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1. Introduction 

This paper examines the role of public agricultural research and development (R&D) in 

the process of knowledge production and productivity growth in U.S. agriculture from a new 

perspective.  Specifically, we estimate knowledge production functions using a dual measure of 

productivity.  The authors have not seen a dual measure of productivity applied in this context, 

and the results provide some valuable insights into the process of knowledge production and 

productivity growth in U.S. agriculture.  The primary objective is to identify a preferred research 

lag specification for estimating knowledge production functions from a dual approach, and 

compare the results with some recent literature examining research lag specifications for U.S. 

agriculture.   

The paper begins with a discussion of some relevant literature describing the theoretical 

relationship between primal and dual measures of productivity growth and the conditions under 

which these measures are equivalent.  We examine measures of productivity growth for U.S. 

agriculture for the nation and the 48 contiguous states that were obtained from a primal and dual 

approach, and some important differences in the measures are presented and discussed.  Next, we 

expand on recently published research by Alston, Andersen, James, and Pardey (2010), in which 

the authors conduct a grid search of different research lag distributions for the purpose of 

estimating knowledge production functions.
1
  We replicate some of their analysis using a dual 

approach, and our results support a main finding of their research.  Namely, research lags are 

substantially longer than previously considered by other studies on this topic.  Furthermore, the 

dual approach in this paper indicates a very similar research lag distribution as a primal approach 

                                                 
1
 For the remainder of this paper the Alston, Andersen, James, and Pardey (2010) study will be referred to as the 

AAJP study. 
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providing additional important evidence about how R&D expenditures translate into productivity 

improvements over time. 

   

2. Dual Measures of Productivity 

In this section we formalize the relationship between primal and dual measures of 

productivity and provide a brief review of some important literature on this topic.  A measure of 

productivity can be calculated as a residual from a production function or alternatively as a 

residual from a dual cost function.  Similarly, an index of productivity can be calculated as the 

ratio of an index of the quantity of aggregate output to an index of the quantity of aggregate input, 

or alternatively as the ratio of an index of the price of aggregate input to an index of the price of 

aggregate output.  The primal and dual indexes are equal under very restrictive economic 

conditions.  Additionally, many of the factors that affect measures of productivity, such as 

macroeconomic influences related to the business cycle, or technology shocks, may affect the 

primal and dual measures of productivity differentially. 

  Increases in productivity have the effect of shifting the supply function for outputs.  The 

outward shift may be parallel or pivotal, and the magnitude of the resulting output price effect 

depends on the elasticity of demand.  The more inelastic the demand, the greater the resulting 

price decrease from an outward shift in the supply function.  Changes in technology also affect 

prices in factor markets, and the aggregate effect depends on such things as the elasticity of 

demand for inputs and the substitutability among inputs.  In the case of U.S. agriculture, price 

distortions from subsidies and other government programs may dampen or amplify the price 

effects of productivity changes in output and input markets.  The United States is also a major 
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exporter and importer of agricultural products so international markets also affect the domestic 

prices of agricultural products and the quantities produced.  These factors should be kept in mind 

when interpreting dual measures of productivity, which are perhaps even more sensitive to 

market distortions than primal measures.      

The basic duality relationship for multi-factor productivity indexes was outlined by 

Siegel (1961).  Jorgenson and Griliches (1967) formalized the relationship between the primal 

and dual measures of MFP.  Hulten (1986) showed that under perfect competition the change in 

MFP can be calculated using data on input and output prices.  Antle-Capalbo (1988) showed that 

the primal and dual rates of technological change are the same if and only if there are constant 

returns to scale in production.  Roeger (1995) examined differences in primal and dual measures 

of productivity for the U.S. manufacturing sector and concluded that these measures are similar 

once imperfect competition was incorporated in the analysis.  In what follows we use a similar 

framework to one established by Jorgenson and Griliches (1967).  Assuming perfect competition, 

exogenous prices, and constant returns to scale in production, a fundamental identity for each 

period is that the value of output is equal to the value of input:  

1 1 2 2 1 1 2 2... ...m m n np q p q p q w x w x w x              (1) 

where there are m outputs and n inputs, qi is the quantity of the i
th

 output; xj is the quantity of the 

j
th

 input; pi is the price of the i
th

 output; and wj is the price of the j
th

 input, respectively. 

