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Introduction 
Existing program evaluation methods such as difference-in-difference estimators are designed to 

examine the overall impact of a program. By design they can only examine changes in a particular 

summary statistic of an outcome indicator, most commonly the mean or the median or a particular 

quantile. However, we are often interested not only in the mean impact of an intervention, or the 

average treatment effect, but also the differential impact on different subpopulations such as the rich 

and the poor, the well-nourished and the malnourished, or some finer disaggregation of the welfare 

domain. In principle, one could examine the program impact on various subpopulations by applying 

existing program evaluation techniques on smaller and smaller subsamples of the data. In practice, this 

approach faces three main problems. First, it is cumbersome both for carrying out the analysis and for 

interpreting the results. Second, one faces arbitrary choices of how to split the sample. And third, 

increasing the number of subgroups leads to sample size issues in the regressions. To circumvent these 

problems this paper suggests a novel approach to program evaluation which combines stochastic 

dominance with difference-in-difference methods. 

We apply this new method to a unique, large data set from arid and semi-arid Kenya to compare 

changes in acute child malnutrition, measured by the Mid-Upper Arm Circumference (MUAC). In 

particular, we focus on the differences in changes in nutritional status between areas that have 

benefited from additional public expenditures through the second phase of the Arid Lands Resource 

Management Project (ALRMP II) and areas that have not. This paper is the first to evaluate welfare 

changes over time in a stochastic dominance framework. It is also the first study to use stochastic 

dominance analysis for MUAC data. 

Acute malnutrition remains pervasive in arid and semi-arid Kenya between 2005 and 2009. Using 

standard difference-in-difference regression as a baseline we find no statistically or practically significant 

mean impact of ALRMP II expenditures on child malnutrition. In contrast, our stochastic dominance 

estimations reveal that project expenditures have had different impacts on different parts of the 

distribution. In particular they are correlated with a positive impact on child nutritional status at the 

lower end of the distribution. They may have prevented the nutritional status of the worst-off children 

from worsening and, thus, may have functioned as a nutritional safety net.  

These findings highlight the importance of looking beyond average impacts. Looking beyond averages 

has become more mainstream in poverty analysis and has yielded more nuanced insights ((Ravallion 

2001), the increasing use of higher order P-alpha indices). The stochastic dominance based difference-

in-difference technique proposed in this paper suggests a way for doing the same in program evaluation.  

Existing program evaluation approaches 
The fundamental problem of program evaluation is that we cannot observe a person i’s  outcomes in 

two states: treatment and non-treatment. Let x be the outcome of interest and subscripts T and C 

denote treatment and non-treatment, respectively. In our application below this will be a malnutrition 

indicator for children, but x could equally be income, consumption, mortality or any other welfare 
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indicator or any other continuous measure relevant for program evaluation. We would like to evaluate 

the program impact Δ 

i iT iCx x∆ = −  

but cannot because we only see either xiT or xiC but not the corresponding counterfactual. 

One standard way to overcome this problem is to look at differences across people rather than the 

unobservable differences for i over states. When treatment assignment is randomized then the 

distribution of the outcome variable should be for the subpopulation that benefited from a program 

(the ‘treatment group’) and those that did not participate in the program (the ‘control group’). We can 

then look at single differences to compare the difference in outcomes. In the case of means, the average 

program impact Δ is equal to 

[ ] [ ]T CE x E x∆ = −       (1) 

When the assignment of treatment has been non-random and treatment and control groups differ 

systematically the estimated Δ is biased. Instead, we can then test for a treatment effect by comparing 

differences over time between treatment and control groups. If we have repeated observations over 

time at t and t-1 for each i the average treatment effect Δ can be estimated through s differences-in-

differences (DD) 

, , 1 , , 1T t T t C t C tE x x E x x− −   ∆ = − − −        (2) 

The key shortcoming of any of the existing approaches to program evaluation is that they are limited to 

focusing on the impact of an intervention on a particular moment of the distribution, typically the mean. 

To look beyond the average treatment effect we need a different evaluation method. This paper 

proposes one such method based on stochastic dominance. 

