%‘““‘“\N Ag Econ sxes
/‘ RESEARCH IN AGRICUITURAL & APPLIED ECONOMICS

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their
employer(s) is intended or implied.


https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/

Sequential Adoption of Package Technologies
The Dynamics of Stacked Trait Corn Adoption

Ursula Aldana*, Jeremy D. Foltz*, Bradford L. Barham*, and Pilar Useche**
*University of Wisconsin — Madison, **University of Florida

Contact Author: Brad Barham
barham@mailplus.wisc.edu

May 2010

Abstract:

GM corn seed companies have innovated continuously with the introduction of new traits
and, more recently, with the creation of stacked varieties, which combine more than one
trait. This work develops a Bayesian model of adoption dynamics that demonstrates how
uncertainty with a package technology with known risk can lead to a sequential adoption
pattern in which farmers adopt a single component first. We then develop a semi-
parametric panel data model of adoption dynamics to measure the effects of experience
with single trait (non-stacked) varieties on the adoption of stacked varieties. The results
underscore the importance of early experience with the non-stacked technology in the
subsequent adoption of stacked varieties, i.e., a sequential adoption process. There is also
evidence that farmers with more human capital tend to learn faster from own experience
and that as the GM corn-technology diffusion process deepens, the importance of early
experience decreases.
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Sequential Adoption of Package Technologies
The Dynamics of Stacked Trait Corn Adoption

Most recent models of technology adoption take the new technology to be a single
uniform technology that firms or farmers decide whether to use. Many technologies in
fact consist of sub-components that are available individually or jointly as a package.
Genetically modified (GM) corn to date presents such a technology option to farmers,
with single trait or multiple (stacked) trait varieties. This divisibility of the technology
package can create a particular adoption dynamic, since the experience gained through the
adoption of subcomponents will provide information on the characteristics of the package
thereby encouraging or discouraging its subsequent adoption.

A now old literature on green revolution technology adoption from the 1970’s and
1980’s analyzed package technologies, and identified sequential adoption patterns in
which farmers adopted parts of the package before adopting the whole package (see e.g.,
Byerlee and Hesse de Polanco; Leathers and Smale). These works were primarily
empirical, and argued that fixed costs, credit constraints, risk, uncertainty, and learning all
contributed to a sequential adoption pattern. In the US GM corn market, we posit that
learning and uncertainty are likely to be the most salient of these explanations. GM seeds
are inherently divisible, US farmers are not likely to face credit constraints that bind the
purchase of a sufficient quantity of seeds to test GM varieties, and crop insurance is

available to help manage basic risks.*

! During the period of our data, 2000-2006, US grain farmers had historically easy access
to credit at low interest rates. In addition, most farmers in our sample purchased crop
insurance. Thus, while credit constraints and risk aversion may play a role in the
sequencing of adoption, they are likely to be a small contributor to the issue.



Technology adoption has long been viewed as a process that hinges on farmer
learning about uncertain and risky options (Griliches; Rogers; Feder and Slade; Feder et
al.; Foster and Rosenzweig; Conley and Udry). Often the learning process about a new
technology can drive the timing of adoption. As explained in Feder and Omara,
uncertainty diminishes over time because of the common experience gained through the
adoption of farmers in the economy and because of the expected improvement of
extension services and advancement of research studies. Similarly, uncertainty decreases
with direct experience with the technology or with a component of the technological
package. A strand of the literature has modeled this decrease in uncertainty using a
Bayesian approach (Lindner; Feder and Slade; Leathers and Smale), according to which
producers update their beliefs about the distribution of the profitability of the technology,
using observations on the profit achieved by other producers or themselves. From this
literature, the Bayesian conceptual model by Leathers and Smale is the one that comes
closest to our work in providing a reason for a sequential adoption process. Our work
expands the Bayesian adoption literature by considering correlated learning across
components of package technologies and in so doing provides a new logic for a sequential
pattern of adoption.

Previous studies of farmer adoption of GM crops focus almost exclusively on the
binary decision to use GM varieties (Alexander, Fernadez Cornejo et.al., Hubbell et.al. )
or else on a one-time decision across multiple independent or correlated choices (Useche
et al.). All of these GM adoption studies are cross-sectional analyses that preceded or
coincided the introduction of stacked GM traits, and do not account for timing or previous

experience in a systematic fashion. Thus, none of these studies explicitly account for the



potential sequencing of farmer adoption choices, especially the potential path of trying one
or more single variety traits before adopting stacked varieties, which combine multiple
traits. Examining the adoption of stacked varieties through a dynamic lens with
longitudinal data can improve our understanding of the sequencing of farmer choices in
this and other types of evolving package technologies.

In this article, we analyze the sequential nature of the adoption of stacked GM corn
varieties, which are a package of individual GM traits. The main empirical questions that
we address are whether and why farmers might move sequentially from a single trait to a
stacked variety. In the GM corn market during our study period there were three traits
(herbicide tolerance (HT), bacillus thuringeiensis (BT) to kill corn borers, and to kill corn
rootworm insects) in the market that were sold both independently and as a packages. We
develop a novel theoretical framework based on the concept of Bayesian updating of the
beliefs regarding the expected profits of the stacked varieties. We show that the possibility
of learning about the profitability of the stacked variety through the use of a single trait
variety reduces the uncertainty of stacked varieties, which tends to favor a sequential
pattern of adoption.

The empirical analysis exploits a survey of corn farmers from Minnesota and
Wisconsin conducted in 2006. The 2006 survey included retrospective questions on the
use of GM corn varieties as well as questions on the socio-economic characteristics of the
farm operator and characteristics of the farm itself. The econometric estimations using
these data examine the adoption of stacked varieties using semi-parametric fixed-effect
regressions to explore the role of experience, as well as its interaction with education and

with the stage of the technology diffusion process. The econometric method that we use



does not impose a parametric functional form on the relationship between the likelihood of
adopting a stacked variety and the experience of the producer with a single trait GM
technology. We use this method because the Bayesian model shows a non-linear impact
of experience on the latent variable, the returns to adoption. This method allows us to
examine how the adoption of stacked varieties evolves as experience changes and is also
useful when comparing the impact of experience for different groups.

The empirical results underscore the importance of early experience with the single
trait technology in the subsequent adoption of stacked varieties, i.e., a sequential adoption
process. They also provide evidence that the cost of learning decreases for farmers with
time as the technology diffuses (Feder and Omara). Thus, increases in common
knowledge provide partial substitutes for own experience in an adoption process and
reduce the incentives for sequential adoption. The results also suggest that more educated
farmers tend to learn faster and require fewer trials before adopting stacked varieties.

The next section develops a Bayesian model of adoption dynamics for
technologies with correlated outcomes that demonstrates how uncertainty with a package
technology with known risk can lead to a sequential adoption pattern in which farmers
adopt components first. The third section develops the semi-parametric econometric
modeling approach, describes the data, and offers variable means on sequential adoption
patterns for GM corn in Minnesota and Wisconsin. The fourth section presents the
econometric results on how experience with single trait varieties, human capital, and
common knowledge diffusion shape the adoption of stacked varieties. The final section

summarizes our findings and reflects on research and market performance issues.



A Bayesian Model of Adoption Dynamics

In this section, we develop a novel multivariate Bayesian model that explains the
logic for a sequential adoption pattern for a package technology with individual
components that could provide information on the value of the package. While this builds
on a standard Bayesian learning framework (e.g., Anderson, Stoneman), it is to our
knowledge the first model using a multivariate Bayesian framework to understand how
farmers learn about the profitability of package technologies.

