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1. Introduction

For many decades and throughout much of the world, the tension between industrial
pollution and households has been crucial in urban economies. Some cities, e.g., Washington,
D.C., have introduced green buffer zones near densely populated areas while others have
intermixed industry and households (e.g., Lima, Shanghai, Bangkok, Moscow, etc.) What cities
have come to recognize is that space can and should be used as a means of controlling pollution.
Separating polluter and pollutee typically reduces pollution damages but leads to increased
commuting costs. When pollution damages are low relative to transport costs, separation into
industrial and residential areas is uneconomic and the uniform distribution of industry and
housing over space is economic. However, above a certain threshold, the division of housing
and industry into separate residential and industrial areas becomes desirable. As pollution
damages relative to transport costs rise, increasing separation into larger areas becomes more
efficient. This paper focuses on the role of space in the control of pollution externalities.
Accordingly, we concentrate on pollution from stationary sources and avoid dealing with
congestion and vehicle emissions for which separation by space does not reduce damages.!

The existing papers on spatial pollution from stationary sources (Tietenberg [20,21,22],
Henderson [5,6,7], Hochman and Ofek [9], and Baumol and Oates [4]) have the common
weakness that they all take the pattern of land use between housing and industry as fixed,
assuming that housing is in one zone and industry is in another. This paper relaxes this
assumption, treating as endogenous the pattern of land use. Specifically, this paper

characterizes the optimal resource allocation and joint location of polluting firms and their

1 Note that this applies only to commuting inside the residential and industrial zones. Travel on interstates and
freeways near residential areas can be considered stationary and our results apply. Indeed, the increasingly
common bypasses around highly populated areas separate expressways and dwellings, resulting in green buffer
zones between the expressways and residential areas.



workers’ housing around a circle, as well as policies that decentralize the optimum. To
eliminate those factors which are not essential for isolating the role of land use in pollution
control we: i) specify a city without a predetermined center; ii) assume a constant returns to
scale production function so that production processes are not the source of any endogenous
separation and agglomeration of housing and industry; iii) assume a ring-shaped city to avoid
dealing with edge-of-city effects; and iv) assume all workers to be identical and all firms to be
identical to avoid the complications introduced by heterogeneity. Accordingly, if pollution does
not exist, a uniform layout of the city emerges with factories and houses intermixed.

In studies where agglomeration is due to positive production externalities such as external
scale economies, (e.g. see Lucas [10], Lucas and Rossi-Hansberg [11] and Rossi-Hansberg
[18]), an industrial zone is located in the midst of a residential zone and intensities of land use
increase with proximity to the joint center of the two zones. Such a layout is the result of a
balance between two forces of attraction operating on two land uses: the primary attraction
between firms due to scale economies and the attraction between households and industry
caused by commuting costs.

Contrary to the above studies, in our model of pollution externalities the spatial layout
results from a balance between two opposing forces: one is the repulsion of households from
polluting industry and the other is the attraction between households and industry caused by
increasing-with-distance commuting costs. The balance between the attraction and repulsion
forces leads to the agglomeration of the two land uses into a set of alternating industrial and
residential zones. The intensity of land use in each zone increases with proximity to the center
of the zone where the density peaks. Furthermore, depending on the specific parameters, empty

buffer zones may exist between the industrial and the residential zones.



Additionally, in our model for every specified level of commuting costs, there can be an
infinite number of local optima but only one global optimum. When commuting costs are very
low, the global optimum entails a single industrial zone and a single residential zone. When
commuting costs rise above a certain threshold, the global optimum changes to an allocation
with two (or more) industrial zones in each of which industry agglomerates, and two (or more)
residential zones in each of which households agglomerate. As commuting costs continue to
rise, successive thresholds are reached, each with more industrial zones and an equal number of
additional residential zones, until a final threshold is reached above which the global optimum
is a uniform allocation of mixed residential and industrial land uses without commuting.

We also investigate decentralization of the global optimum. Spatially differentiated
Pigouvian taxes per unit emission levied on industrial polluters will not generally support the
optimum in either the short run (fixed household and firm locations) or the long run
(endogenously determined locations). Whether or not the model's solution entails separating
land uses, only if the dispersion function is linear in emissions or if locations are predetermined
and fixed and the dispersion function is convex in emissions will the typical Pigouvian taxes
offered in the literature (Baumol and Oates [4], Rausser and Lapan [17] Spulber [19]) be
optimal. Henderson [5] showed the insufficiency of Pigouvian taxes, proposing an additional
lump-sum tax along with the Pigouvian tax. Hochman and Ofek [9] proved that the optimum
can be achieved by levying a tax on each unit of industrial land equal to the spatial aggregate of
added damages contributed by that unit of land. In a non-spatial model, Polinsky [16]
demonstrated the failure of the Pigouvian tax and also derived a tax equal to the added damages
caused by a firm. Our analysis shows, under more general conditions than considered in

previous papers, that a spatially differentiated added-damages tax is sufficient to achieve the



global optimum. We also argue that with our specifications a laissez-faire solution will always
yield an inefficient allocation without zoning and without commuting.

The following section presents the model. Section 3 specifies the social optimum
problem. Section 4 derives and investigates conditions for a local optimum, and the price
system that supports it. To gain insight and intuitive understanding, section 5 investigates a
number of special cases using bid-rent analysis. Section 6 characterizes the local optima where
the number of zones is predetermined, based on the interpretation of the special cases, and

section 7 describes the global optimum. Section 8 presents several concluding remarks.

2. Model Specification

Assume a ring-shaped featureless strip of land of unit width. Let L be the circumference of
the circle equidistant from the two boundary circles of the ring (see Fig. 1); as a result, L is also
the total area of the ring. This circle is the location axis in the ring. The point due west on this
ring is arbitrarily chosen as the origin. The clockwise distance from the origin is designated by
x; x=0and x = L are the two coordinates of the origin and0 < x < L. Only circumferential

travel is costly.



A Ring-Shaped City

North

\/

South

Firms produce a (numéraire) composite good, using a constant-returns-to-scale, neoclassical
production technology, with land and labor inputs and pollution emissions as a by-product. In
particular, output per unit distance at x is F'(a(x), a(x)n(x),a(x)e(x)) = a(x) f(n(x),e(x)),
where a(x) is the proportion of land occupied by industry at x, n(x) the number of workers per

unit of industrial land at x, e(x) the quantity of emissions per unit of industrial land at x, and



f(n(x),e(x))the output per unit of industrial land at x, where the intensive (per unit land)
production function f(n,e) fulfills f(An,Ae) < Af(n,e)for A >1.

Each household commutes with transport cost per unit distance of ¢ units of composite good,
to a firm to which it supplies one unit of labor. A household derives utility from land and the
composite good, and disutility from the pollution concentration at its residence. In particular,
the household at x receives utility U(h(x),z(x),c(x)), where h(x) is lot size, z(x) composite
good, and c(x) the concentration of pollution; the utility function is quasi-concave in 4, z, and —
c.

The economy is open in the sense that households migrate freely between the economy and

the rest of the world so that
(D) Ulh(x),z(x),c(x))=U,

at all settled locations, where U, is the exogenous utility level.

In general, the concentration of pollution at x is a functional depending on the spatial

distribution of emissions, characterized by e(y) and a(y), as well as all y and x , i.e.,
c(x)= C(<e( y)>,<a( y)>,< y>, x), where y is another index of location and { ) around a function
denotes the entire range of the function's values, i.e., for all 0 <y < L. To make the model

analytically tractable, we make three simplifying assumptions:
i) C((e(),{a(»)),(y).x)= C(<a(y)D(e(y),x—y)>),

where D(:) is the pollution dispersion function. According to this assumption doubling the land

area at y devoted to industry has the same effect on pollution concentration at x as

doubling D(-).



i) C((aD(e(y).x=y)))= [ a)D(e(r)x-y)dy.

