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Introduction  

Although U.S. farmland values have been studied with numerous land price models, a farmland valuation 

puzzle still remains (Moss and Katchova, 2005). The results of traditional economic models of farmland 

prices demonstrate that farmland value is determined by discounted future returns to farmland (Alston 

1986; Burt 1986; Featherstone and Baker 1987), but there are issues unexplained in those models.  

First, farmland values exhibit significant short term boom-bust cycles that are not explained by the asset 

value formulations. The results of Schmitz (1995) and of Falk and Lee (1998) indicate that the values of 

agricultural assets are determined by market fundamentals in the long run, but in the short run farmland 

prices diverge significantly away from the discounted value, and these diverged periods are referred to as 

boom or bust cycles. Actually, more literature report the overreaction of farmland values in response to 

increases in returns (Featherstone and Baker 1987; Irwin and Coiling 1990; Falk 1991; Clark et al. 1993; 

Schmitz 1995). Second, while the direction of changes in farmland values is consistent with the 

capitalization formula, farmland appears to be systematically overpriced. Farmland returns are considered 

too low comparing with other sectors in the capital market when justified through the capital asset pricing 

models using their asset values.  

Farmland values make up 75 percent of the U.S. agriculture assets, therefore the farmland valuation 

puzzle is an important problem that stimulates plenty of researches in the field. Scholars have long been 

trying to identify the possible causes for boom-bust cycles, such as quasi-rationality or bubbles’ 

(Featherstone and Baker 1987), time- varying risk premiums (Hanson and Myers 1995), overreaction 

(Burt 1986; Irwin and Coiling 1990), fads (Falk and Lee 1998), and risk aversion and transaction costs 

(Just and Miranowski 1993; Chavas and Thomas 1999; Lence and Miller 1999; Lencc 2001). Further, 

researchers have also explored potential arbitrage barriers for overpriced farmland values, such as the 

absence of short selling and transaction costs make arbitrage quite risky (Chavas 2003; Lence 2003; 

Miller 2003).  



The resolutions to the farmland valuation puzzle are interlaced with the issue of market fundamentals in 

the stock-pricing literature. Irwin and Coiling (1990) use a variance-bounds test proposed by Shiller 

(1981) and LeRoy and Porter (1981) to analyze whether the volatility in farmland prices was consistent 

with the variability in returns to farmland. They find that the variability in the return to farmland was 

potentially larger than that implied by the variability of farmland prices, but this methodology may have 

suffered from nonstationarity’ in data series (Kleidon 1986) and small-sample bias (Flavin 1983). 

Campbell and Shiller (1987) develop the test of the present-value model to deal with nonstationary data. 

Falk (1991) uses this methodology and he does not find a stationary relationship between farmland values 

and returns to farmland. Hanson and Myers (1995) find that some variation in farmland values can be 

explained by a time-varying-discount rate, which illustrate the possible effects of  nonfundamentals on 

farmland prices. 

Falk and Lee (1998) apply the methodology proposed by Lee (1998) to examine farmland prices and they 

find that fads and overreactions relevant to short-run pricing behavior, while permanent fundamental 

shocks to long-run price movements.  

Barry, Robison, and Neartea (1996) allow for the effects of risk and risk aversion on asset prices. Using a 

CAPM model, Shiha and Chavas (1995) uncovered statistical evidence that transaction costs have 

significant effects on land prices. Epstein and Zin (1991) use a nonadditive nonexpected utility based 

CAPM and find that risk aversion is important to farmland pricing. Kocherlakota (1996) discovers that 

incomplete markets and trading costs could also be relevant to the equity-premium puzzle. Just and 

Miranowski (1993) develop a structural model of farmland prices and find that inflation-rate and real 

returns on alternative uses of capital changes may cause changes in farmland values. Chavas and Thomas 

(1999) adopt the Epstein and zin (1991) framework in a dynamic land pricing model and both find risk 

aversion and transaction costs are important to the farmland prices. Lence (2001) cautions about the data 

stationary in Just and Miranowski (1993) and the deduction in Chavas and Thomas (1999). Plantinga et 

al. (2002) decompose agricultural land values through a spatial city model into components reflecting the 



discounted value of future land development and the discounted value of agricultural production, which 

counts for 91% of the overall US farmland values. Fontnouvelle and Lence (2002) find robust evidence 

that the behavior of land prices and rents is consistent with the CDR-PVM in the presence of empirically 

observed values of transaction costs. However, under the assumption of fixed relative risk aversion 

coefficient, the existing literatures have not fully addressed the farmland valuation puzzle. 

The objective of this essay is to develop general dynamic land price models (DLPM) through the 

introduction of farm wealth levels, to enhance model robustness against risk aversion misspecifications. 

To be specific, our model generates reasonably accurate predictions for land prices, supposing that the 

risk aversion changes geographically and temporally (Gomez-Limon, Arriaza, and Riesgo, 2002). 