Our model features a seed market where the farmer chooses between conventional,
single GM trait, and a stack of multiple varieties. In this Bayesian model, farmers learn
about the yields of the stacked variety by using a single trait variety. Farmers make
choices for the current period based on their current information set, which includes past
experience with a GM trait. This allows us to analyze how experience with a single GM
trait changes the incentives to adopt the package given the information set available to the
farmer.?

Farmer’s maximization problem

We assume that farmers face a choice set that includes J types of corn seeds (e.g.,
Conventional (c), HT only (1), BT only (2), and stacked HT/BT (s)). To simplify the
modeling, we focus on the case in which the farmer adopts trait 1, and how that might
create learning about trait 2 and stacked traits. The farmer will choose the variety j*,

which gives her the highest expected utility:

2 We do not explicitly model the potential forward-looking dynamics of farmer choices,
the case where farmers might adopt a particular variety today because of the future value
of information it might provide. This would unnecessarily complicate the modeling
exercise and merely reinforce the sequential adoption logic we are seeking to demonstrate.



j*=argmax {EU, } (1)

where EJUj is the expected utility achieved when adopting variety j°. Following
Stoneman, we express the farmer’s expected utility as a linear function of the expected
value as well as the variance of profits*:

EU, =E(7;)-bV(x,) (2)

where b represents the farmers risk aversion level. As detailed below, we assume that the
farmer does not know the expected profits of GM varieties, and this implies that the
variance and the expected value in (2) represent both the parameters of the real

distribution of profits and the parameters of the farmer’s beliefs. The term E(r;)

represents the mean of the distribution of the farmer’s beliefs regarding expected profits,
which may or may not be accurate to the true expected profits. The aggregate variance,

V(x;), is the sum of two elements: the variance of the distribution of the beliefs regarding

expected profits, and the variance of these profits implied by variation in common known
but stochastic factors such as weather conditions. The variance of the beliefs can be
interpreted as the uncertainty component while the variance of the profits implied by

weather conditions represents what is typically thought of as production risk.

% In this model we constrain farmers to choose one variety at a time to learn from. An
alternative specification would assume low sunk/fixed costs to adoption and have the
farmer choose a land portfolio in order to maximize her expected utility. Specification (1)
simplifies the model to focus the analysis of the impact of experience. The same results as
those presented here can be obtained from a portfolio selection model, but they would also
be a function of the amount of land chosen for each crop type. Since the latter would be
endogenously determined in the model, it would add additional conditions and complicate
signing the direction of learning effects.

% This standard mean-variance functional form is consistent with a farmer who has a
CARA utility function when the actual profits and the farmer beliefs regarding the mean
profits are normally distributed.



Profits depend on the output price, the yield, the input cost as well as the price of a

particular seed variety in the following manner:

= PT Y =W =Py 3)

where p™ is the output price, y; is the yield achieved by variety j, w; represents the
input costs incurred when variety j is used and pj is the price of seed of variety j. We

assume the yields, as well as the input costs are stochastic and depend on the variety

chosen. Input costs are distributed normally, with a mean value of Hy, and a variance of

2
O, w; , both of which we assume are known by the farmers. The distribution of yields is

described below.

The yields achieved for each type of variety depend on the traits included in a
particular seed. Define Ij as an indicator function that equals one if variety j contains trait
k, and define I; as an indicator function that equals one if variety j is the conventional
variety. Assuming that the number of traits is equal to 2, the yields can be expressed as:

Y =0+, + 6,1, +0,1,15, 4)
Equation (4) indicates that the yield of a conventional variety is equal to J,, while the
yields of GM varieties depend on the traits contained in the seeds. In this formulation

oy, captures the impact on yields of having more than one trait present in a seed variety.
We assume that &, &, and 5, are random variables which are distributed as N(z,c7”),
where i=c,1,2; while &,,is a random variable distributed as N(z,,05) ; and that these

distributions are independent from each other. Note that the parameters o2,67,0%,05

represent production risk.



Farmer Learning about the Technology

In order to capture the uncertainty in the profitability of a new technology, we assume that
the farmer knows the expected value of the yield of the conventional variety, 4., the
variance of all yields (o2,07,0%,05), but does not know the expected values of the yields
of the GM varieties: y, 1, and g, . Instead, the farmers have a prior distribution, which
captures their expectations regarding the value of these parameters. This prior distribution
is updated in a Bayesian manner into a posterior distribution, as the farmer experiments
with the technology.

We conceptualize the package as having two correlated elements [ 1 , , ] that can
be learned about through experience with any of these elements and then a third part, 4, ,

which is the part of the package that can only be learned about through use of the
package.” In this conceptualization, we assume that the prior distribution of [ s, 1, ] is
bivariate normal with a positive covariance between the two varieties. This captures the
idea that experience with one trait provides information on the qualities of the other trait.
For example, if the same company produces both traits, the farmer is likely to expect
better (worse) results for trait 2 when the results for trait 1 turn out well (badly).

Note that it is possible for the prior distribution of [ 4 , 4, ] to have a positive
covariance while 6, and g, are independent from each other. The assumption of a positive

covariance between g and g, means that the farmer believes that if the expected value

> Our assumption that 1, 1s uncorrelated with the other elements of the package is a

simplifying assumption. The sequential learning results would only be reinforced if we
allowed g, to be correlated with ,4 and u, (i.e., learning about all elements of the

package).



of trait 1 yields is high, then the expected value of trait 2 yields is more likely to be high.

The assumption of independence between o, and &, establishes that, regardless of the
expected value of the distribution of [;, J,], a good year for trait one does not imply that

a good year for trait 2 is more likely to happen. On the other hand, the prior distribution of

1, is assumed to have a mean given by 6 and a variance given byV,S. In order to
simplify the analysis, we assume that beliefs regarding 4, are uncorrelated with beliefs
regarding [ z4, 1, 1.

With the Bayesian formulation, the prior distribution of [ , x,] is denoted as

p° (14, 11,) and is described as:

P° (14, 1,) = NH?] (zl ]Z} , (5)

where [, 67] are the expected value of the distribution and Y. is the variance

covariance matrix which equals:

AR
Z:[Clo vﬂ . ©)
12 2

In order to illustrate the sequencing of adoption we assume that the farmer starts
by growing a single trait variety that contains trait 1. She uses n observations (e.g., years
growing the crop) on the yields of a single trait variety containing trait 1 to update her
beliefs regarding 4, . Given the assumption of a positive covariance between z4 and z, in
the prior distribution, these observations on trait 1 will also allow the farmer to update her
beliefs regarding 4, . Since both traits 1 and 2 are present in the stacked variety,

observations on trait 1 will allow the farmer to update her beliefs about the mean yields of

the stacked variety.