This assumption means that the pollution concentration at x is additive? in the pollution

contributions from different y.

D*(e(y),x— y)for y e [x—é,x]

D ,
le) (e(y) D™ (e(y),y - x) for ye [x’ X+ é]

x—y|):

This specification allows pollution emissions at y to affect the concentration of pollution at x

differently, depending on whether pollution travels clockwise to x from (y € [ -£, x]) or

counterclockwise from (y € [x, X+ %])

Combining these assumptions gives
o . x+% _
@ = [, a0 (e(v)x—y)y+ [ a(D (e —x)y
2
D" (e, x — y) has the following properties:

O/)D+(eax_y>:D-l+ >0 é)DJr(e’x_y)

) de Ax—y)

=D, <0, D'(0,-)=0, and

D*(e,x—y)=0forx—y>L,

2 As shown in Arrow et al. [3] and the references contained therein, economies or diseconomies of scale can exist
in the assimilative powers of the environment when the density of concentrations at a given location gets close to a
breakdown point of biological systems. This means that, contrary to this assumption, concentration at a given
location is not just the addition of contributions from different sources, but is a function of concentration and
emissions levels at different locations. Indeed, regulatory agencies have been employing complex nonlinear
simulation models to represent the emission/dispersion process (see, for example, Allegrini and De Santis [1] and
the NTIS, US Department of Commerce [15]).

Our specification does not allow the contribution of pollution at y to the pollution concentration at x to
depend in a non-linear fashion on the emissions at some other location z (as did the specification of Tietenberg
[22] and Henderson [5]). We address later whether the policy results we derive are affected by our simplifying
assumptions concerning the form of ¢(-).



Analogous properties are assumed for D™ (), with y — x replacing x — y, and it is furthermore

assumed that D"(e,0)= D (¢,0).
The simplest reasonable concentration function would have ¢(x) = fa(y)e(y)g(lx - y|)dy ,

where g(-) is the distance-decay function. Our more general specification allows pollution to be
directionally asymmetric, the pollution contribution from y to depend not only on the total

emissions at y but also on the intensity of emissions.

3. The Social Optimum Problem

We are now in a position to set up the social optimum problem. The objective function is
net city surplus, the amount of the composite good left over after commuting expenses and
consumption of the composite goods by the city’s workers. This is maximized subject to the
open city constraint (1), land utilization constraints, and constraints describing the technologies
of pollution concentration (2) and commuting.

We start with the commuting technology. We impose as an assumption an obvious property
of the social optimum that cross commuting does not occur. Thus, all households living at a
particular location commute to work in the same direction. Define 7(x) to be the number of

workers who cross x clockwise on the journey to work or minus the number who cross

b(x)dx ,

counterclockwise. With clockwise commuting, increasing x by dx increases T(x) by ——=

h(x)
the number of residents between x and x + dx , where b(x) is the proportion of residential land at

X, minus a(x)n(x)dx, the number of workers there. With counterclockwise commuting,

b(x)

increasing x by dx increases the number of workers crossing x by La(x)n(x) - —J dx. Since,

h(x)



however, T(x) is measured negatively with counterclockwise commuting, for travel in either

direction:

4a) T =%—a(x)n<x>,

where a dot above a function indicates differentiation with respect to x, with
4b) T(0)=T(L)=0

T(0)=T(L) since the total number of households in the city equals the number of workers, and
T(0) = 0 forces the origin to be a point not crossed by workers (this entails no loss of generality
since, as shown later, every solution has at least two points commuters do not cross). Egs. (4a)

and (4b) together imply the commuting constraint:

(o) T=[ {%—a(y)n(y)}dy.

The relevant land-utilization constraints are

(5a,b,c) a(x)+b(x)—1<0 a(x)=0 b(x)=0;
when the first constraint is not binding, at least some land at x is vacant.

Net city surplus is given by
© S=[|af(n e)—éz—|T|t dx
0 ’ h ’

The first term on the RHS is the aggregate production of the composite good, the second the
aggregate consumption of the composite good by the city’s residents, and the third the
aggregate commuting expenses, which are calculated as the number of commuters who travel

10



across the interval [x, x +dx] |T(x)ldx, times 7, commuting cost per unit distance, and summed

over locations.

Maximization of S in (6), subject to (1), (2), (4a), and (5), with (4b) as terminal conditions,
provides the necessary and sufficient conditions for parochial® efficiency. In the next section
we describe and interpret these conditions, which constitute a subset of the necessary conditions
for Pareto optimality for the economy as a whole (see Hochman [8]). Clearly, since we are
dealing with a non-convex problem some of the variables might have corner solutions and there
might be more than one such local optimum. These issues are addressed in the determination of
the global optimum (see Sections 6 and 7).

According to the Second Welfare Theorem, any Pareto optimal allocation with convex
production functions and quasi-concave utility functions can be decentralized as a price quasi-
equilibrium with transfers (see Mas-Colell ef al. [12], Proposition 16.D.1). In the presence of
externalities this means that competitive markets support the optimum with government
intervention limited to corrective taxes and lump sum income redistributions. In the rest of the
paper we shall consider allocations that are locally optimal. And when we discuss
decentralization of a local optimum, we shall use the term supporting price system to refer to a
price vector that supports the local optimum allocation under minimal government

intervention.4

4. The Local Optimum Solution and its Supporting Price System

3 The efficiency concept we employ—which we term parochial efficiency—is only for our city, not for the rest of
the economy. Parochial efficiency is necessary for global efficiency. Note that in our model residents have no
unearned income and all the profits of the city go to non-residents.

4 There are three groups of agents in our economy: households, firms, and a government or city developer. The
government/city developer owns the land and sets the tax rates, receiving land rents and tax revenue as income.
The rest of the economy is competitive with households and firms being price-takers. Thus, we define a
competitive equilibrium with taxes to be a gross-of-tax price vector (over emissions, wage, and land rents at
different locations) such that: i) each household maximizes its utility subject to its budget constraint; ii) each firm
maximizes its profit; and iii) land and labor markets clear.

11



The constrained maximization problem described above, as well as the necessary conditions

for a local optimum, is given in Appendix A. In this section, we present and interpret each
condition in turn and indicate its implications for market decentralization.

o  Employment

If W(x) represents the co-state variable corresponding to 7(x) in the commuter equation

of motion (4a), then ¥ (x) is the social cost of placing a household at x. From the

optimization condition (7), employment is determined by setting the marginal productivity

of labor equal to ¥(x), i.e.

(7 a(){f,(n(x),e(x)) - ¥(x)}=0. ( fi= 5%;1 : etc.)

The fact that a(x) multiplies the expression in (7) means that the equality of the expression
in the brackets to zero must hold only where industry is located (not necessarily
exclusively).

Choosing optimally the number of commuters yields

() W (x) =sign(7(x))z,
where
+1 iff >0
©) sign(y)=4 0 iff y=0
~1iff y <0.

The function sign(T (x)) is constant as long as 7'(x) does not change its sign. Therefore,
along a segment where the sign of 7'(x) remains constant, (8) indicates that ¥ (x) is a
linear function of x and increases (decreases) by ¢ per unit distance. Thus W (x) is the

shadow wage at locations of employment and in locations where industry does not exist

Y (x) equals the shadow wage minus commuting costs.