A measure of multi-factor productivity growth is obtained by differentiating equation (1) 

with respect to time and dividing both sides by the corresponding total value. The result is an 

identity equation (2) between a weighted average of the sum of the rates of growth of output 
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prices and quantities and a weighted average of the sum of rates of growth of input prices and 

quantities: 

1 1

m n
j ji i

i j

i ji i j j

w xp q
u v

p q w x
                 (2) 

The weights ui and vj are given by the relative shares of the value of the i
th

 output in the 

value of total output, and the value of the j
th

 input in the value of total input: 

1 1

;
j ji i

i jm n

i i j j

i j

w xp q
u v

p q w x

                                               (3) 

1 1

0, 1... ; 0, 1... ; 1.
m n

i j i j

i j

u i m v j n u v  

The growth in a Divisia index of the quantity of total output may be defined in terms of 

the weighted average of the rates of growth of the individual outputs from (2); denoting the index 

of the quantity of output by Q, the rate of change of this index is, 

1

m
i

i

i i

Q q
u

Q q
.                  (4) 

A Divisia index of the quantity of total input, X, has a rate of change equal to, 

1

n
j

j

j j

xX
v

X x
 .                            (5)  

The corresponding Divisia price indexes for total output, P, and total input, W, have respective 

rates of growth: 
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1
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i i
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u

P p
                                                                                                                      (6)  

1

n
j

j

j j

wW
v

W w
 .                                       (7) 

 The rate of change of the primal measure of multi-factor productivity (MFPp) may be expressed 

as: 

p

p

MFP Q X

MFP Q X
.                                                            (8) 

 And the rate of change of the dual measure of productivity (MFPd) may be expressed as: 

d

d

MFP W P

MFP W P
                  (9) 

Equations (8) and (9) are two definitions of multi-factor productivity growth which are 

dual to each other and equivalent by equation (2). In general, any index of multi-factor 

productivity can be computed either from indexes of the quantity of total output and total input 

or from the corresponding price indexes.  Assuming perfectly competitive input and output 

markets, exogenous prices, a lack of any price distortions, no factor hoarding, constant return to 

scale in production, and long run equilibrium, these measures are theoretically equivalent.  

p d

Q W
MFP MFP

X P
.              (10) 
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3. Data Analysis 

 The data used in this paper are from the International Science and Technology Practice 

and Policy (InSTePP) Center at the University of Minnesota, the same as those used in the AAJP 

study.  The productivity data include Fisher Ideal Indexes of the prices and quantities of 

agricultural outputs and inputs in U.S. agriculture for the nation and the 48 contiguous states for 

the years 1949-2002.  The price and quantity indexes were used to form the primal and dual 

indexes of MFP for comparison in this paper.  Additional details about these data can be found in 

Pardey et al (2009).  Data on public investments in agricultural R&D are also from InSTePP, and 

include a long time series of State and Federal investments on research and extension at State 

Agricultural Experiment Stations (SAES), as well as federal intramural research.  Specific details 

about the data, including data sources and construction methods are available in AAJP. 

In Figure 1 Graph (a) we show the indexes of the price of aggregate input and output in 

U.S. agriculture, 1949-2002.  The price of inputs increased dramatically in this period, with the 

price of aggregate input almost 8 times higher in 2002 than 1949.  The increase in the price of 

aggregate output was less dramatic in the same period, with the 2002 level approximately 2.5 

times higher than the 1949 level.  Figure 1 Graph (b) shows the indexes of the quantity of 

aggregate output and input, showing that aggregate output was approximately 2.5 times higher in 

2002 than 1949, and aggregate inputs were slightly lower in 2002 as compared to 1949.  The 

ratio of the series in Graph (a) and Graph (b) are the dual and primal indexes of MFP 

respectively, and both series are shown in Figure 1 Graph (c).   