Using stochastic dominance for difference-in-difference estimation 
Stochastic dominance analysis takes account of entire distributions or sub-ranges of distributions. There 

are two ways in which it superior and more robust for making welfare comparisons across space or 

across time.  

First, it expands welfare comparisons beyond a single, arbitrary cut-off point. We use the term ‘poverty 

line’ denoted by z as a shorthand for this cut-off. Though note that this ‘poverty line’ could be an actual 

consumption poverty line or any similar metric such as the negative standard deviation of an 

anthropometric index that we use in our application later on. Since the location of a poverty line z is 

arbitrary it is often contentious. Instead, it is often much easier to agree on a range in which the poverty 

line should be set such that [ ]min max,z z z∈ where zmin and zmax are the lowest and highest poverty lines 

that are considered reasonable. Stochastic dominance techniques accommodate ranges of poverty lines 

and, thus, can make welfare comparisons robust to the choice of poverty line.  
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As an example consider the evaluation problem in our application below. It is not clear where to set the 

malnutrition poverty line expressed as standard deviations from the mean of Mid-Upper Arm 

Circumference (MUAC) Z-score measures for small children. Minus 1 and minus 2 are often regarded as 

the cut-off points for mild and severe malnutrition. However, one can easily make the case for other 

‘poverty lines’. The entire range of ‘reasonable’ MUAC poverty lines is probably spanned by, say,

[ ]3,0z∈ − . Then, if one distribution has less malnutrition than another over that range of poverty lines 

then the former distribution is strictly preferable to the latter. 

Second, stochastic dominance can be used to make comparisons for broad classes of welfare indicators. 

In our analysis below there aren’t really any alternative indicators to the Z-score based malnutrition 

measure. However, when evaluating material poverty there is often disagreement on which indicator to 

use. In practice this can matter as different poverty indicators can yield different results. Stochastic 

dominance analysis can consolidate the conclusions as they are valid for a range of poverty measures 

that satisfy some basic common properties such as additive separability which is satisfied by the class of 

P-alpha measures, the Watts index and the Clark-Hemming-Ulph indicator.  

Definitions of orders of dominance 

Let F denote a set of probability density functions of a random variable x defined on a closed interval 

[xmin, xmax]. Further, let ( )Af x ∈F and ( )Bf x ∈F . Denote the respective cumulative density functions 

(cdf) by FA(x) and FB(x). 

Distribution A first order stochastically dominates (FOD) distribution B up to poverty line [ ]min max,z x x∈  

if and only if (iff) ( ) ( ) [ ]min0 ,B AF x F x x x z− ≥ ∀ ∈ , that is, iff FA(x) lies nowhere above FB(x). Higher 

orders of stochastic dominance are defined on higher order integrals of the cdf. Let s denote the order 

of integration. Then ( ) ( )max

min

1
x

s s

x
F x F z dz−= ∫ . Therefore, distribution A s

th
-order dominates 

distribution B iff 

 ( ) ( ) [ ]min0 ,s s

B AF x F x x x z− ≥ ∀ ∈ . 

These standard stochastic dominance criteria can be applied directly to program evaluation if treatment 

and control populations share the same initial distribution. 

SD, poverty orderings and social welfare orderings 

Program evaluations that focus on poverty and social welfare impacts can exploit some convenient 

symmetries between stochastic dominance and poverty orderings. Poverty indicators, here, are loosely 

defined as any (quasi-)continuous measure of well-being including consumption, assets or 

anthropometric measures such as the MUAC Z-scores used in our application below. 

Stochastic dominance of order α is directly related to P-α poverty measures (Foster and Shorrocks 1988) 

in the following way. Let SDs denote stochastic dominance of order s and Pα stand for poverty ordering 

(‘has less poverty’). Let 1sα = − .Then, 

   A Pα B iff A SDs B.  
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The poverty ordering is the same as the stochastic dominance ordering. And poverty orderings are 

nested in the same way as stochastic dominance orderings. Let � denote ‘implies. Then, for stochastic 

dominance orderings A SD1 B � A SD2 B � A SD3B. Similarly, for poverty orderings A P1 B � A P2 B � A 

P3 B. If one welfare distribution has unambiguously less welfare according the headcount ratio (P1), then 

it also has less welfare according to the gap (P2) and the gap squared (P3) indices. 