12



Let w(x) be the local net earnings (LNE) at location x in the supporting market
solution. In a location where an industry is sited, w(x) is the wage rate, and in a location
where there is no industry, w(x) is the wage rate where the household works minus
commuting cost to the workplace. It follows that w(x)=y(x).
o Residential Land
(10) U, /U, = plx)=plx); p(x) 2 0, pa(x)blx) = 0.
Note that p(x) is the multiplier on the land constraint (5a), and is interpreted as the shadow
(land) rent at location x and z(x) is the slack variable for (x) in (5b). Thus, (10) states that, at
location x, the marginal rate of substitution between land in residential use and the composite
good, which can be interpreted as the rent on land in residential use, equals the shadow rent
when at least some land there is in residential use, and is less than the shadow rent otherwise.
Define 7(x) to be the land rent in the supporting price system. It follows from (10) that
r(x) = p(x) at residential locations.

e  Household Budget Constraint
U
an b(x){qf(x)_z(x)_U_hh(x) 0.

Eq. (11) states that at all residential locations, the (net-of-commuting-cost) social benefit of
locating a household there, ‘P(x), equals the social opportunity cost of doing so. In the
corresponding market equilibrium, the equation is the household budget constraint, that the
household’s income net of commuting cost equals its expenditure on residential land and the
composite good.

e Pollution concentration

_M)U. )

12 )= =00 ()

13



Eq. (12) indicates that 7(x), the shadow price of pollution concentration at x or alternatively
the marginal damage of pollution concentration there, equals minus the population density
times the marginal rate of substitution between pollution concentration and the composite good.

e Pollution Emissions
(132)  a(x)[f &) - M(x)]=0,
where

+7

(13b)  M(x)= [ n()Dy (ex)y =)y + [, n(y)D; (ele)x— )y

M(x) is the marginal damage from pollution emitted at x. A unit increase of pollution emitted
at x augments the concentration at y by D) (e, |y — x|), i=+or— M(x) is obtained by
multiplying this increase in pollution concentration at y by 7(y), the marginal damage caused

by a unit concentration there, and summing over all possible y. Thus, (13a) states that at all
industrial locations the damage from a unit increase in emissions equals the value of the

additional output created. In the supporting price system, M(x) equals the Pigouvian tax at x.

e /ndustrial Land
(142)  fn(x),e(x)]=¥(x)n(x)- Ox) = p(x)=r(x) 5 7(x) 20, y(x)a(x)=0,

where y(x)is the slack variable for a(x) in (5¢), and

140y 0w = [ nmD e,y - xv + [y, (0D (elx).x = y)dy

14



is the additional damage caused by the total emissions from a unit area of land at x. The first
term on the left-hand side of (14a) is industrial output per unit of land and the second the wage
bill. The first term on the right-hand side of (14a) is the shadow price of the land utilization
constraint (5a). That y(x) is non-negative requires that the left-hand side of (14a) not exceed

p(x), which in turn must fulfill

(15)  p(x)>0; p(x)[l —a(x) - b(x)] =0.
Thus, (14) states that at all industrial locations, land rent equals residual income (revenue less
the wage bill).

If in the supporting equilibrium Q(x) is levied as a tax per unit of industrial land and there is
no Pigouvian tax imposed, at all locations with industry p(x) equals the land rent (x).> In
order to satisfy (13a), however, at first glance it appears that M(x) should be levied as a per unit
emission tax, and that only when the dispersion functions are linearly homogeneous in e is the
tax burden the same in the two cases. The following proposition resolves this apparent
difficulty.

Proposition 1: To achieve efficiency in a market economy by taxing pollution emissions, a
tax per unit of industrial land must be levied at every industrial location. This tax must
equal the added damages caused by the pollution emissions from this unit of land Q(x).
Proof: If an industrial producer pays Q(x) for emitting e(x) per unit land, wages of w(x)n(x),
and land rent of 7(x), a long-run equilibrium with zero profits will satisfy both (13) and (14)

since %%f)l = M(e(x)).

Corollary 1: Each local optimal allocation has a supporting equilibrium with its own price

3 Note that in the supporting equilibrium wages are the only source of income of residents and land rents and
proceeds from taxes go to nonresidents.

15



system and corrective pollution taxes; so too does the global optimal allocation.

In subsequent sections we shall use the supporting price system and the supporting
equilibrium relations together with the optimum relations to characterize the global optimum.
The key elements of the supporting equilibrium can be insightfully expressed in terms of the
industrial and residential bid-rent functions at the optimum. Specifically:

Definition 1: Define R,(x), the industrial bid-rent function, as
(16) R (x)= f(nlx).e(x)) - ¥ (x)nlx)-O(x),
where n(x), e(x), Y (x) and Q(x) are evaluated at a local optimum.

This bid-rent function follows from (14) and indicates the maximum amount industry can
pay for land at x without suffering losses when Q(x) in (14b) is imposed as a tax per unit of
industrial land.

Definition 2: Given c(-), (), and U,, define R, (), the household or residential bid-rent

function, as

(17) Rh(x)zzg%% st U(h(x),z(x),e(x))=U,.

Uyx)

From (10), R, (x)= 0.0

R,(x) 1s the maximum amount a household can afford to pay per

unit of land, consistent with achieving utility U .
Using equations (14) and (16) we obtain
(18) R/ (x)<r(x), R, =r(x)<a(x)>0.
Similarly, from equations (10), (11) and (17),

(19)  R,(x)<r(x), R, (x)=r(x)< b(x)>0.

16



Equations (18) and (19) imply that an activity (production or consumption) takes place at a
given location if and only if its bid rent there equals the market land rent. Finally, from (18)
and (19) the land rent 7(x) can be determined by
20)  r(x)=max|0,R,(x),R,(x)].

The above definitions and relations imply the following bid-rent rule?¢ :

Lemma 1 (Bid-rent Rule): Consider the residential and industrial bid-rent functions at a

local optimum. Near a point of intersection of the two functions, only the land use with the
larger derivative (with respect to x) of its bid-rent function is located immediately clockwise of
the intersection point and only the other land use is located counterclockwise of it. If the two
derivatives are equal at the point of intersection, the two bid-rent functions coincide in a
neighborhood of this point and housing and industry may coexist there. Locations where both
bid rents are negative are empty buffer zones.

The proof is provided in Appendix B (available on the internet).
Corollary 2: Pigouvian taxes are distortive when D ;#0.

The proof is based on two principles: First, that the marginal payment per unit of emission e
is the same and optimal under the two tax regimes (see Proposition 1); and second, that total
emission payments at a particular location are different in the two tax regimes when D, ,#0,
implying that the industrial bid-rent function under Pigouvian taxation is not optimal. Thus, if
the industry is located optimally (e.g. by zoning regulations), its emissions are optimal in the
two tax regimes. However, the allocation of land between industry and residence can be
suboptimal if only Pigouvian corrective taxes are used.

To clarify this result, consider the case of D;;<0. Then Q> eM, which implies that levying a

Pigouvian emissions' tax, M(x), is insufficient to support the optimum. For a solution in which

6 See proof in Appendix B.
17



industry and housing are intermixed and the Pigouvian tax eM is levied, the industrial bid-rent
function rises above its optimal value, which in turn causes r, the land rent, to be too high as
well. Since 7, a supporting price, is higher than its optimal value, the allocation supported is not
optimal. In this event, in each location more land is allocated to the industry than in the
optimum and less land is allocated to housing.

For the same situation, i.e., D;; < 0 and the Pigouvian tax eM levied, but with residential
and industrial land separated, once again the industrial bid-rent function and hence land rents
are higher than their optimal values, but now only in the industrial area. This leads to a larger-
than-optimal industrial zone, and a residential zone which is smaller and more heavily polluted
than optimal. 7

When D,, >0 (and hence Q < eM ) under the Pigouvian tax the industrial bid-rent
function is lower than optimal. Whether the land uses coexist at the same location or are
separated, industry occupies less land, produces less output and pays lower wages than at the
optimum.® When D,, =0, then Q =eM and the allocation is optimal in the two tax regimes.