Chavas and Thomas (1999) adopted the framework of Epstein and Zin (1991) and developed a DLPM 

that incorporates risk aversion, transaction costs, and dynamic preferences, which they applied to 1950-96 

U.S. land values. Their model generates very good fitting of data, but the estimation of parameters is not 

stable over time and this diminishes the prediction power of the model. This essay extends the work of 

Chavas and Thomas by assuming that consumption has nonlinear functional forms and therefore 

including both return rate and wealth levels in the land pricing model. Intuitively, farm wealth levels are 

related to relative-risk-aversion-coefficient (Pratt, 1964; Arrow, 1965), and risk aversion affects land 

prices (Just and Miranowski, 1993). Consequently, the omission of farm wealth levels makes traditional 

pricing models especially vulnerable to risk aversion misspecifications.  

We expect our empirical results to be consistent with the major findings of existing capitalization 

formula. Although most present value models are rejected by empirical data, and the persistent low return 

rate of farm sector is linked to farmland overpricing and admission of market failure, we believe that risk 

aversion misspecification is the missing key to the farmland valuation puzzle in those models. First, we 

test the hypothesized nonlinear homogeneous relationship between farmland return and wealth in our 

model with US data, and expect a significantly nonlinear relationship. Second, we compare the restricted 



and unrestricted models. We expect that the linear (restricted) estimation of risk aversion coefficient is 

significantly lower than that of the nonlinear (unrestricted) model, which helps to explain the apparently 

overpriced farmland through risk aversion misspecifications in traditional DLPM. Third, we expect better 

out of sample prediction of our model. Last, our model provides evidences of the structural relationship 

between farm wealth and the farm land prices, with the return impacts controlled in the model. Our 

general DLPM formula sheds light on the effect of both farm returns and wealth on farmland values 

through the general homogeneity assumption. 

This essay will provide researchers a valuable framework in asset pricing because it develops a general 

DLPM that nests traditional models as its special cases. Our findings will benefit both farmers and 

developers with more accurate forecasts on farmland prices. 

The essay proceeds as following: Section II contains a discussion and derivation of the model estimated in 

GMM. Section III details the construction of data, the estimation and testing procedures. Section IV 

illustrates the actual empirical results. Section V summarizes and concludes the essay. 

 

  



The Model 

We build our model with well accepted set ups for C-CAPM models. We consider the 

optimization problem facing a representative consumer, whose goal is to maximize his utility 

through his choices of levels of consumption and allocations of his portfolio among various 

assets each period (Mankiw and Shapiro, 1986). 

At period t, the consumer’s  assets ��  = ����, ���, ���, …, �	�) are consisted with two parts: 

riskless assets, ���, and risky assets, (���, ���, ...,�	�), and they come from two possible sources: 

assets maintained from last period, ��
� , and new investments in the assets, �� = (���, ��� , 

���, ..., �	�). The relationship is expressed as the following: 

(1) ���  ��,�
�+ ��� 

    k = 0, 1, 2,…, K. 

At period t, consumers have the options to consume �� and to make investment ��. Under the 

assumption of rationality, the consumers are supposed to maximize their utilities in their 

consumption and investment decision. Therefore it is reasonable for us to assume that the the 

consumer’s  budget constraint is binding and denoted as following: 

(2)  ����,�
� � �����,�
�, … , �	,�
�� 



    ���� � ��� � ∑ ���� � ������������	���   

Where ������
�, ���
�, . . . . , �	�
�� is differentiable return function for risky assets, and ��is the 

interest rate for riskless assets in period t. The function ������ ��� in equation (2) represents the 

unit transaction cost of buying or selling asset ���. We discuss 3 scenarios for ��� according to 

the sign of ���. 

(3) ��������   ���   0    if ���   0, 
                 0                 if  ���  0, 
                  ��
  0     if  ���  " 0 

We suppose that both the buyers and sellers have to pay a positive fee which would be 

transferred to third parties in order to close the deal, so both ���, transaction cost for buying, and 

��
, transaction cost for selling,  are positive, though they may not be the same due to 

asymmetry, which could pose a problem to the continuity of ��� at point 0. This transaction costs 

structure reflects a situation where transaction costs reduce the income of all market participants 

and discourages them from participation. 

We then assume a recursive utility framework following Koopmans (1960) 

(4) #�  $���, ����, ����, … � 



      #���, %�#���|'��� 

where %�#���|'�� is an aggregator of future consumption certainty equivalent given information 

'� . 

Following Epstein and Zin (1989,1991), we further assume the following: 

(5a) #�    (�1 * +���,  � +%�,-./, 
                            for  0 0 1 " 1, 
                     �1 *  +�234���  �  + log�%��, 
                            for  1  0 

 (5b) %�  %�#���|'��  �5�#���6 �.7 

if 0 0 8 " 1, 
=exp�5� log�#�����    if α=0 

Where +   1/�1 �  :�, and : is the rate of time preference.   1   1 * 1/;, and ; is the 

intertemporal elasticity of substitution. 8 is the relative risk aversion coefficient of the consumer 

(Epstein and Zin 1989, 1991). When 8  1, the consumer is risk neutral and the higher the value 

of 8 the more risk averse is the consumer, and vice versa. 