Foster and Shorrocks (1988) show how these orderings can be expanded to social welfare functions. Let 

U(F) be the class of symmetric utilitarian welfare functions. Then,  

A Pα B iff A Uα B.  

Define U1 as the subset of U for which u’>0. U1 represents the monotonic utilitarian welfare functions. 

Less malnutrition is better, regardless for whom.
1
 Let U2 be a subset of U1 such that u’’<0. This subset of 

social welfare functions represents equality preference in that a mean preserving progressive transfer 

increases U2. Finally, define U3 as the subset of U2 for which u’’’>0. U3 contains the transfer sensitive 

social welfare functions which value a transfer more highly the lower in the distribution it occurs. 

Thus, using stochastic dominance analysis on welfare data we can identify social welfare changes for 

nested classes of welfare measures. Also, in the context of comparing levels of welfare it makes sense to 

test for at least third order stochastic dominance as transfer sensitivity is generally desirable.  

The program evaluation literature has evolved separately from the stochastic dominance literature. 

Reviews of the state-of-the-art in program evaluation (Todd 2008) and best practice guides (Baker 2000) 

do not contain any reference to stochastic dominance. To date Verme (2010) is the only study that has 

started to show how stochastic dominance techniques can be used for program evaluation. He uses 

simulated income data to show that a program can have no average treatment effect while impacting 

the rich and the poor quite differently. On the basis of the Foster and Shorrocks results he proposes a 

simple method for program evaluation for the case of randomized assignment of treatment. 

This paper extends the method to difference-in-difference evaluation to make it applicable to cases 

where treatment and control populations do not share the same distribution. It also provides the first 

empirical application of this technique highlighting the importance to look beyond average treatment 

effects. 

Stochastic dominance for difference-in-difference impact evaluation 

In the majority of evaluation problems the available data is not based on experimental or quasi-

experimental data. Treatment and control groups are not randomly selected and are, thus, likely to 

differ in their intrinsic characteristics. Therefore, we cannot look at the simple difference in outcomes 

between the two groups but need to examine differences-in-differences in outcomes across time and 

across subgroups. The difference-in-difference approach can be applied in a stochastic dominance 

context. Much of the discussion on stochastic dominance on simple differences from above carries 

straight over but there are important difference in interpretation and usefulness of higher order 

dominance tests. 

                                                           
1
 Again, with a nutritional indicator this is only defensible up to a certain point, but certainly up to xmax. 
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Let Δ denote the difference in a random variable x between time t and t-1 defined on the closed interval 

[ ]min max,∆ ∆ such that 1t tx x −∆ = − . Further, let G denote the set of probability density functions of Δ. 

Further, let ( )Ag ∆ ∈G and ( )Bg ∆ ∈G . Denote the respective cumulative density functions (cdf) by 

GA(Δ) and GB(Δ). Then, distribution A first order stochastically dominates (FOD) distribution B iff  

( ) ( ) [ ]min max0 ,B AG G∆ − ∆ ≥ ∀∆∈ ∆ ∆ , that is, iff GA(Δ) lies nowhere above GB(Δ).  

Note that unlike in the case of stochastic dominance between two outcome levels this definition does 

not refer to a poverty line as the location of such a ‘poverty line’ in differences is even more subjective 

than a poverty line in levels. The use of such a cut-off point depends on the particular focus of the 

evaluation. For instance, we could focus on negative changes to determine whether the treatment or 

control group had fewer negative changes. The corresponding FOD condition would be 

( ) ( ) [ ]min0 ,B AG G z∆ − ∆ ≥ ∀∆∈ ∆ .  Conversely, we could look at only positive changes, or any other 

partial range of welfare changes. 

Higher orders of stochastic dominance of welfare differences are defined on higher order integrals of 

the cdf. Let s denote the order of integration. Then ( ) ( )max

min

1s sG G z dz
∆ −

∆
∆ = ∫ . Therefore, distribution A 

s
th

 order dominates distribution B iff ( ) ( ) [ ]min max0 ,s s

B AG G∆ − ∆ ≥ ∀∆∈ ∆ ∆ . 