How robust is the optimality of the per unit land corrective tax Q(x) introduced in

Proposition 1? From (14) it can be seen that its optimality hinges on the assumptions of

7 Henderson [5] has shown that in a spatial setting over the short run, Pigouvian taxes are efficient when the
dispersion function is weakly convex in emissions (D,l < 0). In a non-spatial model, Spulber [19] and Baumol and

Oates [4] have shown that Pigouvian taxes provide the proper incentive for firms to produce the optimal output in
the short run by using the optimal mix of inputs. Spulber has also argued that when the damage function is convex
in emissions, Pigouvian taxes provide the proper incentives for entry and exit of firms in the long run. However,
Pigouvian taxes fail to achieve efficiency in our spatial framework because the generated externality does not
cause the actual damages. The emissions are the direct external effects of the production process, but what causes
the damages are concentrations. Concentrations are created by emissions from different sources via non-linear
(dispersion) functions. It is clear from equations (14) that if 1(y) could be levied as a tax per unit of concentration
contributed by the firm, efficiency would be attained. This means that Pigouvian taxes are efficient when levied
on concentrations rather than on emissions. However, producers create emissions, and only when the relation
between emissions and concentrations is linear can taxes on emissions be optimal. Accordingly, a necessary
condition for Pigouvian taxes to be effective is that the accumulation process of concentrations from different
sources be additive in emissions, the external effect itself. This will occur only when D,;=0, a result rarely
satisfied (see footnote 1).

8 This claim seems more plausible in view of Polinsky’s results [16].

18



constant returns to scale in production and the additivity of the dispersion function. When these
assumptions are relaxed, we conjecture that the corrective tax still equals the pollution damages
added by the firm, i.e. total pollution damages with the firm’s emissions minus pollution
damages without it, but that the unit of taxation is the firm.?

5. Laissez Faire and Special Casesl10

Thus far, we have derived necessary conditions for a local optimum. The remainder of the
paper explores how the spatial structure of the global optimum changes as 7, the unit
commuting cost, increases. This section concentrates on special cases. Section 5.1, depicting
the laissez-faire allocation, is a detour from the investigation of the social optimum. Section 5.2
provides some preliminary definitions, and section 5.3 considers three special cases with one
extreme parameter value, which give insight into the economic determinants of the globally
optimal spatial structure. In section 6 we examine how an increase in unit commuting costs ¢
affects the solution with a given number of zones, and in section 7 how commuting costs affect
the number of zones in the global optimum.

5.1 Laissez Faire

The laissez-faire allocation corresponds to the equilibrium with no government intervention.

This allocation is inefficient and is the only allocation considered in the paper that is not related

to a local optimum. Under this allocation each atomistic firm, taking pollution concentrations

9 Polinksy [16] provides a non-spatial example where Pigouvian taxes fail to achieve efficiency. In his analysis of
strict liability and negligence, Polinsky utilizes a partial equilibrium model almost identical in its mathematical
exposition to that of Spulber’s model, with one small difference. In Polinsky’s model, ‘care’ (the equivalent of
negative emissions in our and Spulber’s models) reduces external damages caused by the individual firm, i.e. the
amount of care provided by a firm is an argument with a negative effect in a separate damage function of the
individual firm, which transforms emissions of each firm into monetary terms. These individual money damages
are then accumulated to obtain the total social damages. In Spulber’s model, the emissions of the individual firms
are added first and the accumulated amount of emissions is then converted to monetary terms via a single social
damage function. Both models are correctly specified and the differences in their specifications follow from
differences in the issues examined. These differences lead to what appear to be contradictory results of the two
models; while in Spulber’s model Pigouvian taxes provide long-run efficiency, in Polinsky’s model they do not.
In Polinsky’s model, the separate damage functions introduce the non-linearity which in our model is introduced
via the dispersion function.

10 Proofs and technical elaboration of some cases appear in Appendices B and C, available on the internet.
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as given, locates right next to its workers, reasoning that by doing so it eliminates their
community costs and hence can pay them a lower wage. Thus, there is no commuting and the
marginal productivity of emissions is zero. Firms collectively fail to take into account that the
added emissions resulting from their location choices lead to wage increases that are needed to
compensate for added pollution damages. Such allocations can be found in practice only in
rural villages since agriculture is one of the few industries with technology close to constant
returns to scale.

5.2 Preliminaries to the Special Cases

There are two relevant principal solution types!!. One is an interior solution in which land
use is mixed; i.e., a(x)> 0, b(x)> 0 and a(x)+b(x)=1 for all x. Any such mixed allocation
satisfying the necessary conditions of the previous section is a local optimum.!? In this case the
two bid-rent functions R,(-) and R, () coincide everywhere. All other possible locally optimal
allocations are corner solutions and involve separation of industrial and residential land.

Definition 3: A separated allocation is an optimal allocation in which industrial and

residential land use are strictly separated. Thus there are industrial zones and residential

zones. An empty area with no land use is also allowed; such an area is termed a buffer zone
In each separated allocation, industrial and residential zones alternate, perhaps separated by

buffer zones.!3 A buffer zone exists between an industrial and a residential zone if there is a

I The globally optimal land allocation may be an “empty” city, i.e., no households and no industry. This outcome
will occur if in all local optimum solutions the maximized surplus is negative. Namely, the price of the city’s
export product is insufficient to maintain the predetermined utility level of the city residents. In the following
analysis, only non-empty allocations, i.e., N>0,5>0, which satisfy the necessary and sufficient conditions are
considered.

12 Note that often in problems involving inequalities only one type of extremum can result. Here only local
maxima can occur. To see this, note that a solution with a positive S cannot be a local minimum since a(x)and
b(x)can be reduced continuously while maintaining their ratio intact and thus reducing S until it disappears. Since
we can increase density and commuting distances indefinitely, we can always increase a deficit (-S) indefinitely
too.

13 In the types of land use patterns analyzed in the paper, all land at a particular location is either vacant or
occupied. Zones with partially occupied and partially empty locations are also a possibility, however. Housing in
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segment of land between the two zones in which the two bid rents are negative. This may occur
if, at these locations, concentration levels are too high and wages too low to support the
predetermined economy-wide household utility level and if for the specified emission taxes and
wages the industry suffers losses. There cannot be allocations with buffer zones between two
residential zones or between two industrial zones.

In practice, separation into industrial and residential zones is also the result of scale
economies in production and in the consumption of collective goods. However, buffer zones are
unique to pollution. Note that in practice buffer zones are often green areas since plants,
especially trees, help reduce pollution. Moreover, large highways and freeways in the vicinity
of densely populated areas (e.g., city bypasses), are also stationary sources of noise and air
pollution. Indeed, along many of these roads we observe green buffer zones near densely
populated areas (e.g., Washington, D.C., Portland, Oregon). In still other cities buffer zones
often exist between waste collection industries (landfills) and households (e.g., Dallas, Texas).14

Definition 4: A no-crossing location (NC location) is a location in either an industrial or a

residential zone not crossed by commuters. !’