[Figure 1: Production and Productivity Trends in U.S. Agriculture, 1949-2002] 
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The simple correlation between the primal and dual MFP indexes is equal to 0.977, 

which is remarkable given the many factors that are affecting each series.  The dual MFP index 

is generally higher than the primal except for a few years where there were major downward 

fluctuations in the dual index.  This is true during the turbulent economic period of the 1970s, 

where there was large downward shock in dual MFP from 1971-1973.  Also note the divergence 

between the series that started in the mid-1990s and continues thru 2002.  The dual MFP index 

increases rapidly in this period while the increase in the primal MFP index is less rapid, and 

possibly less than increases experienced in previous periods indicating a possible productivity 

slowdown.  

Table 1 shows the annual average growth rates 1949-2002 of the indexes of input and 

output prices and quantities, as well as the primal and dual indexes of MFP for 48 states, 7 

regions, and the nation as a whole. 

[Table 1: Average Growth Rates of Input and Output Prices and Quantities and Primal 

and Dual MFP, 1949-2002] 

Nationally, the price of aggregate inputs increased at an annual rate of 3.85 percent per 

year and the price of aggregate output grew at a rate of 1.63 percent per year, resulting in a 

national estimate of dual MFP growth of 2.21 percent per year from 1949 to 2002.  Over the 

same period the aggregate quantity of output increased by 1.68 percent per year, while the 

aggregate quantity of input decreased slightly by 0.11 percent per year, and the primal MFP 

index grew by 1.78 percent per year.  The difference between a 2.21 percent annual percentage 

growth rate and a 1.78 percent rate is substantial over a 54 year time span, so the primal and dual 

measures of MFP are quite different when considering annual averages.   
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In terms of the primal measures of productivity growth the Southeast (2.09% per year), 

Northern Plains (1.89% per year), and Southern Plains (1.88% per year) regions recorded the 

highest rates; the Northeast (1.64% per year), Central (1.61% per year), and Mountain (1.59% 

per year) regions the lowest.  In terms of the dual measures, the Southern Plains (2.65% per year) 

recorded the highest productivity growth followed by the Northern Plains (2.47% per year) and 

Central Regions (2.31% per year); the Northeast (1.95% per year) and Pacific (1.56% per year) 

regions recorded the lowest.  

Although the long-run trend shows that agricultural productivity growth has been 

sustained over the past several decades, there is significant year-to-year fluctuation in 

productivity due to weather, policy interventions, general economic conditions, and other factors. 

Figure 2 shows the primal and dual measures of productivity growth 1949-2002.   

[Figure 2: Growth Rates of the Primal and Dual Indexes of MFP, 1949-2002] 

Note that beginning in the early 1970s and continuing to the mid-1990s, both measures of 

MFP growth exhibited increased volatility. This can be partly explained by a number of specific 

events, such as the global energy crises of 1973 and 1979, serious droughts in 1983, 1988 and 

1995, and an agricultural policy intervention in 1983 called the Payment-In-Kind, or PIK 

program.  Table 2 shows the annual average growth rates of the primal and dual indexes for 

various sub-periods.  

[Table 2: Annual Average Growth Rates by Period] 

The figures in Table 2 indicate the large differences between the primal and dual indexes 

of MFP in terms of annual averages.  Overall, the dual measures indicate higher levels of 

productivity growth but there are some interesting exceptions.  For example, during the 1970-
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1980 period the primal index of MFP indicated strong productivity growth of 2.51 percent per 

year, but the dual index indicated weak growth of only 1.05 percent per year.  The opposite result 

holds for 1990-2002, where the primal index indicates weak productivity growth of 1.10 percent 

per year, and the dual index indicates strong growth of 2.21 percent per year. 