There is an important difference in interpreting the results from SD on welfare levels versus on changes. 

Stochastic dominance analysis is based on cdfs which order the variable of interest from smallest to 

largest. In the case of welfare levels the lowest values pertain to the worst off individuals and welfare 

levels are always positive. In contrast, welfare changes can be negative and the largest negative changes 

are not necessarily associated with the worst of individuals.  Indeed, the largest negative changes are 

likely to be from people who were relatively well off at t-1 and, thus, had farther to fall. In any event, the 

cdfs of welfare changes are ‘poverty blind’. This difference in interpretation of stochastic dominance 

results of welfare levels vs. welfare changes matters most if we are concerned about the poor. To 

partially overcome the ‘poverty blindness’ we can run stochastic dominance on differences on the 

subset of people that were poor at t, at t-1 or in both periods.   

The difference in interpretation between SD results on levels and changes is also relevant as we move 

from first to higher order stochastic dominance. The smallest welfare changes appear at the lower end 

of the domain regardless of the welfare level. Hence, the attributes of second and third order 

dominance, namely equality preference and transfer sensitivity, no longer apply in the same way as for 

the stochastic analysis of levels. First order SD tests sensibly check for differences in distributions of 

changes between intervention and control sublocations. Second order SD tests assess the extent to 

which one distribution’s changes in MUAC Z-score summary statistics are concentrated at the lower end 

of the distribution of changes. Third order SD tests, however, are not really meaningful. The lower end 

of this distribution, that is, the most negative changes in nutritional status, do not (necessarily) 

represent the most malnourished sublocations and it would make little sense to give additional weight 

to the lower end of the distribution, which is what third order SD testing would do. 
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Methodologically, changes in these MUAC Z-score summary statistics are analogous to changes in 

incomes. Hence, we can draw on the literature on economic mobility. However, in this literature the 

term ‘economic mobility’ is implicitly or explicitly defined in at least six different ways (Fields 2001; 

Fields 2007). The mobility definition that is most appropriate for analyzing MUAC Z-score changes is that 

of directional MUAC movement
2
, as we want to capture both the magnitude and the direction of MUAC 

Z-score changes over time, and capture them in absolute, not relative terms, that is, irrespective of what 

happened to other changes in MUAC Z-scores of other locations.   

There is no meaningful range of sensible ‘poverty lines’ expressed in terms of changes in MUAC Z-scores. 

Therefore, we test for stochastic dominance over the entire domain rather than the typical right-

truncated domain used in consumption or income poverty analysis. 

Our stochastic dominance based method for program evaluation has one potential disadvantage 

compared to regression-based difference-in-difference estimators. In the standard regression program 

evaluation approach we can include other covariates as right hand side variables. In practice this doesn’t 

matter if we are primarily interested in whether the program has had an effect or not. Furthermore, our 

stochastic dominance method can be used to evaluate program impact net of other covariates; it just 

can’t do it simultaneously with estimating the program impact. To account for  covariates we first run a 

regression of the outcome variable on the desired covariates before using the residuals, which represent 

the variation in the outcome variable net of observables, in the stochastic dominance estimation. In the 

application below we use this method to strip out the effect of drought on child malnutrition by using 

the residuals of a regression of MUAC Z-scores on NDVI as our variable in the stochastic dominance 

analysis. 

The setting and data 
To illustrate the use of stochastic dominance for difference-in-difference evaluation we use a unique, 

large dataset of child nutrition from arid and semi-arid lands (ASALs) Kenya. These areas are 

characterized by livestock production and highest incidences of poverty in Kenya. Over 60% of the 

population live below the poverty line and levels of access to basic services are very low. Infant mortality 

rates are high, in some districts more than double the (already high) national average.  Child 

malnutrition levels in Kenyan ASALs are generally declining but are still above emergency threshold 

levels, worsened by recurrent droughts, high poverty rates, and HIV/AIDS (UNICEF, xx). In the North 

Eastern Province, for example, 23.2 per cent of children under five suffering from acute malnutrition and 

infant and under-five mortality rates are rising (ibid).    