The learning process that uses observations on trait one to update the beliefs about
this same trait can be conceptualized as a standard Bayesian problem in which the prior is

a normal univariate distribution. Consequently, the posterior distribution of £ will be

distributed normally. Denoting this posterior as p'(z), we have that:

p'(ra) ~ N(E. V) (")

where the expected value & and variance V,' can be calculated by the standard formula

that corresponds to a Bayesian updating of the beliefs when the prior is a univariate

normal distribution (Anderson). That is:

o 05

1_V10 0'12
01_ 1 n (8)

4
0 2
Vi o

vie— 1 ©)
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0 2
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In equation (8) the farmer’s expected value of the posterior distribution will be a function
of the expected value of the prior distribution, 8, the variance of that distribution, V,°, the
known variance of yields, o7, her observed mean yield, J;, and the number of trials the

farmer has had with the technology, n. We can see that if the average yield observed

through experience is higher than the expected value of the prior distribution, the expected

value of the beliefs regarding 4, will be updated positively. If the contrary is true, the

expected value of the beliefs will be updated negatively. Note that, although not explicitly

modeled, the mean of the prior distribution 4> may be influenced by common knowledge

10



of the technology outside of actual experience. Equation (9) shows the classical result that

as the number of observations, n, increase, the variance of the distribution of the beliefs

1
decrease, i.e., % <0 and that V,' <V,°. This variance can be regarded as the uncertainty

faced by the farmer, an uncertainty that decreases as she learns through experience.

The posterior distribution of ., can be deduced from the joint prior distribution,
equation (5), together with the posterior distribution of x4, equation (7), in the following
manner:

p%%)~f¢0@ﬂ@*¢uwdum=gG%Vb (10)
Where g is a distribution function with a expected value given by: &, and a variance given
by V. Taking into account the properties of the conditional distribution associated with a

multivariate normal, we have that (see Appendix 1):

0
ClZ

6, =06, +V—o(911 -6) (11)
1
Co)z co 2
V1=V0—(L+ 2 | oyl ) 12
2 2 Vlo [Vlo 1 (12)

1
Definition 1: A technology is “ascendant”” when @, > 6° and 60% >0,i.e,itisa

technology for which new information has a non-negative effect on the mean of the
distribution of the beliefs about the mean returns to the technology.

1
Lemma 1: When technology 1 is ascendant, and C1,>0, then & > & and aé%n >0

1

Lemma 2: When Cy, > 0, then V, <V.” and 88\/2 <0
n

Lemma 1 says that for correlated technologies, a positive experience with

technology 1 will increase the farmer’s mean of the distribution of the beliefs regarding the

11



average yields of technology 2. Lemma 2 says that this experience with technology 1 will

also decrease the uncertainty with technology 2. Taking into account the definition of an

ascendant technology and that 87 will satisfy equation (11) if we replace 4 by 6, Lemma

1 follows from equation (11). In the same manner taking into account that V,” will satisfy

1
equation (12) if we replace V," with V,” and that % <0, Lemma 2 follows from equation

(12). This means that an increase in the expected value of the distribution of the beliefs
regarding z, implies an increase in the expected value of the distribution of the beliefs
regarding x, and that experience with trait 1 reduces the variance of the beliefs regarding
Hy

oCy,
on

Lemma 3: When n>0, then C}, <C;, and <0

Proof: Appendix 1 shows that covariance of the beliefs will be equal to:

CoVy

C., =
12 %

(13)

In this case we also have that CJ, satisfies expression (13) if we replace V,'with V,°. Since

V' is less than V,’, this means that the covariance of the posterior distribution will be

. T . N} .
lower than the covariance of the prior distribution. Since El <0, the covariance of the

posterior distribution will decrease as n increases. Lemma 3 shows that experience with
trait 1 will also reduce the covariance of the bivariate distribution of the beliefs.

Farmer Choice of Technology:

Since producers choose the technology that provides the highest expected utility, equation

(1), the changes in beliefs from trials with technology 1 will affect the technology choice

12



through changes in the expected utility from adopting different technologies. Given that
the farmer does not know the expected value of profits, but instead has a distribution of

beliefs regarding its possible values, the expected utility she maximizes is given by:
—Bi
EU, =7, —bV, (7)) (14)

where E?i represents the farmer’s best approximation to the expected profits, which is the
mean of the distribution of the beliefs regarding expected profits. The superscript i is equal
to zero if there is no experience with any genetically modified trait and equal to one if the
farmer has some experience that allowed her to learn about the yields of the technology. In
the second term of the right hand side of (14), Vag(75) represents the aggregate variance
(described in detail below) including both risk and uncertainty. The expected value of the

beliefs of profits will be:

—Bi m i i s

Ty =p (,Uclc +91|j1+‘92|j2 +6102|j1|j2)_:uwj -pj. (15)
Specifying the crop choices, j as:

the seed only has trait 1
the seed only has trait 2
the seed has traits 1 and 2
the seed is conventional

O u N B

the expected value of the beliefs about profits for each of the technologies will be:

e = " (u,) ~ tay, — P (16)
o= " (0) -y, — P (17)
7 =" (6)~ P} (18)
7o = p"* (6 + 6 +63) ~ p, P (19)

Taking Lemma 1 and (18) into account, one can see that if the farmer positively

updates the mean of the beliefs regarding the profits of trait 1, the same will happen to the

13



mean of the beliefs regarding the profits of trait 2. In addition (19) shows that the mean of
the beliefs regarding the profits of the stacked variety will also be updated positively. In
the same manner, if the mean of the beliefs were updated negatively for trait 1, the same
will happen for trait 2 and for the stacked variety. Given the dependence of the stacked
variety on both traits, the change in the mean of the beliefs for this variety, for a new

observation, will always have a higher absolute value, as we can see in equation (20):

ore . 00" 06
= pn (s

72 20
on on on ) (20)

Where i=1 since equation (20) describes the mean of the posterior distribution
after experience with trait 1. The second element of the expected utility contains the
aggregate variance of profits, which captures the uncertainty regarding the value of the
mean of the distribution of yields as well as the variance of yields and input costs that are
caused by factors such as weather, pests and weed problems, i.e., risk. The aggregate

variance for each type of variety is given by:

V. (7,)=E(r, - 70 ) = (p")?0? + 02 (21)
Vi (m) =E(m—m )2 = (p")? (02 +V,) + 07 (22)
V. (7,) = E(m, — 72 ) = (p™)2 (02 +V}) + 02, (23)

Vi () = E(z, — 75 )2 = (p")* (0 +V)) +(p") (03 +V,) + 2(p")°Cly +(p")2 (0 +V,3) + 02
(24)

Equations (22)-(24) show that as experience increases and the variance of the beliefs go to
zero, the aggregate variance converges to known risk i.e., the variance of yields and input
costs that is caused by factors such as weather, pests and weed problems.

It is worth noting that the uncertainty element is much higher for the stacked

variety, given that it sums the uncertainty of both traits 1 and 2 as well as the uncertainty

14



of g4, . This greater uncertainty helps to explain why a farmer might adopt a single trait

technology before adopting the stacked variety, because without experience with any of
the traits in the technology the uncertainty of the stacked variety is always higher than the
uncertainty of a single trait variety. This points to one of the necessary conditions for a
sequential adoption process, namely that with no information there are incentives to adopt
a single part of the package rather than jumping directly into the package.

Proposition 1: The uncertainty of the package technology will decrease as experience
with an element of the package, n, increases.

Proof: By Lemma’s 2, and 3, and equation (9) in the following manner:

1 my2 A1 my2 ~\ /1 m2aCt
Nag () _ (p")*0V;"  (P")*8V, , 2(p")0C;, _ (25)
on on on on

According to (9), Lemmas 2, and 3, each of the three terms that add up the change in the
aggregate variance of the profits of the stacked variety in (25) is negative. Equation (25),
then, shows that experience with an element of the package, such as a single trait variety,
decreases the uncertainty associated with the elements of the package, which decreases the

uncertainty of the entire package, or the stacked variety.