Lemma 2: The value of the function T(-) at a NC location is zero.

a partially empty location cannot arise, since positive marginal utility of housing implies that households in a
particular location will use all or none of the available land at that location. In the case of industry, when D,, =0
the linear homogeneous production functions together with diminishing marginal productivity imply that there is
no empty space where industry is located, since by keeping constant overall emissions, (a(x)e(x)), as well as
overall labor, (a(x)n(x)) , and expanding industry across the entire space in that location x (i.e. a(x)=1) output can
be increased without changing inputs. Furthermore, when D,, >0, the reduction in emissions density also leads to a
reduction in the contribution to concentrations, which in turn strengthens the tendency to fill in empty space or
leave it entirely empty. However, when D,, <0, reducing the density of emissions while keeping their total at the
given location constant increases concentrations. Consequently, we cannot rule out the possibility that increases in
the concentrations will outweigh the effect of diminishing returns in production and result in an optimal solution
with industrial zones which are only partially occupied. In the subsequent analysis we shall disregard this case.

14 For permanent versus temporary diminution in bid-rent schedules for households located near landfills, see
McCluskey and Rausser [13,14].

15The NC locations are theoretical tools intended to help us in the coming analysis. In practice, because of
irreversible investments, historical trends, social connections and the fact that there is more than one worker per
household, such locations are unobserved.
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Lemma. 3: In each residential and each industrial zone there is one and only one NC location
(which may sometimes be extended to a NC area).

Proof: Since paths of commuters cannot cross, in a residential zone there must be a location
where all those living clockwise of this location commute clockwise and all those living
counterclockwise of this location commute counterclockwise. In an industrial zone there must
be a location at which commuters employed clockwise of that location commute
counterclockwise and vice versa. Each of these NC points can extend to an empty segment.
Two or more NC locations with only residential and no industrial space between them cannot
exist, since occupants between such locations would have to cross one of the NC points when
commuting. Similarly, two NC points with only industrial and no residential space between

them cannot exist.

Definition 5: An autonomous area (AA) is the area between two consecutive NC points.

An autonomous area includes part of a residential zone and part of an industrial zone, and all
households who reside in an AA also work there and vice versa. If the allocation includes
buffer zones, each AA includes an empty buffer zone between its residential and industrial
zones. The concept of an autonomous area is essentially based on NC points and as a result
exists in theory only.

Without loss of generality, in what follows the origin will be placed at an NC point where

residents are located.
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With these definitions, we can now relate the bid-rent functions to the qualitative spatial

structure. Let x, andx, be two consecutive NC points, the former in a residential zone and the

latter in an industrial zone. Fig. 2(a) depicts a separated allocation without buffer zones, with x
being the boundary between the residential and the industrial zones at which the two bid-rent

functions intersect. Industry occupies locations where R, > R, , residences occupy locations
where R, > R,, and rents must be non-negative where R, = R,. In Fig. 2(b) the bid-rent

functions result in a buffer zone. Both bid rents are zero at the boundaries of the buffer zone

x and x and remain non-positive everywhere over the zone. In Fig. 2(c) the two bid rents are

constant and coincide everywhere over the autonomous area; industry and housing coexist

everywhere, each at its own constant density. In this case all points are NC-points.
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Assumption 1 (Symmetric Dispersion Assumption): D" (e,y) = D™ (e,y)= D(e,y) for all e>0 and

y>0.

Henceforth we shall restrict our analysis to a more specific case in which dispersion is
symmetric. The assumption is that pollution spreads clockwise and counterclockwise in the
same way. This may happen in practice with respect to air pollution if throughout the year the
wind blows in each direction with equal probability. The model can be solved under other
assumptions (e.g., D" (-)= 0 and D" (-) > 0), but the solution under each assumption is different
and space limitations dictate that we present only the symmetric case.

5.3 Special Cases

From the above definitions, the global optimum for three special cases can be characterized,
each with one parameter having an extreme value (zero or infinity). These special cases
capture the essence of the solution in general and indicate the range of possible outcomes.

5.3.1. Case Zero: Zero commuting cost

In this case all parameters are presumed to be finite and strictly positive except £, commuting
cost per unit distance, which is assumed to be zero. Zero commuting costs imply the same
constant shadow wage, ‘P(x), everywhere. As in the general case, pollution causes positive
damages that increase with concentrations at any level of consumption, i.e.,

—o < U,(h,z,c)< 0. A superscript zero designates variables for this case, e.g., r (x),R, (x) and
R;(x) specify respectively the rent function, the industrial bid-rent function and the residential

bid-rent function.
Since pollution decays with distance, the greater the distance between polluter and pollutee,
the lower the concentrations experienced by the pollutee, which leads to a higher utility level

for a given level of the composite good and housing. Since commuting costs are zero, this
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separation does not involve any loss of resources. Under these conditions, separate industrial
and residential zones arise. Hence, a’(x)5"(x)= 0 for all x. Moreover, there is only one
industrial zone and one residential zone, and there may or may not be buffer zones between
these zones. Increasing the distance between polluter and pollutee reduces concentrations and
therefore generates benefits without increasing costs. Any solution with many industrial zones
can be restructured as a single industrial zone without decreasing the distance between any
residential and any industrial location and with some distances increasing. An analogous
argument holds for many residential zones.

If there is empty space in the midst of one of the occupied zones, land uses can be moved
from the boundaries of the zone to fill it. Such reallocations increase the distances between the
two land uses and thus reduce effective concentrations without entailing any cost. As a result,
an allocation with empty space in the midst of an occupied zone cannot be optimal. Therefore
for all x in an occupied area (a residential or industrial zone), a’(x)+5°(x)=1. This condition
together with a”(x)b°(x)= 0 implies that if one of these two variables is positive, its value

must be one.
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Fig. 3
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Two NC points emerge, one, the origin 0, in the residential zone, and the other 0’, in the

industrial zone. T(x) is zero at both NC points. Fig. 3 depicts the layout of the city ring with the

boundaries of the different zones designated by xl.o, 0< x? <L, i=0,12,3. xg is the southern
boundary of the residential zone and the northern boundary of the southern buffer zone and x
is the northern boundary of the industrial zone, etc. Note if there are no buffer zones, x; = x}
and x| =x,. The symmetric dispersion assumption (D" (-) = D"(-)) implies that the allocation

has OO’ as an axis of symmetry.
The bid-rent functions are equivalent to the residual income per unit land in each location

(egs. (16) and (17)). The density of land use is an increasing function of the rent. When =0,
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the rent together with the density of land use peak at the center of each zone. The centers of
each zone are also the NC points and the boundaries between the AAs. In the industrial zone,
since the center is the pollution-generating location furthest from all residential locations, the

optimal tax Q is at its lowest level, and R, at its maximum there; analogously, since the center

of the residential zone is least affected by pollution, R, is at its maximum there. The lowest

rents and densities are at the boundaries. Also, rents rise monotonically within an occupied
zone from the boundary to the center. In a buffer zone and its boundaries, rents vanish, as does
all economic activity. Small mining towns are an example of such a complete separation.
Commuting costs are not zero but are negligible compared to pollution damages.

5.3.2. Case One: Pollution has no ill effects

This case presumes U. = 0 and 0 <7 < c0; namely pollution has no ill effects and commuting

costs are positive. We designate the solution of this case by superscript 1. Since pollution
causes no damage, the optimum entails zero commuting costs — each household lives and
works at the same location. Since conditions are the same everywhere, symmetry implies that
a(x)=a>0,b'(x)= b>0and @ +b =1 forall x. As a result, the land rent and wage rate
are spatially constant. Rural villages are an example of this case. Villages are also an example
of a laissez faire allocation, however, here the allocation is optimal.

5.3.3. Case Two.: Mixed allocation

In this case, pollution causes ill effects, i.e. for all positive arguments—oco < U (4,z,c) <0,

and ¢ is positive and finite. As in the previous case, laborers reside next to their workplace and
all variables are spatially constant. The allocation is not a separated allocation and thus

concentrations are affected only through the production process. The solution for this case,
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distinguished by the superscript 2, is a local optimum for all # and a global optimum when ¢ is

sufficiently large.