One interesting special case of equation (5) is that when  8   1 0  0, equation (5) reduces to 

the familiar expected time-additive utility specification 

#�    ��1 * +�5� < +=���=6
=>� ��/6 

We would test the hypothesis 8   1 0  0 in our estimation results section to see if the US 

farmland data support time-additivity in utility function. 

Assuming #���, %� , �#����� is differentiable and bounded for all feasible ���, ��, ���, the 

optimization problem of consumption and investment decision could be written as the following:  

(6) ?����
�� 

 max@#A���, %��#�����: equations �1� and �2�N 

 maxQR # ST����,�
� � �� * ���� * ��,�
�� * <�1�� � �������� * ��,�
��	

���
U

V ��, %��?��������W 

where ?����
�� is the indirect objective function. Under differentiability assumptions, the first-

order necessary conditions for �� are  

(7a)   ���: �X#/X���/��    �X#/X%���X%�/X����  



(7b)   ���: Y Z[Z\R]�^_R � `_R�
aR   b cd

ceRf b ceRcQ_Rf ,       if ��� 0  0   

Noticing that we leave the case that ���   0 out of our deduction due to 2 reasons. First, the 

functional form in equations (8) at ���   0  is disputable according to Lence (2001). Second, in 

the data set for estimation, we do not have any data point with ���   0, which could bear a 

nearly 0 possibility in the reality.  

Apply the envelope theorem to equation (6) at points of differentiability, we have  

(8a)   
cgRcQh,Ri.  Y Z[Z\R]�� � jR�

aR   

(8b)  
cgRcQ_,Ri.  Y Z[Z\R]kY ZlRZm_,Ri.]� �^_R�`_R�n

aR                    if  ���  0  0  

According to equation (5b), we use implicit function form theorem to get  

 X%�/X�o   %��
65��#���6
��X#���/X�o��. 
Substituting equation (8a) and (8b) into equation (7a) and (7b), 

(9a)  � cd
cpR�/��   �X#/X%���%��
q5��#���q
��X#/X����� �1 �  �����/����� 

(9b)   
Y Z[Z\R]�^_R � `_R�

aR   �X#/X%��  @%��
q5��#���q
��X#/X������  r  ��X����/X����  

          ����,��� �  ��,�����/�����N     if  ���  0 0  



If we substitute (9a) into (9b), and assume 8  1  1, we get the standard time-additive model 

under risk neutrality, which we would also test in our estimation section. 

(10)   ���� � ����  5�@��X����/X���� � ��,��� � ��,����/����N V 5��1 � �j���/�����  



Specification: 

Equation (9a) and (9b) are the Euler equations at optimal price dynamics, but we could not use 

them directly to estimate future farmland prices because part of the structures is not observed. In 

this section, we show how to further specify the structures of equation (9a) and (9b) through 

testable assumptions and deduct an empirical system from them. 

Assume the consumer’s aggregated wealth level at period t and t-1, s� and s�
�, as following 

(11a) s�  ��� � ∑ ���� � �������·	���  

(11b) s�
�  ���
� � ∑ ����
� � ���
�����
�	���  

From equation (2) we can get 

(12) ����  ����,�
� � �����,�
�, … , ��,�
�� * ���� � ∑ ���� � �������	��� � 
We can rewrite equation (12) as the following 

(13) ����  k��� � 1� * Qh,RQh,Ri.n ��,�
� � ∑ kY cuRcQ_,Ri.] � ���� � ���� Y1 * Q_,RQ_,Ri.]n ��,�
�	���  

ASSUMPTION A1. The return function ���Q.R,QvR,…,QwR�is linear homogenous in 

����, ���, … , ����. 

ASSUMPTION A2. The consumption function ���xRi.�is homogenous of degree y in At-1  



or ���s�
�� H. D. O. λ. 

We can then write the consumption function as 

(14) ��  z� · s�
�{ 

Use Taylor expansion we can rewrite (14) as 

(15) ��  z� |s�
� � �{
��.
�! · 234s�
� · s�
� � ~ � �{
���

�! · 234�s�
�s�
� � ~ � 

(i) when 0 � y � 2, �y * 1�� � 0 �� � � ∞. 

(ii) s�
�is bounded, so 234s�
�is also bounded.  Therefore 
����xRi.�! � 0 �� � � ∞. 

Due to (i) and (ii), we can find an integer N, such that 

��  z� �s�
� � �y * 1�1! · 234s�
� · s�
� … � �y * 1��
�! · 234�s�
� · s�
�� � � 

Where � " 0.00001 

Thus, we can write the following 

(16) �� � z� · s�
� |1 � �{
��
�! · 234s�
� · s�
� … � �{
���

�! · 234�s�
� · s�
�� 

Define �� � cpRcxRi., under the assumption A2, Equation (14) could be rewritten as: 

 ��  �
{ · �� · s�
�  



Together with (17), we can find 

(17) �� � yz� |1 � {
�
�! · 234s�
� · s�
� � ~ �{
���

�! · 234�s�
� · s�
�� 

Together with (13), we can find 

(18) k�RaR{ * ��� � 1� � QhRQh,Ri.n  ∑ Q_Ri.QhRi. k cuRcQ_Ri. � ���� � ���� Y1 * Q_RQ_,Ri.] * �RaR{ ���� � ����n	���  

Equation (18) is very important, and we use it to derive the key value for our homogeneity test. 