The data we use in our illustration below were collected by the Kenyan government under the second 

phase of the Arid Lands Management Project (ALRMP II), a community-based drought management 

initiative that provided additional, decentralized financial resources to 28 arid and semi arid districts in 

Kenya from 2003 to 2010. The project sought to improve the effectiveness of emergency drought 

                                                           
2
 Other economic mobility concepts relate to movements in ranks, in shares, and in symmetric income. For our 

MUAC analysis we are not concerned with these.  
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response while at the same time reducing vulnerability, empowering local communities, and raising the 

profile of arid and semi-arid areas in national policies and institutions. 

Since one of the objectives of ALRMP II was to reduce the levels of child malnutrition the project’s 

monitoring strategy included the collection of information on child nutritional stats. The specific 

anthropometric indicator collected was the Mid-Upper Arm Circumference (MUAC) measurement for 

children younger than 60 months.  MUAC is a reliable and relatively cheap-to-collect indicator for child 

nutrition status. It is also closely correlated with clinical and other anthropometric indicators of 

nutritional status (Shakir and Morley 1974; Shakir 1975). In addition is considered more appropriate 

than other measures for children in pastoral areas (REF). 

We use MUAC Z-scores rather than absolute MUAC measures as they allow a direct comparison across 

age and gender of children. Z-scores for weight-for-age or height-for-age are routinely used to measure 

child nutrition status. For some reason, perhaps inertia from when MUAC Z-scores were difficult to 

calculate, even recent studies (Ritmeijer 1998) and the current 2006 WHO Child Growth Standards for 

emergency nutrition programs still use raw MUAC measures in centimeters, despite clear evidence that 

Z-scores are the preferable measure (Gernaat et al. 1996; de Onis et al. 1997; Mei et al. 1997). 

The raw MUAC measures for all children from 0-59 months old were converted into z-scores as follows 

( )

( )
( )

ijt

ijt

MUAC reference population

MUAC MUAC reference population
Z MUAC

σ

−
=

   

where MUACit is child i’s MUAC at time t in location j and σ indicates the standard deviation. The 

reference population is taken from the WHO/NCHS (de Onis et al. 1997). 

Over 602,000 individual child MUAC measurements were taken in 128 sublocations in 10 arid and semi-

arid ALRMP II districts between June 2005 and August 2009. Table 1 shows the sample size by financial 

year and district. There is some variation in coverage across districts. Turkana accounts for around a 

quarter of all observations, while there are only 27,000 observations for Mandera, including none for 

2007/08.  

Table 1 Sample size by financial year (July-June) and district 

Year Garissa Kajiado Laikipia Mandera Marsabit Nyeri Mwingi Narok Tharaka Turkana 

2005/06 16,517 9,974 15,243 17,437 10,921 14,805 19,165 4,837 18,607 36,626 

2008/09 4,623 13,541 8,184 3,042 8,079 15,044 11,091 10,880 7,767 42,979 

 

Table 2 Median MUAC Z-score by financial year (July-June) and district 

year Garissa Kajiado Laikipia Mandera Marsabit Mwingi Narok Nyeri Tharaka Turkana 

2005/06 -1.51 -1.06 -.66 -1.53 -1.32 -1.23 -1.4 -.66 -.97 -1.34 
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2008/09 -.76 -1.21 -.76 -1.17 -1.22 -1.04 -1.18 -.66 -.77 -1.36 

 

Tables 2 depicts the high prevalence of malnutrition by showing the median MUAC Z-score by district. 

Moreover, according to the median Z-score nutritional status does not seem to change perceptibly over 

time. The severity of malnutrition is evident from tables 3 and 4 which present the 10
th

 and 25
th

 

percentile MUAC Z-score for each district and year. With the exception of Nyeri, and possibly Laikipia, 10 

percent of children have a MUAC of less than -2 standard deviations indicating severe malnutrition. Even 

the 25
th

 percentile figures from table 6 are closer to the -2 cut-off point than the -1 standard deviation 

level that indicates mild malnutrition.  

