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A Revenue-Based Alternative to the Counter-Cyclical 
Payment Program  

 

 

Abstract 
 
This paper develops a stochastic model for comparing payments to U.S. corn producers 

of a revenue-based counter-cyclical payment (R-CCP) that is offered as an alternative in 

the 2007 House “Farm Bill” (H.R. 2419) to the current price-based CCP (P-CCP).   

We minimize the potential for miss-specification bias in the model by using 

nonparametric and semi-nonparametric approaches as specification checks in the model.  

Using this model, the paper examines the sensitivity of the density function for payments 

to changes in expected price levels.  A mean-variance utility function approach is used to 

assess producer preferences for choice of CCP program alternative.  The results show that 

as risk reduction instruments at the farm level, there appears to be little effective 

difference between the P-CCP and the R-CCP. At the national level, however, the R-CCP 

has the potential for increasing Federal budgetary exposure relative to the P-CCP when 

expected prices are low. 

 

Key words 

Domestic support, counter-cyclical payments, revenue, price, corn, yield, pairs bootstrap, 

kernel density, semi-nonparametric, combinatorial optimization 



A Revenue-Based Alternative to the Counter-Cyclical Payment 
Program  

 

Introduction 

Current domestic commodity support programs in Title I of the 2002 Farm Act base 

payment rates on shortfalls in market prices from target prices or loan rates. One such 

support mechanism is the counter-cyclical payment (CCP) program, in which the 

payment rate per unit of production is the (positive) difference between the target price 

and an effective farm price (FSA, 2006a). Since their inception under the 2002 Farm Act, 

total annual CCP payments across all eligible crops has ranged from a low of $809 

million in fiscal year 2003 to $4.36 billion in 2006.  

 In 2007 however, the  House of Representatives passed a Farm Bill (H.R. 2419) 

that allows the producer the choice of receiving CCPs as defined in the 2002 Act, or 

alternatively, as the shortfall in an effective farm revenue per acre with respect to a target 

revenue per acre.  In principle, a revenue-based support CCP program would provide 

producers protection against an unexpected decline in revenues, whether due to low 

yields, low prices, or some combination thereof.  If passed into law, not only would this 

CCP provision be novel in providing direct support based on deficiencies in revenue 

rather than in price, it would also be novel for permitting the producer a choice between 

payment types.  

 While a fair number of studies have been published that empirically examine the 

impacts of commodity-support on production (e.g., Sckokai and  Moro, 2006; Goodwin 

and Mishra, 2006; Anton and Le Mouel, 2004; and Hennessy, 1998), the academic 
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literature is thin on examinations of the implication of the empirical distribution of 

commodity support payments for both government policy and for producer preferences.  

 However, there are a variety of reasons to examine the probability density 

function of commodity support payment. For example, since farmers are generally 

considered to be risk averse, farmer preference for payment programs should be 

expressed over at least the first two moments of the payment distribution.  In addition, the 

probability of high payments can be of interest to the federal government both from the 

domestic budgetary perspective and in relation to multilateral agreements on domestic 

support. 

 The goal of this paper is to develop and estimate a stochastic model for estimating 

potential revenue support payments to U.S. corn producers that can be used to address 

policy issues, such as the two above, that relate to the empirical distribution of Federal 

commodity support.  Before turning to the model, we provide a brief background on the 

CCP program. 

 

Background 

Price-based counter-cyclical payments (P-CCP) are established using a payment rate 

determined by shortfalls in an “effective” price with respect to a statutory target price, 

multiplied times a fixed base acreage and yield, and would carry over from the 2002 

Farm Act legislation. The total P-CCP option for a producer i of crop j in year t would be 

calculated over 2008 to 2012 as: 

(1a) P-CCPijt = 0.85 · max{ 0, (TPj − (Max (NPjt, LRj)) − Dj) } · ( B
ijA  · B

ijY ),  
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where TPj, LRj, and  Dj are the statutory per bushel target price, national average loan 

rate, and direct payment rate,  respectively, for a covered crop as specified in the farm 

legislation.1 For each covered crop, NPjt is a national market price (season average price 

for the marketing year), B
ijA and B

ijY  are farm-specific “base” acreage and yield, 

respectively, i.e., historic values calculated as per government rules (FSA, 2006a). In 

other words, current production of the commodity is not required for the producer to 

receive a CCP payment. However, while the acreage and yield values in equation (1a) are 

fixed, the payment rate itself is a function of contemporary season prices.  

 In contrast, the target revenue-based CCP (R-CCP) option in H.R. 2419 for a 

producer i of crop j in year t would recast the CCP over 2008 to 2012 as: 

(1b) R-CCPijt = 0.85 · ( ){ } ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅⋅⋅− B

ijB
j

B
ij

jjtjtj A
Y
Y

LRNPYTR ,max,0max , 

where TRj and B
jY  are the statutory national target revenue per acre and statutory national 

program yield (bu./acre), respectively, for a crop. In particular, B
jY  is the national 

average corn yield per base acre under the 2002 Farm Bill’s countercyclical payment 

program.  The product ( )jjtjt LRNPY ,max⋅  is the national actual revenue per acre for 

year t, where Yjt is national average yield.  The rationale for the effective farm price being 

( )jjt LRNP ,max  rather than  is that when  is below LRj, producers can receive 

marketing loan benefits (e.g., loan deficiency payments) for covered crops, albeit for 

actual production in t.  

jtNP jtNP

 The R-CCP is equation (1b) is functionally equivalent to that proposed by the 

USDA (USDA, 2007). However, for some commodities, the recommended target prices 
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and/or loan rates differ between the HR 2419 and USDA (2007), leading to different 

payment levels, but such is not the case for corn.   