Proposition 2: The change in variance is higher in absolute value for the stacked than for

the single trait variety, i.e |8Va19 (z.) >|avalg (”1)| and |6Valg (%) >|avalg (”2)|
"‘anHén“ﬁnHén

Proposition 2 states that the uncertainty of the stacked variety will decrease more than the
uncertainty of the single trait varieties. This proposition follows from equation (25),

Lemma 2 and Lemma 3.

Proposition 3: For an ascendant technology, the incentive to adopt a stacked variety is
increasing in the number of trials with a single trait variety.

15



Proof: The condition for the farmer to adopt a stacked variety is:

s, =EU,-EU_ >0 and
sa,=EU,-EU, >0 and (26)
a,=EU,-EU, 20

Looking at the impact of experience with trait 1 over the inequalities in (26), we have:

aASC _ 87_2'51 —b aVag (ﬂs) (27)
on on on

Ong mx 06, (p™)*0V, 2(pm)*oC,,

—==p"* -b 28
o5 P ( P ) —b( 5 + n ) (28)
Ongy w00 (p")*av,! 2(p™)*oCy,

—2=p"* -b + 29
on P on )b on on ) (29)

The first term on the RHS of equations (27)-(29) reflects the impact of experience on the
difference between the expected profits of the stacked variety and the expected profits of
the alternative seed. The second term reflects the impact of experience on the difference
between the aggregate variance of the stacked variety and the aggregate variance of the
alternative seed. Taking into account Proposition 2, the second term will always be
positive. That is, the aggregate variance of the stacked variety will always decrease more
than the aggregate variance of the alternative seed. On the other hand, the sign of the first
term will depend on whether the technology is ascendant or not.

With an ascendant technology, the beliefs regarding the mean yields of trait 1 are
updated upwardly or do not change. As stated in Lemma 1 this implies that the mean of
the beliefs regarding trait 2 are also updated upwardly or do not change. Thus, the first

term of the RHS of equations (27)-(29) will be greater than or equal to zero.

16



Consequently, for an ascendant technology the impact of experience on », , 4, and
a, Will be greater than zero, increasing the incentive to adopt a stacked variety.

Proposition 4: For a non-ascendant technology, the incentive to adopt a stacked variety
increases with the number of trials with a single trait variety if the reduction of the
difference between expected yields is lower than the reduction of the difference between
the variance of the expected utility of stacked versus non stacked seeds.

For a non-ascendant technology, where the beliefs are updated downwards, we have that

the first term of the RHS of equations (27)-(29) is lower than zero while the second term

of these equations is higher than zero. Hence, the impact of experience on a, a4 and a,,

will be positive if the second term is higher in absolute value than the first term. This
means that the incentive to adopt a stacked variety will increase with experience if the
impact of experience on the difference between the variances of stacked versus non
stacked seeds outweighs the negative impact of experience on the difference between the
expected value of yields of stacked versus non stacked seeds.

Propositions 3 and 4 demonstrate the potential for a sequential adoption pattern by
showing that, under certain conditions, experience with single trait varieties will increase
the chances that a farmer adopts stacked varieties. Note that if (26) holds for n=0; that is,
if without a farmer observation on a single trait variety, the expected utility including both
risk and uncertainty is higher for the stacked variety, then one would observe farmers
jumping into the stacked variety directly rather than following a sequential adoption

pattern through the single trait varieties.

Empirical Implementation

Econometrics of Sequential Adoption

17



Propositions 3 and 4 from the theoretical model show that, when the change in the
expected value of yields is positive or if negative, higher than a certain threshold, the
incentive to adopt a stacked variety will increase with the number of trials with the single
trait variety Formally, they present the following testable probability statement:

Pr(j*=s|n)>Pr(j*=s[n;) for n>n,° (30)

A standard estimation method of testing (30) would imply the use of a logit or
probit model, but the standard version of these models imposes a linear relationship

between the independent variable, n, and the latent variable, EU ;. Inspection of
equations (8) and (9) shows that the latent variable, EU; depends non-linearly on n, the

level of experience, with higher levels of n having lower effects on expected utility than
do lower levels of n.
Given this non-linearity in the role of experience, we estimate the adoption of a

stacked variety using a semi-parametric specification.” It is as follows:
Yii = f (ait) + ZaTCtT TV, + & (31)
T

where, y, =1 if farm iadopts a stacked variety in year t, a, is experience, measured as
the years that have passed since the first year of adoption of a GM crop, and c; isa

dummy variable for each chronological year, v; is a fixed effect, and &; is the standard

® Testing equation (30) provides evidence consistent with propositions 3 and 4, while its
rejection would imply that a technology is non-ascendant and proposition 4 does not hold.
” An alternative specification, which can accommodate such non-linearity, would be to use
survival analysis. Unfortunately, our data do not conform to the requirement of observing
the characteristics of farmers at the beginning of the event, in this case the first
introduction of GM seed traits in the mid 1990’s, which is necessary for a clean survival
analysis estimate.
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error term. The function f (a,) has no predetermined parametric shape. The impact of

experience occurs one year later: that is, if the farmer adopted GM corn for the first time

in period t, a, would be equal to zero and a,,, would be equal to one. In addition to an

individual’s own experience, we expect that the expected utility of adopting a stacked
variety may change over time. Including a time measure can capture rising levels of
common information about the technology that a farmer access in addition to or as a
substitute for their own experience.

A key challenge in estimating the impact of experience arises with its potential
endogeneity. Unobservable variables, such as the farmer’s ability, which could affect the
adoption of stacked varieties, are also very likely to be correlated with early adoption. A
possible solution implies the estimation of the likelihood of being an early adopter, which
generates experience, as a function of the value of variables thought to cause early
adoption such as land size and education, at the period at which the technology was first
introduced. An exhaustive account of these variables, however, is very difficult to obtain
using standard cross-sectional surveys, and is not feasible with our data. It is known
(Heckman, Magnac) that the impact of a variable, such as experience, can also be
consistently estimated through the inclusion of fixed effect parameters, which allow the
researcher to isolate the role of experience from the role of other variables that vary by
household but do not vary through time. However, a fixed effects regression can in turn
introduce an “incidental parameters” problem. This problem arises in the context of
maximume-likelihood estimation, and when the data include a small number of time-
periods as occurs in our data (Heckman). In order to estimate adoption as a function of

experience while circumventing the incidental parameters problem, we use the Mundlak
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device in which we run an estimation that controls for the average value of experience of
each household. In the current setting, this amounts to controlling for the first year of
adoption.

Formally, since early adopters may possess characteristics that distinguish them

from late adopters, it is possible for v, to be correlated with a,, which would introduce a

it ?

bias in the estimation of f(a,). Following Mundlak, we can define v, as:

6
Vi = Z,-:o Bisi + 2 (32)
where s; is equal to one if the sum of the variable a; for farm i and over all the time

periods is equal to j. While the fixed effects v, are usually expressed as a function of the

average of the independent variable, we use a more flexible expression, in which there is
one dummy for each value of this average experience level. This is equivalent to using a
dummy for the first year of adoption, with two exceptions. The first is due to the
exclusion of a dummy that is equal to one if the farmer adopted a GM crop in 2000. This
dummy is excluded because using a set of dummies that sum one for each observation will
imply a collinearity problem in the context of this semiparametric estimation. The second
exception is related to the farmers who adopted for the first time in the last year of our
data, 2006, or never adopted. These two groups of farmers are represented by the same
dummy variable since they present the same value for the sum (and the average) of the

variable a,, namely zero. Using the Mundlak formulation to account for potential

correlation of v, and a, the adoption of stacked varieties can now be expressed as:

Yie = f(ait)+zaTCtT +Z?:Oﬁjsij +Z+ & (33)
T
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where having controlled for early adoption through s; we can now assume that z, +¢, is
not correlated with our variable of interest: a, .