(19)  ��  {
aR · �jR���
 mhRmhRi.�∑m_Ri.mhRi.k ZlRZm_Ri.��^_R�`_R�Y�
 m_Rm_Ri.]n

��∑m_Ri.mh_i.�^_R�`_R�  

From equation (5), we can find 

#����, �%��  ��1 * +������, � +��%��,��, 

 �(�1 * +���, � +%�,-�, 

 �#����, %�� 

for  0≠1<1 

Under Assumption A2, we have ��  z� · s�
�{  

#������s�
��, %���s���  #� |�{���s�
��, �5�#���6 ��s����/6� 



Notice the second term is self-adjusting to the relationship of #��s�
��, if we assume linear 

expectation operator. 

We can have  #���s�
�, �s��  �{#��s�
�, s�� 
(20)    ?���s�
��  ���#���s�
�, �s�� 

 �{���#��s�
�, s�� 

 �{?��s�
�� 

From equation (5), we can apply the envelope theorem and get the following: 

(21)   
cgRcxRi.  cdRcxRi.  cdRcpR · cpRcxRi.  #��
,�1 * +���,
� · �� 

Together with (20), we can have 

(22)  ?�  �
{ · cgRcxRi. · s�
�  �

� #��
,�1 * +���,
� · �� · s�
� 

Rearrange equation (22) under the assumption that #�  ?� at optimum, we have 

(23a)    #�  |�
{ �1 * +���,
� · s�
����./   for ρ≠0 

(23b) ρρβ
λ

/1
1

1
11 ])1(

1
[ +

−
++ −= tttt RAyU

     
 

(24) 1
1

/)(
1

1
1

1
111

1
1 )1(])1(

1
[)1()/( −

+
−

+
−

+
−

+
−

++
−

+ −−=−=∂∂ ρρραρρραα ββ
λ

β tttttttt yRAyyUyUU  



From equation (5a) we can get the first derivatives:  

11

11

)1(/

/
−−

−−

−=∂∂

=∂∂
ρρ

ρρ

β

β

tttt

tttt

yUyU

MUMU

  
 

(25) ])1/[()//()/( 11 −− −=∂∂∂∂ ρρ ββ tttttt yMyUMU
    

                          

Rewrite equation (5a), we can get the following 

ββ ρρρ /])1([ ttt yUM −−=     

Substituting from equation (23a)        

(26) ρρρ βββ
λ

/1
1

1 }/])1()1(
1

{[ ttttt yRAyM −−−= −
−    

Therefore the following part could be substituted using equation (24), (25), and (26) 

(27) ]/)/()][//()/[( 11
1

1
1

++
−

+
− ∂∂∂∂∂∂ ttttttttt qqyUUMyUMU αα

 

1
1

1
/)(

1
1

1
1 /)1(])1(

1
]}[)1/[({ +

−
+

−
+

−
+

−− −−−= tttttttt qqyRAyyM ρρραρραρ ββ
λ

ββ

 

1
1

1
/)(

1
1

1

1/)(
1

1

/)1(])1(
1

[

]})1/[(}/])1()1(
1

{[{

+
−

+
−

+
−

+

−−
−

−

−−

−−−−=

tttttt

ttttt

qqyRAy

yyRAy

ρρραρ

ρραρρρ

ββ
λ

ββββ
λ

β

      

 

ραρ
λβ αραρα /)(

)]/()[()/()/( 111
/

1
/

1

−

++−
−

++ −= tttttttttttt qRAyqqRAyyqq  

Substituting equation (27) into equation (9a) and (9b) we get 



(28a)  )}1()]/()[()/()/{(1 1
1

111
)1(

11 +
−

++−
−

++ +−= tttttttttttttt rqRAyqqRAyyqqE γργγ λβ  

(28b)  
)}/(

)]/()[()/()/{(

1,1,1

1
111

)1(
11

+++

−
++−

−
++

++∂∂
−=+

tktkktt

ttttttttttttttkkt

vpa

qRAyqqRAyyqqEvp

π
λβ γργγ

  

where ραγ /≡  

Rearrange equation (28a) and (28b) we get an estimable GMM moment functional form for our 

empirical model: 

(29a)  tttttttttttttttt qrqRAyqqRAyyqqqU /)1()]/()[()/()/(/1 1
1

111
)1(

111 +
−

++−
−

++ +−−= γργγ λβ  

(29b)  
)/(

)]/()[()/()/(

111

1
111

)1(
112

+++

−
++−

−
++

++∂∂
−−+=

tttt

ttttttttttttttt

vpa

qRAyqqRAyyqqvpU

π
λβ γργγ

   

where 0)'( =WEU θ  

tpt Qcv ∆=   if 0>∆ tQ  

tmt Qcv ∆=   if 0<∆ tQ  

1−−=∆ ttt QQQ  

Equation (29a) and (29b) are the two equations of our general homogeneity model, and all the 

variables used are defined as following: 

�            :tq   Consumer Price Index(1982~1984:1)  