  

Methodology for estimating the density function for CCP payments 

 The only two stochastic variables that we explicitly need for calculating CCP payments 

at the national level are realized yield and season average price, although other variables 

can usefully feed into the econometric analysis, both to reduce omitted variable bias, and 

as intercept shifting terms that can be useful for policy simulations.  For the simulation of 

payments then, we need to generate the distributions of price and yield.  However, the 

procedure for doing so is considerably complicated by the fact that price and yield are 

correlated, and hence the estimated distributions must take this correlation into account. 

We estimate the density function for payments given: 1) econometric estimates of the 

historic relationship between national price and national average yield; 2) estimates of the 

distribution of yield density for a particular base year; and 3), a bootstrap approach that 

links 1) and 2).   

 

Modeling the price-yield relationship using price and yield deviates   

Our focus is on estimating the distribution of payments for a given reference crop year t, 

given that at pre-planting time in t, season average prices and realized yield are 

stochastic.  As such, sector level modeling that separately identifies supply, demand, and 

storage is unnecessarily complex to service our needs and diverts attention away from 

focus of the paper. A convenient way to address our questions is to model prices and 

yield as percentage deviations of realized prices and yields at the end of the season from 
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the expected values at the beginning of the season when planting decisions are made.   If 

one accepts that the observed distribution of percentage changes in price and yield 

between pre-planting and harvest are representative of their future distribution, then our 

econometric specification of the price-yield relationship can be reduced to one equation.   

 While the academic literature is rich on papers on price estimation for 

commodities (e.g., Goodwin, 2002, for an overview), few express prices in deviation 

form. One example that does is Lapp and Smith (1992), albeit as the difference in price 

between crop years rather than between pre-planting time and harvest within the same 

crop year. As price deviation in their paper was measured between years, yield change 

was not included in that analysis.  Paulson and Babcock (2007) provide a rare example of 

the examination of the price-yield relationship within a season in an examination of crop 

insurance. Like them, for the purposes of estimating the relationship between price and 

yield, we re-express the historic price and yield data as proportional changes between 

expected and realized price and expected and realized yield within each period, 

respectively. We can then apply this history of proportional changes in yield and price to 

2005 data to develop the distribution of payments.   However, among the differences in 

our approach from that in Babcock and Paulson is that ours uses a modeling approach 

that easily permits multiple explanatory variables, thereby decreasing the chance of 

misspecification of the price-yield relationship, and permitting sensitivity analysis with 

respect to parameters of policy interest.  

 For the model, the realized national average yield, Yt , is transformed to the yield 

deviation  according to  =  tYΔ tYΔ ( )( )
( )t

tt
YE

YEY − . The expected value of Yt, or E(Yt),  

is calculated from an estimated trend equation (as described below). To generate a 

 5



distribution for  based on historic yield shocks, the historic yields must be detrended 

to reflect the proportional change in the state of technology between that in 2005 and that 

in time t, i.e., Yit is detrended to 2005 terms as 

2005Y

( )(2005 Δ

)
( )

(2) ,∀ i counties, t periods, t ≠  2005. )1+= iti
d

it YYEY

It is convenient to specify the yield deviate as the deviation of detrended yield from 

expected yield in the base year used for detrending, which we denote as . d
tYΔ

 To separate the stochastic component of yield from the upward trend in yields 

over time due to technological and managerial innovations, we estimate the yield trend 

using nonparametric LOESS (Cleveland and Devlin, 1988) predictions of the yield trend 

instead as a specification check on the simple parametric approaches used in the 

literature.   For the trend regression, the bandwidth is artificially inflated to avoid over-

fitting the trend regression, with the bandwidth being chosen to be high enough that any 

departure from strict concavity or convexity of the trend equation is minimal. The 

conservative LOESS yield trend used here provides some limited flexibility to modeling 

E(Yit) = f(t) + εit over the linear model (the latter which will predict negative trends for 

some counties) while minimizing the likelihood that the equations capture the stochastic 

component. 