 

4. Alternative Research Lag Distributions 

The primarily concern of this paper relates to the dynamics linking research investment, 

knowledge stocks, and productivity; however, the relationship between public investments in 

agricultural R&D and the productivity enhancing benefits they produce is complicated.  This is 

because of the large spillovers that public investments in R&D generate across entities and over 

time, and difficulties in properly attributing productivity enhancements to the various sources 

investing in agricultural research, commonly called the attribution problem (Alston 2002).  The 

bottom line is that many different sources of research affect agricultural production, research 

takes a long time to affect production, and then it affects production for a very long time.  

Constructing measures of knowledge stocks requires two primary tasks: deciding on the 

appropriate lag structure for accumulating past investments and deciding how to include the 

effect of spillover research from the outside.  Both the shape as well as the length of the 

distribution is important.  Many different lag structures for estimating knowledge stocks have 

been considered in the literature, including geometric, gamma, and trapezoidal distributions to 

name a few.  In a recent study of U.S. agriculture Huffman and Evenson (2006) used a 

trapezoidal distribution to sum R&D expenditures.  A gamma distribution has been utilized in 

studies by Alston, Craig, and Pardey (1998) and Alston, Pardey, and Carter (1994).  These 
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studies indicate a long lag between research investments and the measurable productivity 

enhancing benefits, so we consider a lag distribution with a maximum length of 50 years.   

The gamma distribution has several favorable characteristics: 1) all lag weights 

determined by the function are non-negative; 2) the shape implied is relatively smooth; 3) the 

gamma distribution is unimodal; 4) the distribution can be skewed to give more weight to more 

recent or more distant lags; and 5) the distribution can be characterized by only two parameters, 

and .  The gamma distribution weights that are used to calculate knowledge stocks are 

defined as in AAJP: 

1

0
1

0

( 1)
; for ; otherwise 0; 1

( 1)

k g L

k k k
L

kk g

k

k g
b L k g b b

k g

.       (11) 

Where L is the lag length, g is the gestation period, and and are the parameters that define 

the shape of the gamma distribution.  

Figure 3 shows an (8 x 8) grid of feasible gamma distributions with different values for 

parameters and  and the gestation lag set to zero.  Each parameter ranges from 0.6 to 0.95 in 

increments of 0.05, resulting in eight different values for each parameter.  The resulting grid of 

64 distributions includes a wide variety of possible shapes as can be seen in Figure 3.  Each 

graph in Figure 3 indicates the peak year of the distribution as well as the number of years it 

takes 50 percent (
50C ) and 75 percent (

75C ) of the impact of spending to accumulate.   The 

location of the peak year shows how many years it takes for a given investment to have the 

largest impact on the current stock of knowledge.  It is important to note that the 64 distributions 

considered in this study (Figure 3) effectively allows the consideration of no gestation or an 
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extremely long gestation, as well as distributions with all the weight given in the first few years 

and essentially none in the later and vice versa.  We want to determine which distribution is best 

at explaining the behavior of the primal and dual measures of MFP.  

[Figure 3: Gamma Distribution Parameters and Shapes Used in Estimation] 

 

5. Econometric Analysis 

 In order to measure the contribution of research and development to economic growth, 

we specify the following general form: 

, , , ,  ( , , )  i t i t i t i tMFP f SK SS Z                        (12) 

We use the panel data on productivity for 48 contiguous states over the period 1949-2002, 

and panel data on U.S. public agricultural research stocks for the same period.  This results in a 

panel data set with N × T = 48 × 54 = 2,592 observations. The model is focused on the 

productivity–enhancing effects of public R&D spending, implicitly setting aside spillover 

influences from private agricultural research, international agricultural R&D, and non-

agricultural R&D.
2
 

The variables in the model include:  

 MFPi,t  is a Fisher ideal index of multi-factor agricultural productivity in state i in 

year t, constructed using the dual price indexes. 

                                                 
2
 Knowledge production functions are inherently susceptible to specification errors because of the attribution 

problems discussed in this paper, the lack of available data, as well as our ability to capture all the sources affecting 

current productivity.  
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 SKi,t  is the own-state stock of knowledge in state i in year t from own-state 

government spending on agricultural research, and extension, in real dollars. 

 SSi,t  is the state-specific spillover stock of knowledge in state i in year t from 

other-state government spending on agricultural research, and extension, and 

federal spillover research, in real dollars. 