�            :ty   disposable income of farm population ($trillion)  

�            :tR  gross rate of return on farm equity 

�            :tA   farm wealth levels (equity) ($100million)  

�          :tr    interest rate on U.S. treasury bills(%)  

�          :tp    Farm land price($100,000/acre)  

�        :/1 ktt a+π  net farm income per acre ($1000/acre)  

�         tv :  transaction costs of year t in farmland market 

�         tQ : land quantity at time t 

 

When we set λ to 1, equation (29a) and (29b) reduces to the linear homogeneity model: 

(30a)  tttttttttt qrqRyyqqqU /)1()()/()/(/1 1
1

11
)1(

111 +
−

++
−

++ +−= γργγβ  

(30b)  )/()()/()/( 111
1

11
)1(

112 +++
−

++
−

++ ++∂∂−+= ttttttttttttt vpaqRyyqqvpU πβ γργγ
 

In spite of slight notation differences, our linear homogeneity model is the same as that of Model 

M1 in Chavas and Thomas (1999). 

  



Data and Estimation 

The above model is developed for a reprehensive consumer and we assume that all the functional 

forms would sustain with aggregated data. As defined in the equations, all the data are collected 

from USDA data set in 1950~2008 at US aggregated level.  

The estimation methods and hypothesis tests are discussed in details in the Estimation Results 

section. 

Estimation Results 

2-stage GMM 

Both the linear homogeneity model and the general homogeneity model are estimated with two-

stage GMM procedure. Hansen (1992) shows that an asymptotically efficient or optimal GMM 

estimator of parameter vector could be obtained by choosing weight matrix so that it converges 

to the inverse of the long-run covariance matrix. In the first stage, we calculate an HAC – 

Newey-West weighting matrix, which is a heteroskedasticity and autocorrelation consistent 

estimator of the long-run covariance matrix based on an initial estimate of the parameter vector. 

First, we calculate the initial parameter estimates of the nonlinear system with two-stage least 

squares estimation by iterated convergence. Second, we use 2SLS estimates to obtain the 

residuals, and third, we obtain estimates of the long-run covariance matrix of the instrument-

residual matrix, and use it to compute the optimal weighting matrix. In the second stage, we 

minimize the GMM objective function with the optimal weighting matrix obtained in stage 1 

with respect to parameter vector. The non-linear optimization for the parameters iterates to 

convergence of 0.0001 and updates parameter estimates from the initial 2SLS estimates to the 

final 2-stage GMM estimates. Further, for the HAC procedure, we specify that the data is 



processed with prewhitening by VAR(1) and we choose Bartlett kernel and Newey-West 

bandwidth. 

Instruments  

In our two-stage GMM estimation, we use identical instrument vector for both equations in the 

system. In the linear homogeneity model, we estimate a five element parameter vector 

(1, �, +, �� ,��), with five different instruments (1, Pt-1, yt/yt-1, qt/qt-1, Rt-1). Since we have two 

equations in the linear homogeneity model, the real instrument number used is ten (two times 

five), which determines the degree of freedom of overidentifying test in our linear homogeneity 

model to be five, ten (number of instruments) minus five (number of parameters). Similarly, we 

estimate a six element parameter vector (1, �, +, �� ,�� ,y), with seven different instruments (1, 

Pt-1, yt/yt-1, qt/qt-1, Rt-1, �� , Liabilityt) in our general homogeneity model. Therefore the degree of 

freedom of overidentifying test in our general homogeneity model is eight, fourteen (number of 

instruments) minus six (number of parameters).  

Estimation 

The GMM estimations are reported in Table 2 for both linear homogeneity model and general 

homogeneity model. Although estimations are basically consistent between two models, there 

are some very interesting differences.  

First, the general homogeneity model yields a much higher estimate for ρ than the linear 

homogeneity model, which indicates that the intertemporal elasticity of substitution, 

)1/(1 ρσ −= , is much higher under the general homogeneity model. The linear homogeneity 

model estimate for ρ is 0.754, and the corresponding intertemporal elasticity of substitution,
 



)1/(1 ρσ −= , is 4.0650, very close to 4.10, the estimate of Chavas and Thomas (1999). 

However, the general homogeneity model estimate for ρ and σ  are 0.9586 and 24.1546 

respectively. This results show that agents in the farmland markets are even more flexible in 

income substitution between time periods than tradition C-CAMP predicts.  

Second, the estimates of transaction cost parameters, Cp and Cm, in the linear homogeneity 

model are both insignificantly positive, which is close to the results from Chavas and Thomas 

(1999). The estimate of booming market transaction parameter, Cp, in the general homogeneity 

model is 0.1136 with standard error of 0.0568, positive and significant at 5% level, while that of 

the diminishing market, Cm, is -0.0074 with standard error of 0.0045, negative and marginally 

significant at 10% level. These results show that transaction costs, ��, remain positive regardless 

the increasing or decreasing of farmland quantity. On one hand, the opposite signs of the 

transaction cost parameters in the general homogeneity model are more intuitive in line with the 

real world phenomenal. After all, both the buyers and sellers of farmland need to pay transaction 

costs, such as advertisements, research, legal fees, and so on. Therefore, it is reasonable to expect 

positive aggregated transaction costs in both booming and diminishing markets. On the other 

hand, these results eliminate transaction costs as one of the major drivers in the farmland market. 