 As with yield, price is transformed into deviation form, i.e., the realized price at 

harvest, Pt , is the difference between the expected and realized price, or  =  tPΔ

( )( tt
E

PEP − . The derivation of  ( )tPE  is discussed further in the data section. 
tP

 Given the estimated trend yields as the predictions of E(Yt), we can construct 

 and estimate the relationship between d
tYΔ tPΔ  and .  In particular, we assume that  d

tYΔ
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tPΔ  can only be partially explained by , and that the uncertainty in this relationship 

can be incorporated into the empirical distribution.  We do so by specifying  as  

d
tYΔ

tPΔ

(3)  = tPΔ ( )t
d

t zYg ,Δ  + εt,   

where εt is i.i.d. with mean 0 and variance  given2
εσ { }td

t zY ,Δ , and where zt is a vector of 

other variables that may explain the price deviation.   We expect that d
tYΔ

t
d

PΔd < 0, i.e., 

the greater the realization of national average yield over the expected level , the more 

likely harvest time price will be lower than expected price.  To examine the potential for 

bias due to miss-specification in estimating equation (3), in addition to a linear parametric 

estimate of the equation, we also estimate equation (3) using a semi-nonparametric (SNP) 

econometric approach based on the Fourier transformation (Fenton and Gallant, 1996).  

 

Generating the empirical distribution of payments – overview 

To generalize our empirical distribution of payments, we use a bootstrap method that 

allows for flexible right-hand-side regression modeling and for modeling interactions 

between variables. In particular, we use a paired bootstrap approach in a resampling 

methodology that involves drawing i.i.d. observations with replacement from the original 

data set (Efron, 1979; Yatchew, 1998), maintaining the pair wise relationship in each 

observation between the variables, e.g., variable values yi and xi are always kept together 

as a row.  The bootstrap data-generating mechanism is to treat the existing data set of size 

T  as a population from which G samples of size T are drawn. Equation (3) is re-estimated 

for each of these bootstrapped data sets. Variation in estimates results from the fact that 
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upon selection, each data point is replaced within the population.  We can use this 

standard bootstrap to generate a distribution of PΔ  given .    dYΔ

 However, while we can directly estimate , g = 1,…,G, by substituting the G 

sets of bootstrapped coefficients and the (Tx1) vector into equation (3), we can 

increase the smoothness of the bootstrapped distribution of 

gtP̂Δ

d
tYΔ

PΔ  by substituting  

with yield deviations – denoted as  – that are generated from a random sample 

drawn from an estimated yield distribution. Doing so will allow us to estimate a set of 

price shocks associated with an arbitrarily large set of yield shocks, albeit defined by the 

actual data.   While smoothing the distribution of yield will of course reduce the 

coefficient of variation of yield, we minimize this reduction by sticking to a 

nonparametric approach.  As we find that smoothing the yield distribution has 

approximately the same impact (within 2.5 percent) on the decreasing the coefficient of 

variation of the density functions for the P-CCP and R-CCP, for the purposes of 

comparing the two programs, the cost of smoothing the yield density is low. 

d
tYΔ

*dYΔ

  

Smoothing the distribution of yield 

Like Deng, Barnett, and Vedenov (2007) and Goodwin and Kerr (1998), we utilize the 

nonparametric kernel-based probability density function (Hardle, 1990; Silverman, 1986) 

for generating a smoother yield density than that which would be supplied by the 

bootstrap of equation (3). This function, as applied to our notation, is 

( ) ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −
= ∑

= h

Yy
K

Th
yf

d
t

d
jT

t

d
j

1

1ˆ , j = 1,…,J. This function allows us to generate values of 
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dYΔ

1β̂

from a distribution that approaches a continuous function as J approaches infinity. 

This function gives support to generating yield values over the observed range of 

detrended yields, i.e., the (J x 1) vector  is drawn over the range 

{min( )…max( )}, t = 1…T, where  are the yield points for which the density 

function is estimated. The function K(.) is a Gaussian kernel (ibid.), and h is the 

bandwidth used for smoothing the density function (Silverman, 1986).

dy

iy

*d
nY

*

d
tY

*P̂ =

YΔ

d
tY

1
dYΔ

d

2   We simulate the 

yield distribution by taking N draws of yield values, denoted as, , from the estimated 

kernel density, with the yield draws denoted as .  Given the expected (trend) yield 

for a reference year, the yield deviate  is calculated for each . 

*d
nY

*d
nY

*d
nYΔ

Δ

d

 

Generating the empirical distribution of payments given the estimated yield distribution 

The estimated price shocks given  and the coefficient estimates from the bootstraps 

of equation (3) and are calculated as:  

YΔ

(6) Δ    *
0

ˆˆ + ββ

where is the N x 1 vector of yield shocks derived from the kernel yield distribution, 

is the (1 x G) vector of draws of the coefficient on the yield deviate from the 

regression bootstraps, and is the “grand mean”, i.e., the product of the bootstrap draws 

of the other bootstrapped coefficients times the assigned values of the explanatory 

variables in z. The resulting  is a (N x G) matrix, i.e., every yield shock  is 

associated with a (1 x G) distribution of price shocks. For our simulation, N = G = 1000.  

*d

0β̂

Δ *P̂ *d
nYΔ
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The process for generating for a specification of equation (3) that is SNP in the yield 

deviate is similar, but with more columns in  associated with the higher order terms. 

*P̂Δ

1β̂

 To calculate the CCP payments  must be transformed back to the price per 

bushel, .  For a reference year, say 2005, the simulated price per bushel is 

*P̂Δ

*P̂

( ) ( )1+

*d

ˆˆ 2005*
2005

2005* Δ⋅ gngn PPP

*2005 2005YΔ

= E

P̂Δ

, g = 1,…,G, n = 1,…,N.   Finally, by substituting the 

vectors  and into Equations (1a) and (1b), we generate the probability 

density functions of 2005 CCP distributions at the beginning of the 2005 crop year.   