 Zi,t represents the effects of weather and other uncontrolled factors.  

In our estimation we also include a variable to proxy the effect of weather on growing 

conditions, denoted Zi,t.  This is the same measure as was utilized in AAJP – a state-specific 

index of range and pasture conditions on September 1 of each year published by the Economics, 

Statistics, and Market Information System.  It is not immediately apparent how the growing 

conditions index will affect the „dual‟ regressions in this paper but it was included to make the 

results directly comparable with the AAJP study.
3
   

The base model in this regression process is a linear model. We also estimate the model 

with all of the variables in natural logs.  Given linear aggregation of the elements of the 

knowledge stocks the linear model can be represented as: 

, , , , ,i t i k i t s i t z i t i tMFP SK SS Z u
  

     (13) 

The final specification has two knowledge stock variables; one is the sum of own-state 

research and extension, and the other the sum of spillovers from research and extension in other 

states, as well as spillovers from federal research.  The regressions also include a state-specific 

weather index, Zi,t , and state-specific intercept terms (a fixed-effects model).   We also assume 

                                                 
3
 We also estimated the preferred specifications with and without the growing conditions index to check if this had a 

significant impact on the other estimated coefficients in the model and there was not a significant impact. 
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that the error terms are i.i.d. random variables – independent and identically distributed across 

states and years.
4
 

The analysis proceeds by first calculating 64 sets of knowledge stocks based on the 64 

gamma distributions in Figure 3 and an assumed lag length of 50 years.  The goal is to examine 

the best lag structure to represent the relationship between R&D expenditures, knowledge 

production, and the resulting productivity enhancing benefits by estimating the knowledge 

production functions under the different lag specifications and choosing the specification that 

produces the smallest Sum-of-Squared Errors (SSE). The resulting distribution is the best among 

all the distributions at explaining the behavior of MFP.   

We focused on four primary models in the analysis, using either the primal or dual index 

of MFP as the independent variable in the regression, and all of the variables specified in either 

levels or natural logs.  We estimated 64 specifications of each of the four models according to 

our grid of lag distributions, choosing the specification with lowest SSE for each model.  All 

parameter estimates are „fixed-effects‟ panel data estimates obtained from STATA.  The general 

results of the regressions were that the knowledge stocks were very significant in most of the 

regressions using a primal measure of MFP in levels and logs, and the same was true for the 

regressions using a dual measure of MFP in logs.  For most of the regressions using the dual 

measure of MFP in levels, the own-state research stock variable was insignificant.  These 

patterns are also represented by the top ranked of the 64 specifications for each of the 4 models 

presented in Table 3, where Panel (a) shows the top ranked model estimates using the primal 

measure of MFP and Panel (b) the dual.   

                                                 
4
 We performed Hausman‟s specification test for random or fixed effects, indicating rejection of the null hypothesis 

that the difference in the random-effects and fixed-effects coefficients is not systematic; therefore the fixed effects 

estimator is the consistent estimator.  Panel data issues such as heteroscedasticity and autocorrelation within the 

states, as well as contemporaneous correlation and heteroscedasticity between states was not modeled in this paper.  
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[Table 3: Estimation Results for Top Ranked Primal and Dual Models] 

In the case of the linear dual model, the highest-ranked model corresponded to λ = 0.95 

and δ = 0.60, implying a peak lag at year 28.  In the case of the logarithmic dual model, the top 

ranked model corresponded to λ = 0.75 and δ = 0.90 and a peak lag at year 30.  The double log 

model is the preferred model among the dual models because the estimated elasticities have the 

correct signs and size and the estimated coefficients are statistically significantly different from 

zero at the 1 percent level of significance.  Furthermore, the model has a high R-square at 0.90 

indicating the model explains 90 percent of the behavior of dual MFP.  The weather index was 

insignificant so the same double log model was re-estimated without the weather index, and the 

coefficient estimates on the knowledge stocks were basically unchanged; therefore, the presence 

of the weather index is not biasing the other estimates. 