6. Local Optima!®

In general, local optima can be either mixed allocations (e.g., Case Two) or separated
allocations. Case Two allocations are interior solutions since the variables a(x) and b(x), along
with all other variables, obtain values in the interior of their domain of definition, while in the
separated allocations a(x) and b(x) obtain boundary values and are therefore corner solutions.
For a given set of parameter values, there might be several local optima that are corner
solutions, each with a different number of autonomous areas. Even for a given number of AAs,
there may also be more than one local optimum.

In this section we characterize a general separated allocation and its supporting price system,
by investigating the changes due to an increase in commuting costs in a local optimal solution
with two symmetric AAs, as depicted in Fig. 3. Similar relationships exist when the number of
AAs is larger. As a reminder, we repeat the definition of the LNE, this time formally.
Definition 6: Local net earnings (LNE) , w(x), equal, in the supporting equilibrium, wages net
of commuting costs for a household living at x. At an industrial location w(x) is the wage
rate. At a location where there is no industry, w(x)is the wage rate net of commuting costs to
the workplace.

Lemma 4: In an AA, w(x), is a linear function of x and the absolute value of its slope equals t,

Viz.

w(x;0)+(x—x))t, for 0<x<LJ2

(21) w(x;l):‘P(x;t)z{w(xg;t)+(x3 —x)t, for L/)2<x<L

16 Proofs of the Lemmas and Propositions of this section not presented in the text appear in Appendix C in the
internet version of the paper.
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where x) and x| are the boundary points in special Case Zero of the industrial area in the
northern and southern parts of the AA, respectively, as depicted in Figure 3, and v (x3;t)

(also equal tow (X ;t) ), which we refer to as the intercept of w(x;t), is a function of t but not of

In what follows, we deal only with the northern AA while keeping in mind that the
southern AA is symmetric, with OO' as the axis of symmetry (see Fig. 3). Lemma 4
implies that if 7 is positive, the LNE in the industrial zone increases at the rate of 7 per unit
distance when moving from the boundary of the industrial zone towards the NC point.
The opposite occurs when moving away from the boundary into the residential or buffer
zone. Lemma 4 is a standard result in models with separation into distinct industrial and
residential zones.

Corollary 3: An increase in t augments the multiplier of x in Y (x;t), and moves the intercept

w(xy;t) by the shift factor,

Ow(x):t . . ;
—W(é’ 25%) . The shift factor can be positive, negative, or zero,
t

depending on the model's details.
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Fig. 4
Spatial Patterns of Two Local
Net Earning Functions
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For ease of exposition, henceforth we restrict the analysis only to cases without buffer
zones. Notable differences arising from the presence of buffer zones will be commented
on in footnotes. Fig. 4 demonstrates the possible effects of an increase of z on y/(x};7) in
the northern AA. The line B'B’" depicts W(x;¢) with >0, C'C" depicts lP(x;O), and x
denotes the location where B'B’' and C'C" intersect. Since the local net earnings (LNE)
function pivots around x, we refer to X as the pivot point. There are two cases which
differ according to whether x lies to the left or right of xg — the boundary between the
residential and the industrial zone with /=0. When % lies to the left of x,, then the shift

factor is positive and the wage rate increases in the AA throughout the industrial zone,

while the local net earnings (LNE) in the residential zone increases near the boundary and
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decreases near the no crossing (NC) point 0. When x lies to the right of xg — the shift
factor is negative — the LNE decreases throughout the residential zone while the wage
rate in the industrial zone falls near the boundary and increases near the NC point /2.

The total derivative of the functions R, ,k = A, with respect to # is given by

dR(x) _ R.(x) + Z it (x)o”_;? , where y; are the controls and shadow prices of the system.

dt ot Oy
Lemma 5. In the optimum allocation, both bid rents are functions of x and of t, and

dR,(x) _ R, (x) _ OW(x:0)/dt

i. In the residential zone

i h(x)
ii. In the industrial zone dR, (x) = R, (x) = —n(x) oY (x;1) ‘
dt ot ot

Lemma 5 demonstrates that commuting costs affect the bid-rent functions only through

W(x;1) ; the terms for the other controls disappear. The change in the industrial bid rent at a

given location is negatively related to the change in the wage rate, with the factor of

proportionality n(x), the local labor density. The change in the residential bid rent at a given
location is proportional to the change of the LNE, with the factor of proportionality ﬁ , the
X

O (x;1)

=0, i.e. at the
ot

local residential density. Lemma 5 also implies that at the point where

pivot point, the bid rent functions remain unchanged as well. Commuting costs cause both bid-

rent functions to pivot around x.
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Fig. 5
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How does the optimal autonomous area (AA) change as ¢ changes? We have investigated
above how a change in 7 alters the bid-rent functions. What we need to determine, therefore, is
how the optimal AA changes as the bid-rent functions change. Two patterns emerge, which are
distinguished according to whether the shift factor is positive (pattern I) or negative (pattern II).
Parts (a), (b), and (c) of Figure 5 address pattern I, part (d) pattern II. As above, x indicates the

OW(x;t) OR,(x) IR, (x)
ot ot ot

location at which =0.

In Fig. 5(a), R, (x), the residential bid-rent function in case zero, ¢ = 0, is depicted by the

downward-sloping line C'CC’. In Fig. 5(b) the industrial bid-rent function in case zero, R,O(x),
is depicted by the upward-sloping line C''CC"’, and intersects C'CC’ at xg when both bid rents

are positive.

The patterns are as follows:
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Pattern I (a positive shift factor) emerges when t increases from zero to t >0 and the
pivot point X is left of the boundary point xg (see Fig. 4).

In this pattern the increase in ¢ causes the residential bid rent to increase near the boundary
(xg) and decrease near the origin; in Fig. 5(a), the line A’AA" represents R, (x,t ), and
Cc'CC, R;? (x,0). In this pattern the increase in ¢ causes the industrial bid rent to fall
everywhere in the industrial zone, less so near the boundary (x) ) and more so near L/2; the line
A"AA" in Fig. 5(b) represents R, (x,t), and C"CC", R(,) (x,0). The rent functions before and
after the shift, depicted in Fig. 5(c), are the upper envelope curves of the before and after bid-
rent functions. The boundary moves right from x) to x;'.

The increase in ¢ causes the residential zone to expand and the industrial zone to shrink by
the same amount. In the industrial zone, the rent declines everywhere, less near the boundary
(xg ) and more near L/2. In the residential zone, the rent function increases near the boundary
(xg) and decreases near the origin.

Pattern II (a negative shift factor) emerges when t increases from zero to t >0 and the
pivot point X is right of the boundary point xg .

With this pattern, the increase in 7 causes the residential bid-rent function to decline
throughout the residential zone, more near the origin than close to the boundary; in Fig. 5(d),
the line B'B represents R, (x,t) where R, (x,t) > R, (x,t), and C'C represents R, (x,t) where
R,? (x,0)> R,O (x,0). The industrial bid-rent function increases near the boundary of the
industrial zone and decreases near the origin. In Fig. 5(d), BB" represents R, (x,t), where
R, (x,t) 2 R,(x,t),and CC" represents R? (x,0), where R10 (x,0)= Rf (x,0). The boundary

point between the two zones moves left from x) to x;' so that the industrial zone expands and
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the residential zone shrinks. The rent falls everywhere except near the boundary of the
industrial zone.

In both patterns, the density of population in the residential zone and the density of
employment in the industrial zone move in the same direction as the corresponding rents, while
the total AA's population declines. Which of these patterns occurs depends on the production
and pollution dispersion technologies, as well as tastes.!”