 The values of the parameters used in the CCP payment calculations include a 

national base corn yield per acre of 114.4 and total national base corn acres of 

86,850,934.  Other parameters used in the CCP calculations are the H.R. 2419 corn loan 

rate of $1.95 per bushel, direct payment rate of $0.28/bu., target price of $2.63/bushel, 

program yield of 114.4 bu./acre, and target revenue of $344.12/acre.  To asses the 

sensitivity of payments to price, we conduct the analysis for several expected price levels, 

including the actual planting time price in 2005, in particular,  the February 2005 cash 

price of $1.86/bu. (Illinois No. 2 yellow Corn).   

 

Data 

Data on planted yields and acres for corn are supplied by the National Agricultural 

Statistics Service (NASS) of the U.S. Department of Agriculture.  As support payments 

can be collected for corn for silage as well as corn for grain, and because silage can be a 

significant portion of corn production in some regions outside the Heartland, we merge 
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together data on corn for grain and corn for silage.  We convert tons of silage to bushels 

using a conversion rate of 7.94 bushels per ton, as per FSA (2006b).  

 For the realized Pt, we use the average of the daily October to December prices of 

the December CBOT corn future in period t.  As an alternative, the average November 

price of the December contract could be used as the realized price, but our results are 

relatively insensitive among these prices. 3    Under each of these choices, the correlation 

between these average harvest time futures prices and the season average cash price is at 

least 0.97.  For the expected value of price Pt, or E(Pt),  we utilize a non-naive 

expectation, namely the average of the daily February prices of the December Chicago 

Board of Trade corn future (CBOT abbreviation CZ) in period t, t = 1975,…,2005.  

While we have prices back to 1969, the data before the mid-1970s does not reflect China 

and Russia as regular participants in global grain markets, and is unlikely to be 

representative of contemporary global markets.    

 In addition to the yield shock, we include several other explanatory variables in 

our regression of Equation (3). The dummy variable FarmAct takes the value of “1” for 

years 1996 and above (and 0 otherwise), reflecting the Federal government being out of 

the commodity storage business under recent Farm Acts.4   As commodity storage may 

be expected to have a stabilizing influence on futures prices (Tomek and Grey, 1970), we 

include the corn stocks to use ratio, as measured at the beginning of the crop year in order 

to maintain Equation (3) in reduced form.  As the inflation rate may impact price 

variability (e.g., Lapp and Smith, 1992), we include the inflation rate (CPI-U) over the 

quarter immediately prior to planting, the idea being that a lag may exist in the impact of 

near term inflation on the commodity price, with a higher rate increasing the price shock.   
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 To model international linkages in a reduced form, we include deviation of actual 

yield from expected yield of corn in time t in the rest of the world, as calculated from 

FAOSTAT data. To account for the difference in the timing of seasons north and south of 

the equator, this variable is disaggregated into northern and southern hemispheres.   The 

expectation is that a negative yield shock in the rest of the world will increase the U.S. 

corn harvest time price relative to the expected price. Finally, as exchange rate changes 

can be expected to have an impact on corn exports (Babula, Rupple, and Bessler, 1995), 

we include the percent change in the nominal exchange rate between planting time and 

harvest, where the expectation is that an increase in this value lowers the export demand 

for U.S. corn, and therefore, its price.   

  

Econometric results 

Table 1 provides the econometric results for the parametric and the SNP models, 

including parametric results for a specification that includes all the variables discussed 

above (Parametric-II) and with only 2 explanatory variables (Parametric-I). The latter is 

nested in the SNP regression, which is limited by degrees of freedom in the number of 

variables that can receive the SNP treatment.   

 The coefficient on  is significant at the 1 percent level in all regressions. The 

higher order transformation terms in the SNP regression (the “sin s(

YΔ

YΔ )” and “sin 

s( YΔ )”) are not significant, and the value for YdPd ΔΔ  at the bottom of the table are 

close across the regressions. 5  A bootstrap-based test (Efron, 1987) of the hypotheses 

Ho: kk YΔdPΔ −d  j
tY = 0, where the superscript refers to one of the 3 

regression models, cannot be rejected at the 90 level or better for all j ≠ k. At the same 

j
t dPd ΔΔ
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time, while likelihood ratio tests cannot reject the hypothesis of the equivalence of the 

Parametric-I and SNP results, they do reject the equivalence of the Parametric-II results

to the other two regressions.  Together, the bootstrap test and the likelihood ratio tests 

suggest that while the additional explanatory variables are not corr  

 

elated with

YdPd ΔΔ  in any significant fashion, their inclusion – in particular π and Δr – do ad

a statistically  significant fashion xp

d in 

to e laining PΔ .  