Some interesting points can be drawn from a comparison of the primal and dual results.  

First, in terms of the double log specifications, primal model specification 51 minimized the SSE, 

and in the dual model specification 52 minimized SSE.  The shape of the research lag 

distribution is similar in the primal and dual results but the peak lag year is later in the dual 

model (peak year 24 in the primal and 30 in the dual).  This provides more evidence that it takes 

a long time for a given research investment to have a measurable economic benefit, and also 

suggests that the price effects that result from investments in R&D make take even longer to 

materialize than changes in the relationship between the quantities of inputs and outputs that are 

embodied in primal measures of productivity.   

Second, the magnitudes of the elasticities in the dual log model seem reasonable and are 

actually very similar to the elasticity estimates in the linear primal model.  The logarithmic dual 

model indicates a ten percent increase in the own-state knowledge stock results in approximately 
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a 1 percent increase in MFP, and a ten percent increase in the stock of spillover knowledge 

results in an approximately 5 percent increase in MFP.  The primal model in logs indicates a 

different relative contribution of own-state and spillover research.  In this model a ten percent 

increase in own-state research stock results in a 3.22 percent increase in MFP, and a ten percent 

increase in spillover stock results in a 2.35 percent increase in MFP.  By comparison, we can see 

that MFP becomes more sensitive to the spillover investment using the price index approach. 

The results indicated in Table 3 for the preferred specification of the logarithmic dual 

model are also robust to the other top five specifications of this model ranked by the lowest SSE 

as can be seen in Table 4.  The elasticity estimates are very similar for the listed specifications 

and all are statistically significantly different from zero at the 1 percent level of significance.  

The other top ranked specifications of the logarithmic dual model indicate lengthy peak lag 

effects at 34, 37, 44, 24, and 27 years for models 2 - 6 respectively. 

[Table 4: Summary of Results for the 50-Year Lag Dual Model in Logs, Top-Ranked 

Models] 

 

 

6. Conclusion 

 

Some important conclusions that can be drawn from this paper are that public 

investments in agricultural R&D take a long time to affect production but eventually affect 

production for many years.  This study suggests a peak affect 30 years after a given investment.  

The dual index of productivity examined in this paper is highly correlated to the primal index, 

but also differs substantially in terms of annual averages for the entire period under examination 

as well as various sub-periods.  The dual index indicated strong productivity growth 1990-2002 

(2.21 %) where the primal index indicated a productivity slowdown (1.10%) compared to long 
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run levels.  Generally, the dual index of MFP indicates a higher level of productivity growth than 

the primal index.   

The shape of the research lag distribution identified in this paper was similar in the 

primal and dual analysis, with both methods indicating a slow progression of the effect of public 

investments on MFP (both indicating negligible research lag weights for 10 years after a given 

investment).  In the dual model research was still affecting MFP 50 years after a given 

investment.   

Public investments in R&D have substantial and measurable benefits in terms of 

enhancing our ability to produce agricultural goods given scarce resources.   Measuring those 

benefits is typically focused on the technological relationship between quantities of inputs used 

in production and the resulting outputs.  But public investments in R&D also change relative 

prices of inputs and outputs in predictable ways that can also be used to track productivity 

changes and the benefits to R&D.   Ultimately, these investments are critical to insuring strong 

productivity growth in agriculture in the future, but this research suggests that we will have to be 

extremely patient in waiting for the full impact of the rewards.   
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 Figure 1: Production and Productivity Trends in U.S. Agriculture, 1949-2002  

 
Source: InSTePP production accounts. 
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Table 1: Average Growth Rates of Input and Output Prices and Quantities and Primal and Dual 

MFP, 1949-2002 

 

Input 

Price 

Output 

Price 
Dual MFP 

 