This semi-parametric specification offers the advantage of being highly flexible
and of allowing us to know how the impact of experience changes as experience evolves.
The estimation method follows Stock as shown in Appendix 2. Following Blundell and
Duncan, we estimate confidence intervals for the non-parametric parameters using the
bootstrap method. Additionally, the bootstrap replications allow us to correct for the bias,

which characterizes nonparametric specifications.

Data:

The empirical analysis uses data gathered from a random sample of 738 corn farmers from
Minnesota and Wisconsin from lists that the National Agricultural Statistics Service
(NASS) maintains for their work on the agricultural census and other USDA data
collection activities. These farmers were surveyed in 2006, and the questionnaire included
retrospective questions on their use of GM corn varieties covering every year back to
2000. The empirical estimation exploits the variation in time of their adoption of GM
varieties in order to assess the existence of a sequential pattern of adoption. We use data
that covers the period 2000-2006 that contain information regarding the type of variety

adopted each year. ®

® Note that prior to 2005 we cannot distinguish the use of stacked varieties from the use of
more than one single trait variety. This distinction is relatively unproblematic though,
because in years when we have data on both stacked and multiple variety use, multiple
variety use was very rare. For example, in 2005, the use of more than one variety was 2%,
while the use of stacked varieties was 23%.
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Descriptive Statistics:

Our first empirical illustration is to compare the timing of a farmer’s first year of GM
adoption with the use of stacked varieties in 2005, shown in table 1. The likelihood of
using stacked varieties in 2005 was twice as high (53% vs 27%) for farmers whose first
year of GM adoption was in 2000-01 versus those adopting first in 2004-05. These
descriptive results are consistent with a positive impact of experience through the
reduction of uncertainty as well as with a technology that has proved to not be
significantly worse than expected. Clearly, the results are not exclusive of other potential
explanations. For one, this relationship might not imply causality because early adopters
might have adopted the stacked varieties before accumulating any experience. Second, if
there are variables correlated with early adoption, they might also shape farmer’s use of
stacked varieties. The econometric results in the next section exploit the panel data to
account for the time the stacked variety was adopted and to isolate the impact of previous
experience with single trait seeds.

Table 1
First year of Adoption and Type of Adoption in 2006 (Planned)

First year of adoption| % of farms that use % of farms that use % of farms that do not use
stacked varieties in 2006|single trait varieties in 2006 GM seeds in 2006

2000-01 53.4 40.4 6.2
2002-03 41.0 47.4 11.6
2004-05 29.6 50.0 20.3
2006 27.1 72.9 0.0
Total 41.4 48.2 10.4

Table 2 below shows the variables used in the semi-parametric estimation of equation (33)
and the sample size of 4,157 observations. A farmer has adopted a stacked variety at 18%

of the individual-year combinations in the data. On average across the dataset, 26% of
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the farmers adopted a GM variety in 2000 while 40% of the farmers adopted GM for the
first time in 2006 or never adopted.

Semi-Parametric Estimation Results

Using the data summarized in table 2 we estimate the probability of adopting a stacked
variety as expressed in equation (33). Since we do not impose any functional form for the
impact of experience, it is possible to compare this impact for different groups.® In order
to assess how this impact changes with time we have estimated equation (33) for the
whole sample as well as for a sub-sample that includes observations for the later period
only. To assess how the impact of experience changes with human capital, we have
estimated equation (33) for two sub-samples: the first one contains farmers with no

college education, while the second one contains farmers with college education™.

% If, instead, we had assumed, for example, a linear relationship, a low coefficient on
experience might have meant that farmers learn fast and later experience does not matter
but it could have also meant that experience does not matter at any point. This vagueness
would make it hard to compare the impact of experience for different groups. Allowing
the data to determine the shape of the relationships under analysis implies a more precise
comparison between groups than if we had tried to model non-linearities in a parametric
way such as with the use of quadratic terms.

19 \When assessing how the impact changes with time we have not divided the sample in
the early and late period because the range of the variable experience is too short in the
early period.
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Table 2

Descriptive Statistics

Variable Mean Std. Dev.
Yit
Adopted more than one trait (Yes=1, No=0) 0.18 0.38
&
Number of years since 1st year of adoption 1.22 181
Chronological year is 2002 (Yes=1, No=0) 0.17 0.38
L Chronological year is 2003 (Yes=1, No=0) 0.17 0.38
Chronological year is 2004 (Yes=1, No=0) 0.17 0.38
Chronological year is 2005 (Yes=1, No=0) 0.16 0.37
Chronological year is 2006 (Yes=1, No=0) 0.16 0.36
Adopted a GM crop for 1st time in 2000 (Yes=1, No=0) 0.26 0.44
Adopted a GM crop for 1st time in 2001 (Yes=1, No=0) 0.04 0.19
Sij Adopted a GM crop for 1st time in 2002 (Yes=1, No=0) 0.07 0.25
Adopted a GM crop for 1st time in 2003 (Yes=1, No=0) 0.08 0.27
Adopted a GM crop for 1st time in 2004 (Yes=1, No=0) 0.06 0.24
Adopted a GM crop for 1st time in 2005 (Yes=1, No=0) 0.09 0.28
Adopted a GM crop for 1st time in 2006 (Yes=1, No=0) or 040  0.49
never adopted
Number of observations 4157

Figure 1 shows the non-parametric component of the regression f(aj;), estimated

according to equation (33), for the whole sample (2000-2006 period) as well as for the

2004-2006 period. The bands indicate the 90% confidence intervals around the predicted

value lines™. The whole period regression includes as intercept the dummy for the year

1 As is common in the non-parametric literature, we chose to show the significance
intervals at a 90% confidence level because the flexibility that characterizes non-

parametric regressions comes at the cost of estimators with higher variances.
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2002, and the “later period” regression includes as intercept the dummy for the year 2005.
The detailed results of both estimations are in Appendix 3.

Figure 1 shows that, for the whole sample as well as for the later period, the
likelihood of adopting more than one trait increases with experience. Experience is
statistically significant for the whole period, since in this estimation there are some values
of experience for which the confidence intervals do not intersect. These results are
consistent with a positive impact of experience in reducing uncertainty and with
Proposition 3 if a technology is ascendant or with the conditions stated in Proposition 4.
On the other hand, the estimation for the later period presents a flatter slope and there are
no values of experience for which the confidence intervals do not intersect, implying that
experience is not a statistically significant predictor for the later period.