    

Discussion of payment simulation results 

Table 2 summarizes the results of the ex ante stochastic analysis that predicts at planting 

time the probability distribution of corn CCPs given the distribution functions for price 

and yield.6  Except at the first and second (in the case of alternative C) lowest expected 

price levels, the mean R-CCPs as well as the upper bound of their 90 percent confidence 

intervals are lower than for the P-CCPs.  Over the examined expected price range, the 

coefficient of variation for both approaches is increasing in the expected price but there is 

no consistent relationship in the level of this measure across the two approaches.  A 

priori, one might assume that because the coefficient of variation of revenue is less than 

the coefficient of variation of price, that the coefficient of variation of R-CCP will be 

consistently less than that of P-CCP.   However, the relatively complex interactions of the 

program parameters with the stochastic variables do not support such a generalization. 

 Figures 1a and 1b present the density functions of payments for P-CCP and R-

CCP, respectively.7 As Figure 1a shows, given the actual expected (February) 2005 price 

of $1.86/bu., a high level of payments were virtually certain. Building from higher 

expected price bases –  as with the $2.20/bu. in this example, the probability of high 
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payments falls and probability of $0 payment levels increases. As Figure 1b suggests, the 

distribution of R-CCP payments is notably more symmetric and with a fatter right hand 

side tail than P-CCP.  The greater symmetry of R-CCP relative to P-CCP is to be 

expected given effect of multiplying price by yield in the former, as long as price and 

yield are not positively correlated.  Figure 1a demonstrates a significant kink in the P-

CCP density – its tendency is to have a spike at the bottom or top ends of the density 

function, with relatively low probability of other events occurring.   

 As seen in Figure 1 and Table 2 for the lower expected price scenarios, the fatter 

right hand tail of the R-CCP density compared to that of the P-CCP is due to the 

particularities of the P-CCP payment design, and not to any general trait of a revenue-

based payment.  Namely, the payment rate in the P-CPP has a ceiling equal to the target 

price (less the direct payment rate) minus the loan rate.  In contrast, while the effective 

price is limited in the R-CCP to not fall below the loan rate, national yield is not subject 

to a programmatic floor.  If the price-floor was to be removed in both CCPs, then the P-

CCP would have a fatter tail than the R-CCP.  

 While Figure 1 depicts the CCP density in the context of total payments, how do 

these payments contribute to the density function of revenue for a corn producer? Figures 

2a and 2b show the distribution of revenue per base acre with and without the CCP 

payments, on the assumptions that: 1) the producer has actually planted corn on the base 

acre; and 2) the producer’s yield density exactly mirrors national yield density.  Given a 

pre-planting price of $1.86/acre, the probability of the effective farm price being 

truncated at the loan rate is high, and as such, the R-CCP cannot effectively truncate the 

distribution of total revenue (i.e., gross revenue plus the payment) at the target revenue 
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but does shift the distribution of revenue to the right.  At this pre-planting price, while the 

Price-CCP has a spike in the right hand tail of the distribution, it also has a fat left hand 

tail, suggesting high frequencies of underpayment relative to the R-CCP.   Given a pre-

planting price of $2.45/acre, the probability of harvest time prices being below the loan 

rate is low, and the R-CCP can effectively truncate the distribution of total revenue below 

the target revenue, and be equal to the distribution of gross revenue above the target 

revenue.  At the pre-planting price of 2.45/acre, the Price-CCP overpays relative to a 

revenue target. Of course, the producer may also receive loan deficiency payments, but 

these would be the same regardless of the CCP option chosen. 

 Figure 2 represents a stylized analysis useful for demonstrating the general 

properties of the CCP programs with respect to their impacts on revenues of corn 

producers.  However, few real producers have the national yield density as their own.  

While recalling that the CCP payment rate is invariant with respect to the producer’s 

actual current production, impacts of the payments on the density of total revenue of 

producers will depend on the moments of their own yield densities and the correlation of 

their yield density with the national yield.   

 As such, Figure 3 relaxes assumption (2) above, and show the distribution of 

revenue per base acre with and without the CCP payments for two less stylized 

producers, one whose production region is outside the cornbelt and one inside. Namely, 

Figure 3a depicts the revenue density of a producer whose yield density is the same as 

that of Barnes County, North Dakota, and Figure 3b that for Logan County, Illinois.  

Over 1975 to 2005, the Pearson correlation coefficients between yields for each of these 

counties and national yields are 0.421 and 0.722, respectively.    
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 To generate the simulations summarized in Figure 3, county-level yields were 

drawn using the same kernel density-based approach as used for national yield.   

Nonparametric Monte Carlo techniques were then applied to these i.i.d. national and 

county yield densities to induce them to have the same correlation as the actual yield 

data.  Specifically, heuristic combinatorial optimization (Charmpis and Pantelli, 2004) 

was used to rearrange the generated univariate i.i.d. samples, in order to obtain the 

desired Pearson’s correlation between them while leaving the yield values unchanged. 