Input 

Quantity 

Output 

Quantity 

Primal 

MFP 

 
Average Annual Growth Rate, 1949-2002 

United States 3.85 1.63 2.21 
 

-0.11 1.68 1.78 

Pacific 3.61 2.06 1.56 
 

0.82 2.64 1.82 

California 3.59 2.11 1.48 
 

0.97 2.74 1.77 

Oregon 3.70 1.81 1.90 
 

0.37 2.03 1.65 

Washington 3.66 2.00 1.66 
 

0.62 2.55 1.93 

Mountain 3.84 1.87 1.97 
 

0.45 2.04 1.59 

Arizona 3.92 2.41 1.51 
 

0.94 2.43 1.48 

Colorado 3.58 1.82 1.76 
 

0.54 1.90 1.35 

Idaho 3.99 1.81 2.19 
 

0.68 2.82 2.14 

Montana 3.81 1.85 1.97 
 

0.26 1.31 1.04 

Nevada 5.04 2.17 2.87 
 

0.21 1.09 0.88 

New Mexico 3.81 1.61 2.19 
 

0.59 2.36 1.77 

Utah 3.64 1.70 1.94 
 

-0.08 1.43 1.51 

Wyoming 3.57 2.05 1.52 
 

0.09 0.93 0.84 

N Plains 3.85 1.44 2.41 
 

0.16 2.05 1.89 

Kansas 3.72 1.44 2.28 
 

0.23 1.90 1.67 

Nebraska 3.81 1.41 2.40 
 

0.42 2.35 1.94 

North Dakota 4.09 1.38 2.71 
 

-0.18 1.94 2.12 

South Dakota 3.89 1.65 2.24 
 

-0.07 1.70 1.77 

S Plains 4.05 1.41 2.65 
 

-0.12 1.76 1.88 

Arkansas 3.93 1.13 2.80 
 

-0.02 2.87 2.89 

Louisiana 4.10 1.29 2.81 
 

-0.78 1.26 2.04 

Mississippi 4.05 1.31 2.73 
 

-0.97 1.99 2.95 

Oklahoma 3.95 1.76 2.19 
 

-0.04 1.29 1.33 

Texas 3.72 1.48 2.24 
 

0.20 1.53 1.32 

Central 3.87 1.49 2.37 
 

-0.27 1.34 1.61 

Illinois 3.86 1.38 2.48 
 

-0.27 1.27 1.54 

Indiana 3.76 1.38 2.39 
 

-0.34 1.21 1.56 

Iowa 3.73 1.35 2.38 
 

-0.03 1.65 1.68 

Michigan 4.02 1.70 2.32 
 

-0.59 1.20 1.79 

Minnesota 3.98 1.47 2.51 
 

-0.10 1.89 1.99 

Missouri 3.99 1.43 2.56 
 

-0.23 0.96 1.19 

Ohio 3.87 1.52 2.35 
 

-0.58 0.83 1.40 

Wisconsin 3.81 1.97 1.84 
 

-0.40 1.00 1.40 

Southeast 3.87 1.73 2.14 
 

-0.41 1.68 2.09 

Alabama 3.95 1.63 2.32 
 

-0.59 1.86 2.45 

Florida 4.16 2.00 2.16 
 

1.18 2.90 1.72 

Georgia 3.81 1.20 2.61 
 

-0.09 2.63 2.71 

Kentucky 4.09 2.04 2.05 
 

-0.46 0.41 0.87 

North Carolina 4.05 1.74 2.32 
 

-0.44 2.04 2.48 

South Carolina 4.24 1.66 2.58 
 

-1.38 0.94 2.32 

Tennessee 4.10 1.77 2.33 
 

-0.63 0.65 1.28 

Virginia 3.97 1.76 2.21 
 

-0.58 0.78 1.36 

West Virginia 4.18 1.44 2.74 
 

-1.60 -0.15 1.44 

Northeast 3.66 1.71 1.95 
 

-0.84 0.80 1.64 

Connecticut 3.52 1.75 1.77 
 

-1.39 0.00 1.39 

Delaware 3.28 0.90 2.39 
 

0.45 2.78 2.33 

Maine 3.52 1.27 2.25 
 

-1.37 0.31 1.67 

Maryland 3.65 1.44 2.21 
 

-0.30 1.69 1.99 

Massachusetts 3.72 1.87 1.85 
 

-1.99 -0.62 1.37 

New Hampshire 3.66 1.79 1.88 
 

-1.88 -0.42 1.46 

New Jersey 3.59 2.04 1.55 
 

-1.25 -0.22 1.03 

New York 3.66 1.95 1.72 
 

-0.99 0.31 1.30 

Pennsylvania 3.80 1.63 2.17 
 

-0.53 1.30 1.83 

Rhode Island 3.73 2.04 1.69 
 

-1.84 -0.39 1.45 

Vermont 3.60 2.14 1.46 
 

-0.87 0.57 1.44 
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Figure 2: Growth Rates of the Primal and Dual Indexes of MFP, 1949-2002 

 
Source: Author‟s calculations using data from InSTePP production accounts.  Annual growth 

rates calculated as the first difference of the natural logs the variables. 