Table 3 shows the change in the likelihood of adopting more than one trait as
experience increases by one year, for the whole sample as well as for the 2004-2006
period. For the whole sample, the impact of experience is lower at the outset, begins to
increase at 2 years of experience and slows down at 5 years of experience. The impact of
one additional year of experience on the likelihood of adoption ranges between 1.09% and
3.4%. This magnitude can be considered economically significant given that the
likelihood of adopting more than one trait for the individual-year combinations in the data
is 18%, as shown in Table 2. As expected from Figure 1, Table 3 shows that the impact of
experience is lower for the later period. Since the confidence interval of this difference lies
in the positive range when the number of years of experience is equal to zero, three, four
and five, we can assert that the difference in impacts between periods is statistically

significant at the 95% level.
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The flatter slope for own experience as well as the higher intercept in the later
period likely reflect the higher degree of common knowledge about the technology, an
issue we return to below. This first set of results supports the proposition that own
experience shapes sequential adoption but diminishes in importance as own experience

becomes less valuable as a way of acquiring information on the benefits of the technology.

Figure 1
Likelihood of adopting more than one GM trait for the whole sample
and for the 2004-06 period.
90%confidence intervals
70
60 -
50 -
40 -
30 -
20 ~
10
0 1 2 3 4 5 6
Number of years since 1st year of adoption
\ —=— Whole Sample —— Later Period \
Table 3

Change in the likelihood of adopting more than one trait as experience
increases by one year. Whole Sample (2000-2006) vs Later Period (2004-

2006)
Experience *  Whole sample  Later Period Difference 95 % Confidence Interval

A B A-B of the Difference**

0 1.09 0.75 0.34 0.02 0.63

1 1.80 1.32 0.48 -0.07 0.99

2 2.71 1.88 0.82 -0.03 1.55

3 3.37 1.97 1.40 0.40 2.18

4 3.27 1.55 1.73 0.78 2.46

5 2.53 1.06 1.47 0.64 2.09
Total 14.77 8.54 6.24 2.29 9.55

* Years since the first year of adoption
**Estimated using bootstrap
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Next in Figure 2, we consider the non-parametric component of the estimation for
two sub-samples: one that contains farms whose operator has no college education and the
other farms whose operator has a college degree or a higher educational level. In this
figure, both functions include as intercept the dummy for the year 2002. For the sake of
visual clarity, the confidence intervals are not included in this figure, but are available in
Appendix 3. For both sub-samples, the 90% confidence interval that corresponds to six
years of experience does not intersect with the confidence interval that corresponds to zero
years of experience, implying that experience is statistically significant for both the
college-educated and non college-educated farmers at the 90% level of confidence.

Table 4 shows the change in the likelihood of adopting more than one trait as
experience increases by one year. The results show that the impact of experience for
college-educated farmers is higher than the impact for non college educated farmers at low
levels of experience and lower at higher levels of experience. The difference between the
impact of experience for these two sub-samples is negative and statistically different than
zero when farmers have zero experience while being positive and statistically different
from zero for farmers with four and five years of experience. Overall these results
indicate that college- educated farmers tend to learn faster from own experience than less

educated farmers.
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Figure 2

Likelihood of adopting more than one GM trait for the non

college and for the college educated farmers.
90% confidence intervals
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Table 4

Change in the likelihood of adopting more than one trait as experience increases by one year. Non
College Educated vs College Educated Farmers.

Experience * Non College Educated College Educated  Difference 95 % Confidence Interval

A B A-B of the Difference**

0 0.70 1.46 -0.76 -1.20 -0.32

1 1.24 2.14 -0.90 -1.55 -0.18

2 2.16 2.74 -0.58 -1.66 0.59

3 3.31 2.80 0.51 -1.01 2.13

4 4.06 2.20 1.86 -0.04 3.66

5 3.89 1.38 2.51 0.35 4.09
Total 15.35 12.71 2.65 -3.88 9.58

* Years since the first year of adoption
**Estimated using bootstrap

In Figure 3, we use the time variables to investigate how aggregate levels of
information affect the probabilities of individuals adopting the technology. It depicts the
coefficients associated with the year dummies of the semi-parametric regression for the

whole sample, i.e., ¢, in specification (33). The coefficients on the year dummies have
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increased through time, with the diffusion of the technology, implying increases in the
base levels of stacked variety adoption one would predict from a typical S-curve adoption
pattern. Comparing the coefficient values in Figure 3 to Figure 1 provides insight into the
impact of direct experience with a technology (Figure 1) with indirect experience (Figure
3). The results from Figure 1, of a positive impact of experience for the whole sample
provide evidence of a sequential pattern adoption. However, the results shown in Figure 3
of a higher likelihood to adopt as time evolves, combined with the results on Table 3,
which show that the impact of experience is lower for the later period, supports the notion
that as time evolves and the uncertainty with a new technology dissipates, farms are more
likely to jJump directly to the use of stacked varieties and own experience loses some of its

explanatory power.

Figure 3

Likelihood of adopting more than one GM trait as a

function of the chronological year.
90% confidence interval

30.0
25.0
20.0
15.0
10.0 -

5.0
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In sum, the results from the semi-parametric estimation of the adoption of stacked
crop varieties shows a sequential adoption process in which the initial experience with a
single trait variety reduces the uncertainty and increases the probability of adopting a
stacked variety. The estimates also show that farmers with high levels of education tend
to learn faster from own experience and require fewer years of experience in order to
adopt a stacked variety. In addition, the estimates show that with time, as the general
level of knowledge in society about stacked varieties increases, this knowledge reduces
uncertainty with the technology. Accordingly, over time the benefits of own experience

and incentives for sequential adoption decline.

Conclusions

GM corn seed companies have innovated continuously with the introduction of new traits
and, more recently, with the creation of stacked varieties, which combine more than one
trait. In spite of its potential importance, no previous studies had examined the
determinants of adoption of stacked varieties, particularly the learning dynamics and
potential for sequential adoption in which farmers moved from use of GM varieties with a
single trait to adoption of varieties with stacked traits. Our article fills this gap in the
literature.

The Bayesian modeling framework is to our knowledge the first that models a
sequential adoption process for a packaged good with correlated component technologies.
It demonstrates the conditions under which experience with a single component of a
package technology such as traits in corn seeds plays a role in reducing uncertainty

regarding the profitability of the packaged (stacked) technology. As a consequence of this
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learning process, farmers’ uncertainty associated with adopting a stacked variety will be
lower conditional on having previously adopted one of the traits included in the seed.

The empirical results indicate that early adopters of GM will be more likely to
adopt stacked varieties and benefit from the higher yields they offer. The empirical
evidence presented above shows that the likelihood of adopting a stacked variety increases
with experience, measured as the number of years that have passed since the first year of
adoption of a GM technology. The results also show that the impact of experience
decreases with time as the technology diffuses, and that farmers are more likely to jump
directly to the use of stacked varieties in the later years. They also show that more
educated farmers tend to learn faster from own experience.

The sequencing of adoption of a package technology has important implications
for both the introduction of new technologies to the market and the industrial organization
of the market for new technologies. In terms of the introduction of new technologies,
these results suggest strong incentives for technology sellers or promoters to help early
adoption of component parts of a stacked technology as a strategy for eventual adoption of
the package technology. In contrast, efforts to push adoption of stacked technologies that
ignore the uncertainty that drives sequential adoption processes may run into difficulty.
The sequential nature of adoption may drive differential pricing strategies among
technology sellers and this could have profound implications for competition and the
ability of small producers to compete. These industrial organization questions are left for

future research.

31



References

Alexander, C., J. Fernandez Cornejo and R. Goodhue. 2001. “Determinants of GMO Use:
A Survey of lowa Maize-Soybean Farmers’ Acreage Allocation.” In: V.
Santinello, R.E. Evenson, and D. Zilberman eds. Market Development for
Genetically Modified Foods, Cabi Publishing.