 In Figure 3, the impacts of payment type on total revenue is less marked that in 

the highly stylized case in Figure 2 due to the departures of their yields from national 

yield. In Figures 3, the payments act as expected in shifting the distribution of revenue to 

the right. For the North Dakota producer with a relatively low level of correlation with 

national yield, the density function for total revenue is largely the same with P-CCPs or 

R-CCPs.   For the Illinois producer, the mode of the total revenue density with P-CCP is 

higher than for total revenue with R-CPP. This result that P-CCP can over-pay relative to 

the R-CCP when national prices are low but yields is expected for the producer whose 

yield is highly correlated with the national average. On the other hand, potential under-

payment of the P-CCP when yields are low and prices high appears to be minimal.  

Adding either type of CCP payment to revenue does not have major impacts on reducing 

the coefficient of variation of revenue (in the low price case, an 11 to 12 percent 

decrease) as the payment are not tied to current yields on farm. 
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Producer Preferences for Counter-Cyclical Program Alternatives 

In principle, one may expect that a producer’s preference with regards to CCP option 

would be defined over more than just the first 2 moments of the density function of 

returns or payments. However, no studies have been published for U.S. farmers of bulk 

crops that define preferences over more than the first 2 moments. Hence, to provide 

quantitative analysis of preferences, this section assumes that the producer only has 

information on the first two moments of the CCP payments, and hence, we use a mean-

variance utility function approach. In practice, analysis of CCP payments as provided by 

agricultural extension services and the popular media address only the first moment.  

 We use Saha’s (1997) flexible utility function, , where W is the 

producer’s current wealth (including initial wealth plus current earning), σ is the standard 

deviation of wealth, and θ > 0 and β are parameters. Risk aversion is defined by the 

second moment of the distribution of payments (σ), where risk aversion (neutrality) 

[affinity] corresponds to  β >(=)[<] 0.  For our simulation of producer preferences for 

CCP programs, we use estimates of θ and β for Kansas farmers (Serra et al., 2006), or θ = 

1.08 and β = 0.74.   

βθ σ wWu −=

  As we are interested in the relative utility of the CCP choices, and not the 

absolute utilities, we do not worry about obtaining exact measures of W. Hence, for our 

simulation of the preference for type of corn CCP payments, we assume a Kansas 

producer (or simply, a payment recipient) with the same mean and standard deviation of 

initial wealth W0  as in Serra et al. , i.e. W0 = $656,214 and = $577,945. We assume 

that producers would make the same crop production choices regardless of which CCP 

program they enroll in. Since we are only interested in relative utility differences, and 

0Wσ
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since the CCP payments do not require current production, we ignore the latter in the 

utility calculation.   Since any recipient of corn CCPs is also receiving the lump sum 

direct payment for corn, we add the direct payment to W0. Given these base yield and acre 

estimates, we estimate the distribution of payments as described earlier, but applied to a 

recipients with these estimated base yields and acres.8   

 Table 3 provides utility levels associated with price and revenue-based CCPs for a 

range of expected corn prices. The utility levels are normalized by ( )0Wu .  At the lower 

expected prices ($1.70 and $1.86/bu.), the producer prefers R-CCP to P- CCP for both 

target revenue scenarios, which would be the same result as for a decision process that 

ignored risk.  For some of the higher expected prices, R-CCP is preferred even when its 

mean payout is lower.  At the highest expected price levels, the lower variance  of the R-

CCP does not compensate for its lower mean payments with respect to the P-CCP, and 

the producer will prefer the latter.   As pay-offs are likely to be low in any case when 

prices are high, a producer may focus on how a program pays out at lower price levels. If 

so, the R-CCP would likely be the preferred choice, at least in the case of corn.  

 

Concluding Remarks 

In the first half of 2008, corn were high enough that a stochastic analysis of prices at 

harvest would preclude any reasonable possibility of CCP payments for that year, and as 

such, one may conclude that such payments are irrelevant. As farming is a competitive 

industry, even if the current price regime will continue well into the future, then costs 

will increase sufficiently to bring average economic profits back to zero.  If so, the 

government could be under considerable pressure to raise loan rates and target prices.  
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 Our analysis suggest that if, for the sake of argument, CCPs are treated as a risk 

reduction device at the farm level, then there appears to be little effective difference 

between the P-CCP and the R-CCP. Both reduce the downside risk caused by low prices 

by shifting the mean of total revenue to the right. But while the R-CCP explicitly 

accounts only for national aggregate yield in its payment rate, the precision of the R-CCP 

payment rate in targeting farm-specific shortfalls in current revenue differs little from that 

of the P-CCP. This result holds both for farms with relatively low or high correlation of 

farm level yield with national aggregate yield.  Differences between the coefficient of 

variation of total revenue with the R-CCP or P-CCP payments become distinct only for a 

stylized producer whose yield density is the national average yield density.  

 If one views CCPs simply as income transfers divorced from current production 

(as they are by design), then our mean-variance analysis does suggest that the R-CCP 

should be more popular than the P-CCP when expected prices are low relative to the 

target price and loan rate. As the expected price increases, the differences are more 

nuanced and the mean-variance tradeoff becomes apparent.  Nonetheless, at least when 

utility is expressed over the first two moments of the payment density function, the 

differences in utility provided by the two approaches does not appear to be high.  