Table 3 10
th
 percentile MUAC Z-score – whole sample 

Year Garissa Kajiado Laikipia Mandera Marsabit Mwingi Narok Nyeri Tharaka Turkana 

2005/06 -2.4 -2.14 -1.75 -2.65 -2.33 -2.36 -2.55 -1.67 -1.87 -2.26 

2008/09 -1.88 -2.22 -2.1 -2.13 -2.29 -2.14 -2.35 -1.54 -1.74 -2.25 

 

Table 4 25
th
 percentile MUAC Z-score – whole sample 

year Garissa Kajiado Laikipia Mandera Marsabit Mwingi Narok Nyeri Tharaka Turkana 

2005/06 -1.97 -1.67 -1.16 -2.06 -1.79 -1.84 -1.96 -1.2 -1.45 -1.85 

2008/09 -1.45 -1.76 -1.4 -1.69 -1.69 -1.68 -1.76 -1.15 -1.28 -1.86 

 

To estimate changes over time and compare them between intervention and control sublocations we 

need to construct a panel. Our child-level observations are unsuitable for this for three reasons. First, 

individual child identifiers are not consistent across time in the data set. Second, MUAC data are not 

available for all children in all months. Third, and most importantly, the sample of children will 

necessarily change over time. A large proportion of MUAC observations is lost over the three year 

period from 2005/06 to 2008/09 as many children observed in the early years have exited the 6-59 

month age group and children born since 2005/06 were added to the sample. 

For the 128 sublocations we constructed a two period panel for 2005/06 and 2008/09 of sublocation 

specific MUAC z-scores by summarizing the child-level MUAC z-scores in sublocation summary statistics. 

To focus primarily on malnourished children the results presented below are based on summary 

statistics that focus on that subpopulation such as the median Z-score of all children with Z-scores below 

zero, or the proportion of children with MUAC Z-scores below -1 and -2 standard deviations, focusing on 

standard cut-off levels to capture the prevalence of mild or severe malnutrition.
3
 

                                                           
3
 In total we constructed annual means for 14 monthly sublocation-specific MUAC Z-score summary statistics. 

These summary statistics include the median MUAC Z-score for children with Z-scores below 0, -1, and -2; the 

mean MUAC Z-score; the median Z-score of children with Z-scores below 0, -1, and -2; the percentage of children 



10 

 

These particular summary statistics are sensible truncations of the MUAC Z-scores distribution since we 

want to focus on undernourished children. This right-truncation in these summary statistics is analogous 

to the focus axiom in poverty measurement. We can safely ignore level and changes at higher levels of 

MUAC Z-scores since high MUAC observations and large positive changes at the upper tail of the 

distribution are not necessarily desirable or positive. Unlike income or consumption, in the context of 

child nutrition more is not always better. 

We classified sublocations into intervention and control groups according to the cumulative ALRMP II 

investment data provided by the ALRMP district data managers.
4
 The distribution of project investments 

suggests a natural cut-off point with sublocations without any sublocation specific investment forming 

the control locations and sublocations with some investment the intervention locations. 

Results 
We present program evaluation results for both the difference-in-difference regressions and for 

stochastic dominance to highlight the potential practical importance of looking beyond the average 

treatment effect. 

Regression results 

The difference-in-difference estimator in equation 2 was estimated as   

Δ����_��� � γ	 
 γ�D� 
 γ
NDVI� 
 γ�NDVI�
 
� δ�
�

��

L� 
 ε� 

where Δ����_���� is the change in a MUAC summary statistic for sublocation j, NDVI is the normalized 

difference vegetation index, and Ll are district dummy variables to capture regional variation. The first 

row of p-values in table 5 shows that none of the five MUAC Z-score summary statistics had a significant 

average treatment effect. This suggests that on average there has been no impact of ALRMP 

expenditure on child nutrition levels.  