Agents make decisions of buying or selling farmland always in presence of positive transaction 

costs, even though the magnitude of diminishing market parameter seems to be much smaller 

than that of the booming market. The magnitude difference is sensible because when the market 

is diminishing, agents become more cautious and this leads to an increase in market efficiency. 

The transaction amount decreases, and only the most economically efficient deals are closed in 

the market, which yields much lower transaction costs in aggregation. In short, the transaction 

costs affect farmland market, but not as significantly as a driving force. 



Third, the general homogeneity model yields a much higher estimate for α than the linear 

homogeneity model, which indicates that the risk aversion coefficient of the farmland market 

participants could be much higher than the traditional model predicts, or farmers are much less 

risk averse than we thought. We follow Epstein and Zin (1991)’s definition of risk aversion 

coefficient: agents are risk neutral when their α =1, and become more risk averse when α

decreases and vice versa. It is worth noticing that traditional time series models generate one 

single estimate of α  in the whole period of study based on aggregated data. It is well 

documented that risk aversion could differ materially across different agent groups, according to 

elements such as age, income, education, health, and other geographical variables. In other 

words, the estimate of α  is probably more like a baseline rather than a sensible average of 

agents’ risk aversion coefficient. Even under the assumption of representative agent, the estimate 

of α  needs extra cautions, because the risk aversion level for the same agents could change over 

time due to the changes of their geographical variables. It is apparent that other factor(s) should 

be included in the consideration of risk aversion in order to explain a certain year’s land price 

data or to make a reasonable prediction of near future. In our general homogeneity model, we 

introduce wealth level, approximated by the farmers’ equity, as a remedy to the embedded risk 

aversion coefficient misspecification problem in CAPM.  

Fourth, and probably the most important, we find that the estimate of y, homogeneity degree of 

consumption and value function, is 0.8277, with standard error of 0.0034. This finding is 

consistent with several previous assumptions we make about y. First, y is positive and 

significant, meaning that consumption is a valid increasing function of last period’s wealth level, 

therefore, so is value function. In other words, this result provides empirical evidence to the 

hypotheses that agents’ wealth level affects their future consumptions and utilities. Second, the 



magnitude of the estimate is between 0 and 2, showing that the nonlinear homogeneous function 

of yt(A t-1) could be closely approximated by a linear functional form as equation (16). This result 

reinforces the validity of our homogeneity test, which is derived from equation (18). Third, the 

estimate of y is less than 1, indicating that our data better support a nonlinear rather than a linear 

homogenous functional form of consumption. This also illustrates the necessity of a general 

homogeneity model in farmland pricing. 

In addition, the objective function value, reported as J-stat, are low for both models: 0.1085 for 

linear homogeneity model and 0.2460 for general homogeneity model. The estimates for � and + 

are both close to 1 in both models, and they are consistent with the findings of Chavas and 

Thomas (1999). The R-squared are close between the linear homogeneity model and general 

homogeneity model, but they are both significantly lower than that of  Chavas and Thomas 

(1999), which could be caused by the persistent farmland price rise since 1997, and especially 

the sharp rise since 2004. The general homogeneity model has a slightly higher R-squared in 

equation (29b), 0.3350 than its counterpart, 0.2345, in the linear homogeneity model (30b), 

meaning that the general homogeneity assumption helps to explain the variance in US farmland 

prices. This result is intuitive since we add one more parameter: y, homogeneity degree of 

consumption, to estimate in equation (29b), whose estimate turns out to be significantly different 

from 1, which unsurprisingly increases the explanation power of the general homogeneity model 

in farmland pricing. 

Hypothesis testing 

The GMM estimates are tested and results are reported in Table 4 for both linear homogeneity 

model and general homogeneity model. Both models pass the over identification test with very 



high p-values, supporting the overall validity of the instrument variables. With insignificant 

parameter estimates, the linear homogeneity model fails to reject both the No transaction costs 

hypotheses and the Symmetric transaction costs hypotheses, while the general homogeneity 

model estimates reject the No transaction cost hypotheses at 1% level and reject the Symmetric 

transaction costs hypotheses at 5% level. In other words, US farmland data do not provide 

evidence against the No transaction costs hypotheses in 1950~2008 period as Chavas and 

Thomas find in the 1950~1996 period with the linear homogeneity model. 

As to the expected utility hypotheses, the linear homogeneity model fails to reject the null: (� 

=1), while the general homogeneity model shows that � is close to but statistically bigger than 1. 

Both models provide evidence of the advantage of “consumption smoothing” over “income 

smoothing” in the effects of risk aversion. The almost-equal-to-1 � estimates are both in favor of 

the dynamic consumption-based CAPM model. The difference is that the linear homogeneity 

model shows that the estimate of ρ is not statistically different from that of α , while the general 

homogeneity model indicates that α  is close to but bigger than ρ , which provide empirical 

evidence against the traditional expected time-additive utility specification.  