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Table 2: Annual Average Growth Rates by Period 

 
Primal Dual 

Sub-periods average annual percentage change 

1949-1960 2.04 2.91 

1960-1970 1.68 2.34 

1970-1980 2.51 1.05 

1980-1990 1.79 2.48 

1990-2002 1.10 2.21 

1949-1990 2.01 2.19 

1949-2002 1.78 2.21 
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Figure 3: Gamma Distribution Parameters and Shapes Used in Estimation  
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Figure 3 (cont.) 
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Source: Alston, Andersen, James, and Pardey (2010). 

Notes: In each gamma distribution, c_50 indicates the number of years it takes for 50 percent of the impact of 

spending to accumulate to the knowledge stock. Similarly, c_75 indicates the number of years it takes for 75 percent 

of the impact of spending to accumulate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



27 

 

Table 3: Estimation Results for Top Ranked Primal and Dual Models 

Panel (a): Primal MFP model with 50 year lag distribution    

 Model Results Own Research Spillover Research Z 

Linear Model
(a) 

   Elasticities 0.125*** 0.530*** 0.111*** 

Standard errors (0.013) (0.010) (0.018) 

R-sq = 0.734 

  

  

    Logarithmic Model
(b)

  

Elasticities 0.322*** 0.235*** 0.111*** 

Standard errors (0.017) (0.017) (0.010) 

R-sq = 0.876 

  

  

  Panel (b): Dual MFP model with 50 year lag distribution    

Model Results Own Research Spillover Research Z 

Linear Model
(c)

 
   Elasticities 0.003 0.654*** 0.016 

Standard errors (0.008) (0.010) (0.016) 

R-sq = 0.825 

    

Logarithmic Model
(d)

  

Elasticities 0.098*** 0.492*** 0.013 

Standard errors (0.018) (0.018) (0.009) 

R-sq = 0.900 

  

  

    Notes: Number of observations is 2,592.  Each regression includes state-specific intercept terms so df = 2,592 – 48 – 

3 = 2,541.  Model (a) has specification = 36, peak lag year = 13, λ = 0.75, and δ = 0.8, Model (b) has specification 

51, peak lag year = 24, λ = 0.7 and δ = 0.9.  Model (c) has specification = 8, peak lag year = 28, λ = 0.95 and δ = 0.6. 

Model (d) has specification = 52, peak lag year = 30, λ = 0.75 and δ = 0.9.  Panel (a) estimates obtained from Alston, 

Andersen, James, and Pardey (2010).   
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Table 4: Summary of Results for the 50-Year Lag Dual Model in Logs, Top-Ranked Models 

Model Details          Results   

Logarithmic model rank (ranked by SSE) 1 2 3 4 5 6 

Lag Distribution Parameters       

λ   0.75 0.85 0.9 0.95 0.7 0.9 

δ   0.9 0.85 0.8 0.7 0.9 0.75 

Peak lag year  30 34 37 44 24 27 

Implied elasticities        

Own research  0.1 0.1 0.11 0.12 0.11 0.13 

Spillover research   0.49 0.48 0.47 0.47 0.53 0.49 
        
Notes: All elasticity estimates are statistically significantly different from zero at the 1% level of significance 

 