Alexander, C and T . Van Mellor. 2005. “Determinants of Corn Rootworm Resistant
Corn Adoption in Indiana”. Agbioforum 8: 197-204.

Alexander, C. 2006. “Farmer Decisions to Adopt Genetically Modified Crops.” CAB
Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural
Resources 1: 1-9.

Anderson, J. 1977. Agricultural Decision Analysis, lowa City: lowa University Press.

Barham, B., J. Foltz, D. Jackson Smith and S. Moon. 2004. “The Dynamics of
Agricultural Biotechnology Adoption: Lessons from rbst use in Wisconsin, 1994-
2000.” American Journal of Agricultural Economics, 86: 61-72.

Barham, B., M.R. Carter, and W. Sigelko. 1995. “Agro-Export Production and Peasant
Land Access: Examining the Dynamics between Adoption and Accumulation.”
Journal of Development Economics 46:85-107.

Below, F.E., M. Uribelarrea, M. Ruffo, S.P. Moose and A.W. Becker. 2007. “Triple-
stacks, Genetics and Biotechnology in Improving Nitrogen Use of Corn.” Proc.
North Central Extension-Industry Soil Fertility Conference, 23:5-13.

Blundell, R. and A. Duncan. 1998. “Kernel Regression in Empirical Microeconomics.”
The Journal of Human Resources, 33: 62-87.

Byerlee, D. and E. Hesse de Polanco. 1986. “Farmers' Stepwise Adoption of
Technological Packages: Evidence from the Mexican Altiplano.” American
Journal of Agricultural Economics, 68: 519-527.

Carletto, C., A. De Janvry, and E. Sadoulet. 1999. “Sustainability in the Diffusion of
Innovations: Smallholder Nontraditional Agro-Exports in Guatemala.” Economic
Development and Cultural Change, 47: 345-370.

Chen, L. and Buttel, F.H. 2000. “Dynamics of GMO Adoption among Wisconsin
Farmers”. PATS Staff Paper Series. Paper # 4.

Conley, T.G. and C.R. Udry. 2004. “Learning About a New Technology: Pineapple in
Ghana.” Economic Growth Center, Yale University. Working Paper # 817.

32



Dong, D. and A. Saha. 1998. “He Came He Saw and He Waited: an Empirical Analysis of
Inertia in Technology Adoption.” Applied Economics 30: 893-90.

Feder, G., R. Just, and D. Zilberman. 1985. “Adoption of Agricultural Innovations in
Developing Countries: A Survey.” Economic Development and Cultural Change
33 :255-298.

Feder, G. and R. Slade. 1984. “The Acquisition of Information and the Adoption of
Technology.” American Journal of Agricultural Economics, 66: 312-320.

Feder, G. and G. OMara. 1981. “Farm Size and the Diffusion of Green Revolution
Technology.” Economic Development and Cultural Change, 30: 59-76.

Fernandez Cornejo, J., A. Corrine and R. Goodhue. 2002. “Dynamic Diffusion with
Disadoption: The Case of Crop Biotechnology in the USA.” Agricultural and
Resource Economics Review, 31: 112-126.

Fernandez Cornejo, J., S. Daberkow and W. McBride. 2001. “Decomposing the Size
Effect on the Adoption of Innovations: Agrobiotechnology and Precision
Agriculture.” Agbioforum, 4: 124-136.

Foltz, J.D. and H. H. Chang. 2002. “The Adoption and Profitability of rBST on
Connecticut Dairy Farms.” American Journal of Agricultural Economics, 84
1021-1032.

Foster, A. and M. Rosenzweig. 1995. “Learning by Doing and Learning From Others:
Human Capital and Technical Change in Agriculture.” Journal of Political
Economy, 103:1176-1209.

Griliches, Z. 1957. "Hybrid Corn: An Exploration in the Economics of Technological
Change." Econometrica 25:501-22.

Hategekimana, B and M. Trant. 2002. “Adoption and Diffusion of New Technology in
Agriculture: Genetically Modified Corn and Soybeans.” Canadian Journal of
Agricultural Economics, 50: 357-371.

Heckman, J.J. 1981. “The Incidental Parameters Problem and the Problem of Initial
Conditions in Estimating a Discrete Time-Discrete Data Stochastic Process.” In:
C.F. Manski and D. McFadden eds. 1981. Structural Analysis of Discrete Data
with Econometric Applications, Cambridge, MA: MIT Press.

Horowitz , J and E. Lichtenberg. 1993. “Insurance, Moral Hazard, and Chemical Use in
Agriculture.” American Journal of Agricultural Economics, 75: 926-935.

33



Hubbell, B.J. M.C. Marraand G.A. Carlson. 2000. “Estimating the Demand for a New

Technology: Bt Cotton and Insecticide Policies.” American Journal of Agricultural

Economics, 82:118-32.

Huffman, W. 1974. “Decision Making: the Role of Education.” American Journal of
Agricultural Economics, 56: 85-97.

Kahnna, M. 2001. “ Sequential Adoption of Site-Specific Technologies and its
Implications for Nitrogen Productivity: A Double Selectivity Model.” American
Journal of Agricultural Economics, 83: 35-51.

Leathers, H and M. Smale. 1991. “A Bayesian Approach to Explaining Sequential
Adoption of Components of a Technological Package.” American Journal of
Agricultural Economics, 73: 734-742.

Lindner, R. 1980 “Farm Size and the Time Lag to Adoption of a Scale Neutral
Innovation.” Adelaide: University of Adelaide.

Lindner, R., A. J. Fischer and P. Pardey. 1979. “The Time to Adoption.” Economic
Letters 2: 187-90.

Lindner, R., Pardey, P. and F. Jarrett. 1982. “Distance to Information Source and the
Time Lag to Early Adoption of Trace Element Fertilizer.” Australian Journal of
Agricultural Economics, 26: 100-113.

Magnac, T. 2000. “Subsidized Training and Youth Employment: Distinguishing
Unobserved Heterogeneity from State Dependence in Labour Market Histories.”
The Economic Journal, 110: 805-837.

Meyer, J., 1987. “Two-Moment Decision Models and Expected Utility Maximization.”
The American Economic Review, 77: 421-430.

Mitchell, P., T.M. Hurley and M.E. Rice. “How Bt Corn Affects the Distribution of
Harvested Yield.”

Mundlak, Y. 1978. “On the Pooling of Time Series and Cross Section Data.”
Econometrica 46: 69-85.

Rogers, E. 1986. Diffusion of Innovation, New York: The Free Press.

Stock, J. 1989. “Nonparametric Policy Analysis.” Journal of the American Statistical
Association, 84: 62-87.

Stoneman, P. 1981. “Intra-Firm Diffusion, Bayesian Learning and Profitability” The
Economic Journal, 91: 375-388.

34



Tsur,Y., S. M. Sternberg and E. Hochman. 1990. “Dynamic Modeling of Innovation
Process Adoption with Risk Aversion and Learning.” Oxford Economic Papers,
42:336-355.

Useche, P., B. Barham, and J. Foltz. 2009. “Integrating Technology Traits and Producer

Heterogeneity. A Mixed Multinomial Model of GM Adoption.” American Journal
of Agricultural Economics, 91: 444-461.