Since the commuting and pollution effects influence the industrial bid rent function in the
same direction, it always decreases with distance from the NC point at a decreasing rate.
However, the commuting and pollution effects influencing the residential bid rent, unlike the
case of the industrial bid rent, run in opposite directions and thus the residential bid rent may
either decrease or increase with distance. Nevertheless, at the boundary the slope of the
residential bid rent in the direction away from the boundary is always higher than the slope of
the industrial bid rent. Note that when commuting costs are low compared to pollution damages
(e.g., case zero) the slope of the residential bid rent when moving away from the boundary is
increasing. Conversely, in the direction of the industrial zone the industrial bid rent's slope is
increasing and higher than that of the residential zone. Otherwise, housing will outbid the
industry in the industrial zone and industry outbid housing in the residential zone, which is
impossible. In general, close to the residential NC point the residential bid rent may become
convex, decline, or even become negative. However, this outcome cannot occur in the global

optimum, since a solution with a larger number of smaller zones is then more efficient. With

17 The above analysis can be modified straightforwardly to cover the situation when there is a buffer zone in the
AA. The results are broadly similar. In a buffer zone case, however, an increase in f may cause both occupied
zones to shrink and the buffer zone to expand. This will occur whenever  (x,7 +At) intersects w (x,¢) in the
buffer zone. The intuition is that with an expanding buffer zone, both commuting distances and emissions increase
with offsetting effects on pollution concentrations, while employment density decreases and wages increase.
Indeed, within the residential zone the LNE and the rent may be lower but pollution concentrations can fall due to
the increased distance.
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zero commuting costs (case zero), the rent function is at a local maximum at the NC points,
gradually declining towards the boundary where it reaches its lowest level.

Lemma 6: When t increases, the absolute value of the slope of the rent function falls except
perhaps near the boundary, where it may increase.

Lemma 6 states that an increase in ¢ causes the rent function (see Fig. 5) to become flatter

everywhere except perhaps for pattern I over [xg , x;’] and for pattern IT over [x},x)].

The above analysis pertains only to the case of two AAs. Symmetry dictates through
Lemma 7 that the analysis can apply with no significant changes to any even number of AAs.

Lemma 7: For each t>0, there may exist a local optimum solution with 2m zones, where m
can be a subset of (or all) the integers fulfilling 1 < m< oo. If 2m is the fixed number of AAs in
an allocation, so is the number of NC points which are located at the boundaries of the AAs
(and in the middle of the occupied zones). All AAs are of the same size with an area of L/2m
and each AA is the mirror image of its neighbor AAs. The qualitative results discussed
previously in this section of the effects of an increase of t on the internal structure of an AA
hold for the general case as well.

We now summarize the role of the pivot point in the following corollary.

Corollary 4: If the pivot point lies inside the industrial zone, the zone expands with t and the
residential zone contracts. Both population and employment density decline, but since more
land is allocated to industry than before and less to housing, employment density decreases
proportionally more.

If the pivot point lies inside the residential zone, the zone expands with t and the industrial
zone contracts. Population density then declines proportionally more than employment density.

Corollary 4 reveals that the location of the pivot point reflects where it is efficient to allocate

more land when the density of population/employment changes. Obviously, the allocation of
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land and with it the location of the pivot point depends on whether land is more useful in
production or in consumption.

In addition to the symmetric solutions, there may be asymmetric solutions with AAs of
varying sizes. Disregarding problems of indivisibility, each of the AAs in an asymmetric
solution will also appear in a symmetric solution of a different number of zones. Of any two
such symmetric solutions one is superior to the other and therefore superior to the asymmetric
solution. We will ignore the case where we are indifferent between the two solutions and their
mixture. Thus, there is always a symmetric global optimum.

The parameter ¢ does not always have a finite upper bound above which a separated local
optimum does not exist (note that m = oo is equivalent to case two, the solution of mixed land
uses). It might occur that as 7 grows larger, buffer zones disappear and the density of land use
in the occupied areas becomes lower and more concentrated around the boundaries of the
occupied zones. A further increase in # may cause the centers of the occupied zones to become
empty, thus changing the no-crossing points to no-crossing segments. And when ¢ approaches
infinity, the actual occupied areas in the zones shrink towards the boundaries, approaching zero
but never completely disappearing while 7 is finite. An allocation with a no-crossing segment
in the middle of the two occupied areas cannot be a global optimum, however, since a solution
with a larger number of fully occupied smaller zones is clearly more efficient. As a result, as ¢
approaches infinity, the global optimum always entails a mixed allocation.

The following Proposition concerns the decentralization of a local optimum.

Proposition 2: To implement the allocation of a given local optimum solution, a developer (or
local government) has only to choose an origin and impose on each unit of land the optimal
corrective tax of the supporting market allocation corresponding to the local optimum. Market
competition will allow any local optimum to be supported as a competitive equilibrium.
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Proof. In this section we have shown that in each decentralized local optimum both industry
and housing have different bid rent functions defined over the entire city. We also showed that
industry outbids residents in industrial zones, residents outbid industry in residential zones, and
in buffer zones both the industry and the residents do not bid. Since the bid rents reflect the
maximum amount each sector is willing to pay under these conditions, the desired local
optimum is the only outcome which can result from competition between industry and
residents.

7. Global Optimum.18

We have argued that a particular economy may have multiple local maxima, each
corresponding to a qualitatively different spatial configuration. We now develop results
concerning the global maximum. We define net surplus functions, each of which is indexed by
the integer number of zone pairs and ¢. Each of these surplus functions is declining in 7, and the
rate of decline is lower the larger the number of zone pairs. Plotting these net surplus functions
against ¢, their upper envelope indicates how the globally optimal spatial configuration varies
with 7.

Initially, when /=0, the global optimum consists of two AAs (case zero). In this case,

R,(x,,0)>0>R,(x,,0). Itis possible that any increase in #, even an infinitesimal one, will

cause the internal allocation to become the global optimum. In this section, only cases in which
separation is the global optimum for at least some positive ¢ are investigated. For simplicity,
we assume that for a given 7 each positive integer m, where 2m is a given number of AAs in the

solution, has no more than one local optimum19.

18 Proofs of the Lemmas and Propositions of this section not presented in the text appear in Appendix C of the
internet version of the paper.

19 In general, there may exist more than one local optimum for a given number of zones. The assumption made
here of a single local optimum for each m simplifies the exposition, but it is not difficult to extend the analysis to
the more general case.
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Definition 9: Let S *(m,t) designate the maximized surplus of a local separated optimum
solution with commuting cost t >0 and 2m AAs, m being a positive integer.

In what follows we investigate the number of zones in the global optimum by finding the m
that maximizes S~ for a given t.

Lemma 9: The following are properties of the function S " (m,t):

(i) 8S (mt) ot=—[ T(x)dx <0

(m. oS (m ;t
., OS (m,,t)> (m, )mej>mi

L ot

and for all t for which both functions are positive and well-defined

(iii) S"(m,,0)> S*(mj ,O) Jor all pairs fulfilling m; > m,.

Fig. 6
Maximized Surplus of Local
Optima and Threshold
S* Commuting Costs

Maximized S(1)
Surplus

t

t3)

Commuting Costs
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Lemma 9 reveals (see Fig. 6) that: (i) the slope of S *(m, t) in the (S,2) plane is non-positive
and strictly negative as long as m is finite (since |7(x)| in a separated solution is positive almost
everywhere); (ii) in the (S,7) plane at a given 7, S*(m,t) is steeper for smaller m (because |7(x)|
attains higher values in larger zones); and (iii) the intercept on the S axis of S *(m, t) in the (S,
¢) plane is decreasing with m (since pollution damages increase and therefore the value of
S *(m,O) decreases with the number of zones — see case zero for the proof) .