  

                                                                                                                                                                                           
with Z-score below 0, -1, and -2; the Z-score gap of children with Z-score below -1 and -1; and the squared Z-score 

gap of children with Z-score below -1 and -2.Results for the additional indicators are available on request. 
4
 As a robustness check we also asked district project managers to classify sublocations in their districts into 

treatment and control groups. For brevity we focus on the investment-based treatment and control classifications. 
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Table 5 Diff-in-diff Panel Regression: Sublocation Summary Statistics of MUAC z-score  
 (1) (2) (3) (4) (5) 

VARIABLES median of 

MUAC Z <0 

10th 

percentile 

25th 

percentile 

median of 

MUAC Z <-1 

median of 

MUAC Z <-2 

      

intervention dummy based on 

ALRMP investment 

0.0735 0.0832 0.0661 0.0793 0.0531 

 (0.248) (0.316) (0.371) (0.188) (0.155) 

change in NDVI 2005/06-08/09 1.308* 2.611*** 2.058*** 0.927* 0.768* 

 (0.0545) (0.00294) (0.00754) (0.0997) (0.0767) 

squared change in NDVI 

2005/06-08/09 

-12.91** -8.672 -12.70* -0.954 1.924 

 (0.0293) (0.136) (0.0510) (0.802) (0.479) 

Constant 0.501*** 0.892*** 0.839*** 0.203*** 0.120*** 

 (2.99e-07) (1.40e-08) (8.70e-09) (0.000133) (0.00114) 

      

Observations 114 114 114 114 106 

R-squared 0.319 0.299 0.297 0.249 0.280 

Robust p-values in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

District dummy variables included. 

 

To test whether the lack of significance might be due to only having 93 differenced observations in the 

sublocation pseudo panel we ran the following difference-in-difference estimation on the individual 

MUAC Z-scores 

���������� � �	 
 �� � 
 �
!� 
 ��� � " !�� 
 �#$!%&�� 
 '���  

This increased the sample size to more than 270,000 but still shows no statistically significant average 

treatment effect as shown by the ‘diff-in-diff’ p-value. 
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Table 6 Difference in difference regression of individual MUAC z-scores 
2005/06-2008/09 Diff-in-diff Regression - Dependent Variable: individual MUAC Z-score 

  

VARIABLES  

  

time dummy  (=1 for 2008/09) 0.0785 

 (0.290) 

control - intervention by investment -0.0576 

 (0.425) 

Diff in diff 0.0245 

 (0.782) 

Normalized Difference Vegetation Index 1.029*** 

 (6.25e-07) 

Constant -1.391*** 

 (0) 

  

Observations 271061 

R-squared 0.033 

Robust p-values in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

Categorization of treatment and control sublocations by investment data. 

 

Stochastic dominance results 

Our stochastic dominance analysis proceeds in three steps.
5
 The first two steps represent standard 

single-difference stochastic dominance tests. First, we test for SD within control and treatment over 

time. If outcomes in the intervention sites improved while those in the control sites worsened this 

would present evidence for a positive ALRMP II program effect. However, we find no difference 

                                                           
5
 Full results for the first two steps testing for stochastic dominance within treatment and control groups across time 

and across treatment and control sublocations at each point in time are available on request. 
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between trends in intervention and control sublocation. Both have improved slightly, so on the basis of 

these tests we cannot conclude that ALRMP II has had no impact. Second, we compare intervention and  

control sublocations before and after ALRMP II. Control sublocations dominate in most cases and 

interventions sites never dominate. Again, this does not indicate any program effect. Third, we apply the 

difference-in-difference method outlined above to test for stochastic dominance between changes in 

intervention and changes in control sublocations. Results are summarized in table 7. 

Table 7 Summary table of Stochastic Dominance Results – Difference in intervention vs. 

differences in control sublocations 
  Median MUAC of obs < 0 % below -1 SD 

  Dominance Which*  Signif. Dominance Which**  Signif. 

       

 FOSD N - NS N - NS 

 SOSD Y? Interve

ntion 

NS Y Interve

ntion 

NS 

* Lower curves to the right are dominate for these indicators for which a greater number indicates ‘better’ 

**For changes from 2005/06-2008/09 in part III. larger positive changes are better, so lower curves to the right 

dominate. 

 

For the median MUAC of all MUAC observations below zero there is no full first order dominance 

between changes in intervention and changes in control locations. The cdfs cross at a positive change in 

the MUAC Z-score of around 0.2 as shown in figure 1. However, below 0.2 interventions sites FOD 

control sites indicating that a smaller percentage of intervention sites had negative changes in the 

drought adjusted median MUAC Z-score of all observations with MUAC less than zero. For instance, 

around 45% of control sites had negative changes in their Z-score compared to only around 20% of 

intervention sites. This suggests that ALRMP intervention sites were more effective in preventing a 

worsening of nutritional status, even if in absolute nutrition levels intervention sites still lag behind 

control sites. Above 0.2 the two cdfs are fairly close and intersect repeatedly indicating that treatment 

and control sites had roughly equal proportions of sites that experienced equal improvements child 

nutritional levels over time.   