 Larger differences between the two programs are seen at the national level, 

however, where the R-CCP has the potential for significantly increasing Federal 

budgetary exposure relative to the P-CCP when expected prices are low. In particular, 

mean total support is not vastly different but the upper tail of the R-CCP distribution is 

fatter than that for the P-CCP.  This result is not unexpected and is due to a particularity 

of the CCP payment design, and not to general characteristics of making payments based 
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on revenue versus price: by design, the effective farm price cannot fall below the loan 

rate in either P-CCP or R-CCP, but no floor is placed on yield in the R-CCP. 

 One way to reduce the potential budgetary exposure of the revenue-based CCP is 

to include language in the legislation limiting the revenue-CCP payment rate to not 

except some multiple of the price-based CCP payment rate. For instance, restricting the 

R-CCP payment rate to not exceed 2 times the P-CCP rate will decrease the size of the 

upper tail of the R-CCP, but perhaps still maintain it as an attractive alternative to the P-

CCP for payment recipients. 

Finally, allowing the producer a choice between CCP options is itself not without 

additional potential budgetary costs to the government.  In particular, if at harvest time 

there turns out to be a substantial difference between payments under the two approaches, 

it could be possible that producers who choose the option with the lower payment may 

lobby the government for a rule change to permit them to switch back to the other option.  

If such lobbying would be successful, the result would be higher CCP expenditures than 

if only one CCP option was available.   Notwithstanding these issues however, a benefit 

of the R-CCP is that it may help direct future Title I support in directions that are more 

consistent with economic principles embodied in making revenue the basis for payments.  

 20
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Endnotes 

 

tYΔ

1 An exception to the average national loan rates for the purposes of CCPs is made for 

rice and barley, for which the Secretary of Agriculture would determine the average loan 

rates. 

2 We found the estimated density of CCP payments for corn to be insensitive to the 

choice between Gaussian and biweight kernels. 

3 For certain Federal crop insurance products, the USDA’s Risk Management Agency 

uses a smoothed November price of the December contract as the harvest time price for 

corn.   

4 This variable might be interpreted as the change in the weather premium after the 2006 

Farm Act.  A negative sign on its coefficient would suggest an increase in the weather 

premium, which might be expected without the government holding significant reserve 

stocks after 1996. 

5  The transformation function s(.) prevents periodicity in the SNP model by rescaling 

 so that it falls in the range [0, 2π−0.000001] (Gallant, 1987).  

6 The explanatory variables in z are evaluated at 0, except for FarmAct, which is set equal 

to 1. 

7 In Figure 1b, the density functions for the $1.86 and $2.20 pre-planting prices are fitted 

to the bootstrap output using kernel smoothing methods. The other density functions in 

Figures 1a and 1b are fitted to the bootstrap data using the histogram approach, as kernel 

approaches do not realistically model the abrupt changes in slope of the density functions 

near the payment extremes.  

8 For lack of additional information, we assume that Cov(W, CCP) = 0.  
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Table 1. Parametric and Semi-Nonparametric (SNP) Regression  
Results for the Function Explaining tPΔ   
 

Variable Parametric - I  SNP  Parametric 
- II 

 

       
Constant -0.047  (-2.006) -0.045 (-1.821) -0.193 (-3.116) 
       

tYΔ  -1.362 (-5.663) -1.300 (-4.979) -1.502 (-6.025) 
       
sin s( ) tYΔ  –   0.010 (0.653) –  
       
cos s( ) tYΔ –  0.005 (0.353) –  
       
FarmAct -0.079 (-1.93) -0.076 (-1.67) -0.019 (-0.435) 
       
Stocks/use  –  –  0.177 (1.322) 
       

SH
tYΔ   –  –  -0.252 (-1.225) 

       
NH

tYΔ  –  –  -0.335 (-0.683) 

       
π –  –  9.268 (2.587) 
       

trΔ      -0.445 (-2.054) 

       
Ln-L 27.029  27.351  33.173  
R2 0.572  0.581  0.712  
       

tt YdPd ΔΔ  -1.362    -1.361  -1.502   
 {-1 a  {-1.8, -0.9}  {-2.0, 1.0}  .8, -1.0} 

 
otes: T-values are heses.  

 yields from the expected (trend) yield. Stocks to use ratio is the 

the U.S.) 

e 

 
 intervals apply the bias corrected accelerated approach (Efron) to  

N shown in parent

tYΔ  is the percentage deviation in US corn
ratio 

from

of total U.S. corn stocks at the end of the previous crop year to total utilization of U.S. corn (source: 
ERS).  FarmAct equals 1 for 1996 to 2005 and 0 otherwise. NH

tYΔ  is the percentage deviation in 

Northern hemisphere corn yield (less the U.S.) from the trend  that world region, and  
SH

tYΔ Southern Production  is the percent deviation in Southern hemisphere corn yield (less 

 trend yield in that world region (data source: FAOSTAT).  π is the inflation rate (CPI-U) over th
quarter prior to planting. trΔ is the percentage change in the nominal exchange rate (Euro/$) between 

planting and harvest time.
b The BCa 90% confidence

 yield in

 the

1000 bootstrap runs, and are shown in brackets. 
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Table 2. Summary statistics – distribution of counter-cyclical payments for corn 
Total payments ($ billion) Pre-

planting 
price 
($/bu.) 
  