ρ  and α  are both found significantly different from 1 at 1% level by Chavas and Thomas 

(1999) with the linear homogeneity model. In our GMM estimation,  ρ  is significantly different 

from 1 at 1% level, and α  is marginally different from 1 at 10% in the linear homogeneity 

model, and both insignificantly different from 1 in the general homogeneity model. A possible 

explanation is that with the highly aggregated data, the estimations of intensively preference 

related variables such as intertemporal elasticity of substitution and risk aversion coefficient 



could be interpreted as a boundary or frontier of individual or subgroup observation values rather 

than the average of them. 

Our linear homogeneity model estimation fails to reject the 0 rate of time preference hypotheses 

null (+ =1) as Chavas and Thomas (1999) did. But the general homogeneity model estimates find 

strong evidence against 0 rate of time preference: Chi-square= 147.7758 and p-value=0.0000, 

which is consistent with Chavas and Thomas (1999).  

A last hypothesis testing reported in Table 4 is the linear homogeneity test for our general 

homogeneity model. The null hypothesis is that y =1 or the consumption is a linear homogeneity 

function of previous wealth level. The chi-square statistics is 2518, indicating that homogeneity 

degree of consumption is significantly less than 1.  This test supports the necessity of general 

homogeneity model and helps to explain the better performance of the general homogeneity 

model comparing to the linear homogeneity model. 

Homogeneity Test 

Both the linear homogeneity model and the general homogeneity model are built on the 

assumption A2: consumption yt is a homogeneous function of previous wealth level At-1. It is 

important to check if this assumption is supported by data used for estimation in both models to 

verify the specification of the functional forms and therefore the validity of the parameter 

estimations. 

From equation (18), we define that  

Delta=left side –right side 



 �����y * ��� � 1� � �����,�
��

* < ���
����
� � X��X���
� � ���� � ���� �1 * �����,�
�� * ����y ���� � �����	

���
 

It is obvious that Delta should be close to 0 if the homogeneity assumption holds; otherwise it 

indicates that data used in estimation do not support homogeneity at the estimated degree. 

Figure 1 shows the calculated Delta values for both linear and nonlinear (general) homogeneity 

model. As we can see, the nonlinear homogeneity model with degree of 0.8277 yields delta 

values ranging from -0.5 to 1.2, which is acceptable considering the noises in data and errors in 

estimation. However, the linear homogeneity model yields delta values ranging from 1 to 24.5, 

suggesting that US farm data fail to support the linear homogeneity assumption. 

Robustness 

In order to further explore the validity of our general homogeneity model, we also estimate it 

with full information Maximum Likelihood and 3 Stage Least Squares. Table 3 demonstrates the 

estimations of general homogeneity model with all 3 methods: GMM, ML, and 3SLS. Out of 

total seven parameters estimated, the magnitude and significance level for six parameters are 

stable across all 3 methods, and the only difference is that the estimates of parameter for 

transaction cost in booming market are insignificant with ML and 3SLS, but significantly 

positive at 5% level with GMM. 

These results indicate that our estimates of the general homogeneity model are not sensitive to 

estimation methods. The functional forms adopted in the estimation are reasonable and robust 

against structural misspecifications, while the estimates are reliable and useful in predictions. 



Predictability 

To test the reliability of out-of-sample predictions of our models, we perform recursive 

predictions with both linear homogeneity model and general homogeneity model, and compare 

them with the true data of farmland prices during 1997~2008. The recursive predictions are made 

through a repeated procedure. First we use all the data from year 1950 to year n to obtain GMM 

estimations (1, �, +, �� ,�� ,y�  )n of a model, and we use (1, �, +, �� ,�� ,y� )n and data needed in the 

functional form (b)  to predict pn+1, the farmland price of year n+1. Then we repeat this 

procedure for year n+1 to predict the farmland price in year n+2, and so on. 

Figure 2 shows the comparison results of linear homogeneity model and general homogeneity 

model with observed value of farmland price from 1997 to 2008. As we can see, among all 12 

years’ predictions, the general homogeneity model always performs better than the linear 

homogeneity model because the nonlinear predictions are always closer to the observed values 

than the linear predictions. Except for four years: 1998, 2003, 2004, and 2007, when the two 

predictions are close, the nonlinear predictions are significantly higher than the linear 

predictions, which helps to explain the alleged farmland overpricing puzzle. 

This result is also consistent with the higher R-squared for the general homogeneity model when 

compared to the linear homogeneity model. Both results illustrate that the general homogeneity 

model has stronger explanatory power and more reliable predictability in farmland pricing. 