Figure 2 indicates that the partial first order stochastic dominance is statistically significant around zero 

and almost significant below zero. Given the small size of the sublocation pseudo panel, the short time 

period and the relatively modest investments the lack of greater statistically significance is not 

surprising.
6
  

                                                           
6
 For all of the other stochastic dominance tests shown in the appendix table where we could use the individual data 

to complement the sublocation pseudo panel, the results of the panel and the results of the individual data always 

matched with the latter always statistically significant. This suggests that sample size is the limiting factor in the 
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Figure 1 

 
Figure 2 

 

Figures 3 and 4 show the results for changes in MUAC Z-scores for the 25
th

 and 10
th

 percentile, 

respectively. As we focus on smaller and smaller percentiles of the distribution (from the median to the 

25
th

 to the 10
th

 percentile) the analysis concentrates increasingly on the worst-off kids.  

                                                                                                                                                                                           
sublocation panel analysis. Intuitively, the close correspondence of results of the SD test where we can use both 

datasets might let one put a bit more confidence in the significance of the pseudo panel result. 
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In all cases the intervention sites seem to have succeeded in preventing negative changes in MUAC Z-

scores relative to the control sites. For the 25
th

 percentile subsample in figure 3 cdfs cross at around 

0.25 indicating that there were fewer negative changes for the intervention sites than for the control 

sites. Similarly, for the 10
th

 percentile in Figure 4 cdfs cross near 0.3. Around 15% of intervention 

sublocations had a negative change in MUAC Z-scores of -0.1 whereas around 30% of control 

sublocations had the same negative change. In addition, at the 10
th

 percentile there were also fewer 

smaller positive changes. Again, these results are not statistically significant
7
, likely a result of the small 

sample size of the sublocation panel dataset. 

  

                                                           
7
 Difference figures with confidence bands (in the style of figure 2) omitted for brevity. I am considering to take out 

the discussion of the 25
th
 and 10

th
 percentile, anyway. 



16 

 

 

Figure 3 

 

 

 

 

 

 

Figure 4 

 

0
.2

.4
.6

.8
1

%
 o
f 
s
u
b
lo
c
a
ti
o
n
s

-1.5 -.8 -.1 .6 1.3 2

difference in 25th percentile MUAC Z-score. drought adjusted. 2005/06-2008/09

Control intervention

25th percentile MUAC. Categorization by Investment

FOSD Difference Intervention vs. Difference Control

0
.2

.4
.6

.8
1

%
 o
f 
s
u
b
lo
c
a
ti
o
n
s

-1.5 -.8 -.1 .6 1.3 2

difference in 10th percentile MUAC Z-score. drought adjusted. 2005/06-2008/09

Control intervention

10th percentile MUAC. Categorization by Investment

FOSD Difference Intervention vs. Difference Control



17 

 

 

Conclusions and implications 
Existing approaches to program evaluation are designed to examine the average treatment effect. In 

practice, however, we are often interested not just in the mean impact but also in the impact across 

various parts of the distribution. This paper has proposed a new method to evaluate program impacts 

across the entire distribution of outcomes. The method does not require experimental data as it applies 

stochastic dominance estimation to differences-in-differences across subgroups and time. 

Our empirical results highlight the practical added value of this method. Standard difference-in-

difference regressions find no statistically significant average effect of additional public expenditures on 

child malnutrition levels. The stochastic dominance difference-in-difference estimation allowed us to 

look beyond the mean impact and tease out program effects that differ across the distribution of 

nutrition changes. For all MUAC Z-scores summary statistics intervention sublocations had fewer 

negative changes over time than the control sublocations. While the data do not allow us to identify 

causality the results suggest that additional public expenditures under the ALRMP II project may have 

prevented nutritional status from worsening for the worst-off children, thus, effectively functioning as a 

nutritional safety net.  
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