Mean Median Standard 
Error 

Coefficient 
of 

Variation a 

90% Confidence Interval (lower, 
upper) 

       
A. Price-Based CCP     

1.86 2.90 3.38 0.92 0.32 0.39 3.38
2.20 1.48 1.34 1.30 0.88 0.00 3.38
2.45 0.52 0.00 0.90 1.71 0.00 2.64
2.70 0.11 0.00 0.38 3.58 0.00 0.88

       
B. Revenue-Based CCP (target revenue = $344.12 per acre)c 

1.86 3.05 3.10 1.12 0.37 1.25 4.80
2.20 1.00 0.98 0.88 0.89 0.00 2.52
2.45 0.09 0.00 0.31 3.37 0.00 0.80
2.70 0.00 0.00 0.08 16.18 0.00 0.00

       
C. Revenue-Based CCP (target revenue = $353.67 per acre)d 

1.86 3.75 3.81 1.13 0.30 1.96 5.51
2.20 1.56 1.68 1.07 0.69 0.00 3.22
2.45 0.22 0.00 0.51 2.32 0.00 1.50
2.70 0.01 0.00 0.13 11.25 0.00 0.00

 
Note: Loan rate = $1.95 per bushel; target price  = $2.63 per bushel; direct payment rate = $0.28/bu.; base 
year for the yield calculation is 2005. 
a The coefficient of variation measure is not denominated in dollars. 
cThe target revenue of $344.12 per acre is from H.R. 2419, and is  (TPj − Dj) multiplied by the 5-year 
Olympic average of corn yield (bu./acre) over 2002 to 2006.  
dThe target revenue is obtained by by multiplying (TPj − Dj) by the predicted trend yield for 2006, based 
on a linear trend regression over 1980 to 2005. 
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Figure 1. Probability Density of Total CCP Payments for Corn 
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Figure 2. Probability Density of Revenue per Acre – Generic Na
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Note: The assumption is that the producer receives CCP payments for corn and produces corn on the base 
acre.  Target revenue = $353.67 per acre. 
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Figure 3. Probability Density of Revenue per Acre – Generic County Corn Producer 
(Pre-planting price = $1.86/bu) 
 
(a) Corn producer with the Barnes County, North Dakota, average yield density  
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Note: The assumption is that the producer receives CCP payments for corn and produces corn on the base 
acre in Barnes County, ND.  Target revenue = $344.12 per acre.

 
(b) Corn producer with the Logan County, Illinois, average yield density  
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Note: The assumption is that the producer receives CCP payments for corn and produces corn on the base 
acre in Logan County, Ill.  Target revenue = $344.12 per acre.
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Table 3. Utility of corn CCP payments for a representative Kansas farm 

 30

Payment per 
 

corn farm  Wealth per farm   

  
Scenario 

Expected 
Price 

($/bu.) 
Mean  

($/farm) 
Standard 

Error 
Mean 

($/farm) 
Standard 

Error 

Utility 
(Normaliz

Preference 
for Rev-

based  vs. 
Price-
based  
CCP  ed) 

        

A. Price-Based CCP 

A0 1.70 15,898 2,705 684,684 2,705 1.057  
A1 1.86 14,345 4,538 683,131 4,538 1.054  
A2 2.20 7,289 6,422 676,075 6,422 1.042  
A3 2.45 2,592 4,422 658,806 4,422 1.014  
A4 2.70 526 1,884 669,311 1,884 1.031  

B. Revenue-Based CCP (target revenue = $344.12 per acre) 

B0 1.70 17,124 6,524 685,910 6,524 1.059 B0  A0 
B1 1.86 15,065 5,530 683,851 5,530 1.055 B1  A1 
B2 2.20 4,934 4,367 673,720 4,367 1.039 A2  B2 
B3 2.45 450 1,519 669,236 1,519 1.031 B3  A3 
B4 2.70 24 381 668,809 381 1.031 A4  B4 

 

C. Revenue-Based CCP (target revenue = $353.67 per acre) 

C0 1.70 20,607 6,526 689,393 6,526 1.065 C0  A0 
C1 1.86 18,529 5,588 687,315 5,588 1.061 C1  A1 
C2 2.20 7,695 5,289 676,481 5,289 1.043 C2  A2 
C3 2.45 1,094 2,538 669,880 2,538 1.032 C3  A3 
C4 2.70 57 638 668,842 638 1.031 A4  C4 

 
Note: Loan rate = $1.95 per bushel; target price  = $2.63 per bushel; direct payment rate = $0.28/bu.; target 
revenue = $344.12 per acre, base year for the yield calculation is 2005. Utility values are normalized by 
utility at the base wealth level, u(W0). The farm is assumed have 430 corn base acres and a base corn yield 
of 123 bu./acre, and not to engage in crop production for the year. 
 
 

f

f

f

f

f

   

f

f

f

f

f


	Serra, T., D. Zilberman,  B. Goodwin,  and A. Featherstone. “Effects of Decoupling on the Mean and Variability of Output,” European Review of Agricultural Economics, vol. 33 (3) 2006:269-288.

