and how it compares to those characteristic of static models of supply.  The 

model is parameterized for a representative acre of Iowa cropland and used to predict actual crop 

choices in a panel of over 6500 Iowa plots during 1979–1997 surprisingly well.
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Table 1.

Summary of first-order vector autoregressive model of Iowa state-level revenues-per-acre
Corn (rc,t) Soybeans (rs,t)

Parameter Estimate Std. 
Error

Parameter Estimate Std. 
Error

α 70.43306 43.411 κ 60.60741 35.987
β1 0.359455 0.1609 γ1 0.03023262 0.1334
β2 0.6093376 0.1916 γ2 0.815847 0.1588

VAR(εc,t) 9341.519 VAR(εs,t) 6419.619

COV(εc,t, εs,t) = 4952.483
Note: The errors are assumed iid so estimates were obtained using OLS.  Standard errors for the variance and 
covariance estimates were obtained using a non-parametric bootstrap of the residuals.

Table 2.
OLS regression results: Dependent variable the natural log of yield

Corn (rc,t) Soybeans (rs,t)
Parameter Estimate Std. Error Paramete

r
Estimate Std. Error

Intercept 4.4632 0.02514 Intercept 3.5091 0.018267
ln(Fertilizer

)
0.08201
8    

0.0030006

dt-1 ln(Fertilizer)2 0.01905
1   

0.00075647

dt-1 -0.6678 0.016757 d t-1 0.21327 0.0082209
Year F.E. Yes Year F.E. Yes

R2 = 0.8127, Observations =2100, Error degrees 
of freedom = 2072, Std. Error = 0.20089

R2 = 0.83668, Observations =1020, Error 
degrees of freedom = 994, Std. Error 
=0.11913

Notes: Experimental plot data for northeast Iowa during 1979-2002.
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Figure 1-A.

Figure 1-B.
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Figure 2-A

Figure 2-B
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Figure 3-A

Figure 3-B
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Figure 4-A

Figure 4-B
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Figure 5
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