35



Appendix 1: Derivation of equations (11) and (12)

As expressed in equation (10) in the text, the posterior distribution can be derived from:
p'(1t,) = [ P° (1t | 14) *P* (14)d (1) = 9(65.V;) (1)

which means that the posterior distribution of ., is based on the prior conditional
distribution of x, given g, as well as the posterior distribution of z, . We define the

mean of p°(u, |) as 65, and the variance as V,),. By the characteristics of a bivariate
normal, and taking (5) and (6) into account, we have that:

O =0, + (ﬂl =) (27)

1
CO 2 ,
V20/1 :Vzo _(Vl—zo) (3 )
1

Using the law of iterated expectations on (2°) and taking (7) into account, we have that:

0= 08+ (g~ ) (@)
V]

1

which is equation (11) in the text. Using the law of iterated expectations, we can express
the variance of the posterior of 1, as:

= E(Vz(;l) +\;{1 (03/1) 5’)

where the first term is equal to the expected value of V,}, over the posterior distribution of

4, , and the second term is the variance of &}, over the posterior distribution of z, . This
implies that:

012 0
Vzl — V20 _ (Clzo) + ( C12 j Vl (6 1)
Vl Vl

where the first term is equal to V,}, in (3’) and the second term is the variance of 8, .
Equation (6°) is equation (12) in the text.

1.2 Derivation of equation (13)
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The covariance between z4 and g, satisfies the usual formula:
Ci, = E'(tu,) - 6,0, (7)
Using the law of iterated expectations, we have that:
E' (1) = [ 1465, 9 (1)d (11) (8)
Replacing (2’) in (8’), we have:
0

X ) = 0200+ 2 B 14)~ 2 006! @)

Vl Vl

Since E*(, 14, ) =V, + 6.6, and taking (7”) aswell as (97) into account, C;, can be
expressed as:

0
CL =00+ 312 V! + 60" —V—eoel 66! (10%)

1 1
Using (4°) to replace &, in (10’), we have that:

COvl ,
Vol (11°)

1 —_—
ClZ

Equation (11’) is equation (13) in the text.
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Appendix 2: Semi-parametric Estimation Method
This appendix describes the method used in the estimation of the semi-parametric
regressions. As specified in (33) we run the following regression:

6
Yie = f(ait)+ZaTCtT +Zj:0ﬁjsij +Z + &
T

Setting
d,=[c, 5], A=[ap]l and 1, =17 +¢,

Where €, =[Cpop Coopat-+Canoet ]+ Si =[SioSiv+Sig]s & = [Aoppy Xgoze+ 6] @N

R VYR

We have
Yie = f (ait)+ Aldit + 1

Taking expected values with respect to e and creating a new index j, which goes from 1
(when i=1 and t=1) to nt, we have that:

Yi _E(yjlaj) = Al(dj _E(dj|aj))+rit _E(ritlaj)

From this expression it is easy to see that A can be estimated as (Stock(1989)):

A= (X0, - Ela)@, ~E@13)) (X @, - E@ )y, -ECyla))

Where
a —a.
R DK Y
_ k
Eyla)="——
D k( . )
k
a
R Yk,
E(d |aj)= k

Consequently, the non parametric part can be estimated as:

f(a;)=E(yla,)-AE(da,)
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Appendix 3 Semi-parametric Estimation Results

Table Al shows the results of the estimation of equation (33), for the whole sample and
for the later period. The expected value of the non parametric part and the coefficients of
the linear part of the regression have been multiplied by 100.

Table Al

Semiparametric Regression Estimates for the Whole Sample and for the Later

Period
Dependent Variable: 1 if the farmer uses more than one GM trait

Whole Sample Later Period: 2004-2006
Years since the first Expected 90% Confidence Interval Expected 90% Confidence Interval
4 value value
year of adoption
0 23.0 18.8 27.5 38.99 32.94 44.90
1 24.1 19.8 28.6 39.75 33.82 45.59
2 25.9 21.5 30.4 41.07 35.43 46.63
3 28.6 24.4 33.0 42.95 37.55 48.51
4 32.0 27.6 36.4 44.92 39.63 50.27
5 35.2 30.7 39.7 46.47 41.30 51.79
6 37.8 33.0 42.4 47.53 42.36 52.71

Control Variables

First year of adoption *
2001
2002
2003
2004
2005
2006

Chronological year **
2002
2003
2004
2005
2006

Coefficient 90% Confidence Interval

-8.4
-10.4
-90.8
-18.0
-21.6
-31.0

1.8

6.8

9.0
16.2
22.1

-18.6
-18.6
-17.4
-23.8
-26.6
-35.5

0.6

5.0

7.0
14.0
19.3

3.3

-2.6

-2.9
-12.2
-16.8
-26.5

3.0
8.6
11.0
18.6
24.8

Coefficient 90% Confidence Interval

-7.48 -21.64 7.40
-8.39 -18.59 2.35
-7.61 -19.23 3.68
-14.91 -24.77 -5.29
-24.93 -32.96 -17.21
-44.30 -50.00 -38.48
8.04 5.26 10.83
14.76 11.67 17.49

* The dummy that equals one if the first year of adoption was on 2000, or before 2000, is not inculded in the estimation.
Thus, the coefficients represent the impact relative to those who adopted for the first time in 2000 or before
** The dummy that equals one if the chronological year is 2001 is not included in the estimation

39



Table A2 shows the results of the estimation of equation (33), for two subsamples: farmers
with a college degree or a higher educational level and farmers with no college degree.
The expected value of the non parametric part and the coefficients of the linear part of the
regression have been multiplied by 100.

Table A2

Semiparametric Regression Estimates for the College Educated and for
the Non College Educated
Dependent Variable: 1 if the farmer uses more than one GM trait

College Educated

Non College Educated

Years since the first year
of adoption
0

U, WN -

Control Variables

First year of adoption *
2001
2002
2003
2004
2005
2006

Chronological year **
2002
2003
2004
2005
2006

Expected
value

25.9
27.3
29.5
32.2
35.0
37.2
38.6

Confidence Interval

19.6
21.2
23.4
26.2
29.0
31.1
32.4

32.0
33.5
35.5
38.3
40.9
43.5
44.8

Expected
value

16.892
17.589
18.832
20.990
24.301
28.361
32.247

Confidence Interval

10.583
11.307
12.564
14.996
18.193
21.798
25.166

23.076
23.723
25.115
26.758
30.304
34.572
39.056

Coefficient Confidence Interval Coefficient Confidence Interval

-14.1
-10.3
-10.7
-24.2
-24.8
-36.1

2.7
9.2
12.3
20.6
25.3

-29.1
-20.9
-21.7
-32.5
-31.7
-42.2

0.9

6.4

8.9
16.2
21.1

0.3

0.1

-0.3
-16.4
-18.0
-30.1

4.4
12.0
15.7
25.1
29.4

2.5
-12.6
-5.8
-8.4
-15.5
-23.4

13
4.9
7.0
131
19.8

-16.8
-24.7
-15.7
-16.0
-21.9
-29.3

0.0
2.4
4.5
9.8
16.0

19.5
1.1
4.7
-0.6
-8.2

-17.5

2.5

7.2

9.5
16.2
23.4

* The dummy that equals one if the first year of adoption was on 2000, or before 2000, is not included in the estimation.
Thus, the coefficients represent the impact relative to those who adopted for the first time in 2000 or before
** The dummy that equals one if the chronological year is 2001 is not included in the estimation

40