  



Conclusions 

In the article, we develop a general homogeneity model to enhance model robustness against risk 

aversion coefficient misspecification in the traditional C-CAPM model. We find that US 

farmland data support a nonlinear functional form rather than a linear form for consumption. We 

also find that both farmland returns and consumers’ wealth levels are determinates for farmland 

assets value. Our model generates better out-of-sample predictions and our results are robust to 

estimation methods. It provides empirical evidence of the effects of transaction costs and risk 

aversion on farmland prices. 
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Table 1. Descriptive Statistics, 1950-2008      
Variable Mean Standard 

Deviation 
Minimum Maximum Skewness Kurtosis Autocorrelation 

Coefficient ��� 1 in 1982-84) 0.9121 0.6154 0.2410 2.1530 0.4794 -1.2501 0.9996 ���billion dollars) 69.2605 16.0702 41.9507 123.3692 0.9209 1.3116 0.8146 �� �million acres) 1056.0200 94.6592 919.9000 1206.3550 0.2190 -1.3532 0.9993 �� (1,000 $/acres) 0.5945 0.5087 0.0650 2.1700 1.1522 1.1551 0.9959 �� (billion dollars) 605.1680 448.2733 151.9045 1841.2120 0.9933 0.5685 0.9939 �� 1.1597 0.0734 0.9599 1.4166 0.0929 2.6367 0.6270 ��/�� (1,000 $/acre) 0.0313 0.0229 0.0091 0.0947 1.0584 0.4011 0.9260 ��  0.0509 0.0264 0.0092 0.1316 0.7596 0.5695 0.8809 
Note: Number of observations is 59.       

 

 

Table 2. GMM Estimation Results, 1950-2008     

 Linear Homogeneity  General Homogeneity 
           Estimate          Std. 

Error 
              t-
Ratio 

          Estimate          Std. 
Error 

              t-
Ratio 

ρ 0.7547 0.0807 9.3482  0.9586 0.0429 22.3410 � 0.9701 0.1115 8.6969  1.0185 0.0038 267.6441 
β 0.9726 0.1279 7.6027  0.9558 0.0051 186.3042 �� 0.0084 0.0145 0.5814  -0.0074 0.0045 -1.6315 �� 0.2062 0.2318 0.8895  0.1136 0.0568 2.0008 
α 0.7321 0.1323 5.5316  0.9763 0.0423 23.0554 
λ Set to 1             -              -  0.8277 0.0034 241.1212 
J-stat 0.1085    0.2460   ��   equation (a) 0.5174    0.5010   ��   equation (b) 0.2345    0.3350   
Note: The t-ratios are obtained under the null Ho: +  0. The Linear Homogeneity parameters are estimated from equations (30a) and (30b), while the General Homogeneity 
parameters are estimated from equations (29a) and (29b). 

 

  



 

Table 3. GMM, ML, and 3SLS Estimations for General Homogeneity Model, 1950-2008 
 GMM  ML  3SLS 
 Estimate Std. Error Wald-Stat  Estimate Std. Error Wald-Stat  Estimate Std. Error Wald-Stat 
ρ 0.9586 0.0429 497.5111  0.9802 0.0164 3555.4680  0.9566 0.1168 66.8666 � 1.0185 0.0038 71633.3834  0.9994 0.0028 126495.9  1.0153 0.0105 9301.2505 
β 0.9558 0.0051 33405.0900  0.9807 0.0063 24616.1600  0.9479 0.0193 2419.7650 �� -0.0074 0.0045 2.6616  -0.0003 0.0035 0.0077  -0.0226 0.0201 1.2623 �� 0.1136 0.0568 4.0033  0.0142 0.3551 0.0016  -0.0604 0.1887 0.1025 
α 0.9763 0.0423 529.8373  0.9796 0.0168 3398.8210  0.9712 0.1196 65.7352 
λ 0.8277 0.0034 58139.4400  0.8286 0.0000 1.45E+27  0.8280 0.0065 16136.9487 
Note:  For the Wald tests the critical values of ����� are 2.71, 3.84, 6.63, and 10.83 for a 10%, 5%, 1%, and 0.1% significance level, respectively. All three estimations are obtained from equations (29a) 
and (29b). 

 

Table 4. Hypothesis Testing, 1950-2008 

      Linear Homogeneity  General Homogeneity 

 Test Statistic           p-Value  Test Statistic      p-Value 

Overidentifying restrictions                         (Hansen test) x��5� 0.1085 0.9998  ���8� 0.2460 0.9999 
No transaction costs                                   ���  ��  0� x��2� 1.0923 0.5792  ���2� 13.8794 0.0010 

Symmetric transaction costs                             ���  ��� x��1� 0.7284 0.3934  ���1� 4.9195 0.0266 

Expected utility                                                        ��  1� x��1� 0.0718 0.7887  ���1� 23.5875 0.0000 
Infinite intertemporal elasticity of substitution�1  1� x��1� 8.1808 0.0042  ���1� 1.0028 0.3166 
0 rate of time preference                                      �+  1� x��1� 0.0007 0.9790  ���1� 147.7758 0.0000 
Risk neutrality                                                          �α  1� x��1� 3.6801 0.0551  ���1� 0.3564 0.5505 
Linear Homogeneity                                               �y  1� ���1�                     -  ���1� 2518.3218 0.0000 
Note: The Linear Homogeneity parameters are estimated from equations (30a) and (30b), while the General Homogeneity parameters are estimated from equations (29a) and (29b). 

 

 

  



Figure 1. Homogeneity Test for Linear Homogeneity Model and General Homogeneity Model 

 

 

Figure 2. Prediction Comparison for Linear Homogeneity Model and General Homogeneity 
Model 
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