The corollary below now follows directly from Lemma 9:

Corollary 5 In the (S,t) plane, two S *(m, t) curves with different m's may intersect in the

positive orthant at most once (see Fig. 6).

The above corollary follows directly from (i7) in Lemma 9, which implies that the smaller is m,
the steeper is S “fora given ¢.

Lemma 10: For a given t, the global optimum allocation is the local optimum allocation for

which m" () = argmax S (m,?)(note that m (f) may be infinite for all t).
m

The lemma above follows from the definition of S” and the nature of the global optimum for
a given 1.
Definition 10. Let S" =S *(m*(t),t) be the global optimum value of the surplus as a function
of t.

Lemma 10 implies that §*(t) is the upper envelope curve of all the S *(m,t) in the (S,7)
plane. Lemma 9, Corollary 5 and Lemma 10 provide the basis for Proposition 3.
Proposition 3: Let 2m*(z‘) be the number of AAs in the global optimum solution of the problem
with commuting costs t. The function m*(t) defined in Lemma 10, is a non-decreasing step

function of t, 0<t < o,
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The proof of Proposition 3 is straightforward. Lemma 9 and Corollary 5 imply that two
S *(m,t) curves intersect only once in the (S,7) plane, and the one with lower m intersects the

other from above. Thus, if m; < m; and both are in the global solution, m, will be associated

with lower t than m ;e

> >
Corollary 6: Iftiztj, then m*(t,-)zm*(tj).

Let i index the order of m in the global optimum, i=1,...,7. 20
Corollary 7: For ie (l,...,] ) the set of all t’s for which m, = m*(t) is a connected segment of
the non-negative t axis. The intersection of each consecutive pair of segments is a single point
and the union of all I segments of t ’s exhausts the half line t >0. Finally, with i> j, if
m*(t’): m, and m”(t")= m;, then t' >1".

Corollary 7 indicates that the number of zone pairs (m) at the global optimum is a non-
decreasing function of commuting costs. /, the number of m ’s in the global optimum for some
subset of 7, can be any positive integer or infinity.

To complete the characterization of the global solution, the concept of a commuting cost

threshold is introduced.

Definition 11: Define t(m,), i=12,...,1, to be the commuting cost threshold of an allocation

with 2m; AAs. t(m;) is the lowest commuting cost in which 2m, zones are the number of AAs in

the global optimum, i.e., t(m;) = min {t| m*()=m,}.

20 For example, with /=10, and (m1 yeees My )=(1,4,6,9,1 1,14,15,19,23,25), in the global optimum for t=0 there are

two AAs and the global optimum for infinite t has 50 AAs.
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Fip, 7
Optimal Number of Zones and
) Threshold Commuting Costs in
N the Global Optimum
A
Number of Zones

in Global Optimum

0 ® ® »—> Commuting Costs
t3)  tmy) H(=)

In Fig. 7, t(m,), i=1,2,...,1 are the jump points of the step function m * (¢), and in Fig. 6
they are the values of ¢ at the intersection points of the S " curves in the global optimum. Note
that (m1 yores M ) is a set of increasing, not necessarily consecutive, positive integers whose

number / may or may not be infinite.2!

Proposition 4: The Threshold Theorem.

(i) When t increases and reaches t(m,), the number of zones in the global optimal allocation
increases from m,_, to m, and remains at this level until t reaches t(mi n )

(ii) m; = o always, even when 1 is finite and t(x) < .

(iii) my =1 and t(1)=0.

21 In the paper we assume full divisibility of all variables, as is often done in urban economics and other branches
of economics. The number of zones is an exception because it must be an integer variable. However, the zone's
size still satisfies this assumption. In practice, when residential zones become too small to contain even a single
household, the optimum is either the solution with a smaller number of zones, each with a single household, or the
mixed solution which is also a local optimum, whichever is more efficient.
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Proof: Part (i) follows from the definition of () as the lower bound of all #’s having the
same number of zones in the global optimum, and m; > m,_; by construction; (i7) follows from
the fact that the mixed solution, which is equivalent to a solution with an infinite number of
zones, 1s always the solution when 7 becomes sufficiently large to deter commuting, so the
value of S (o0, #) is independent of #; and (iii) follows from the fact that case zero is always the
solution when 7 = 0.

The following proposition concerns implementation of optimal corrective taxes, this time in
the global optimum.

Proposition 5: To achieve global efficiency, including the optimal zoning allocation, a

developer (or a local government) has only to levy at every location x the corrective tax per

unit of land of the global optimum solution . The global optimal corrective tax is the corrective

tax Q(x) for the particular local optimum solution that is the global optimum for the given t. 2

The proof follows directly from Proposition 2.

8. Concluding Remarks.

This paper characterized the social optimum in a spatial economy with pollution, and its
decentralization. Its main innovation over previous literature is that land use is completely
endogenous. The model is of a ring-shaped economy with residential and industrial land use.
Employing a constant-returns-to-scale technology, firms use land and labor to produce a
composite good, with emissions as an undesirable by-product. Households supply fixed labor

to firms, to which they commute, derive utility from housing and the composite good, and

22 Note that the optimal corrective taxes are very complicated to compute, especially since taxes vary from one
location to another. Regulations on emissions, as suggested in Hochman and Ofek [9] may prove more practical to
implement.
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suffer disutility from the concentration of pollution at their place of residence. The optimal land
use pattern is then determined by the tradeoff between pollution and commuting costs.

At one extreme, when transport costs are high, firms and households are completely
intermixed; commuting costs are eliminated but pollution concentration at residential locations
is high. At the other extreme, when pollution is highly noxious, households crowd together at
one end of the ring and firms at the other end, with buffer zones in between; commuting costs
are high but pollution concentrations at residential locations low. Between these two extremes
is a wide range of possibly optimal land use patterns — different numbers of pairs of residential
and industrial zones, perhaps with buffer zones.

Our specification of the mapping from the spatial distribution of pollution emissions to the
spatial distribution of pollution concentrations is more general than previous specifications in
the literature, though still not completely general. Under our specification, the global optimum
can be decentralized with a spatially differentiated tax per unit of industrial land set equal to the
additional damages caused by the total emissions from the unit of land, evaluated at the social
optimum. A spatially differentiated Pigouvian tax — a tax on emissions — will not
decentralize the optimum.

To focus on essentials, our model contained only two forces whose interaction determines
the pattern of land use. Commuting costs are an attractive force between residences and firms,
pollution a repulsive force. As well, we considered an ex anfe homogenous space to abstract
from edge effects/spatial inhomogeneities. However, our model could be enriched to
incorporate other forces affecting optimal land use, such as the scale-economies-agglomeration

(SEA) treated in Lucas and Rossi-Hansberg [11]23.

23 First, consider the laissez-faire allocation when the scale-economies-agglomeration a la Rossi-Hansberg are
introduced into a ring-shaped city without pollution. When transport costs are zero, there will be one industrial
and one residential area, with two NC points, one located at the midpoint of each area. The two boundaries
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Future research should investigate how pollution from stationary sources interacts with the
other forces which have been identified in the literature as affecting the pattern of land use:
returns to scale in production, spatial inhomogeneity, linkages, product variety, spatial
interaction, traffic congestion, and automobile pollution. A natural extension for further
research is to allow population groups to differ in skills, wages and thus utility levels with

distances from polluting firms related to household income levels.

between these two areas are straight lines, and the industrial and residential areas are completely separated. The
rent function in the industrial zone has a maximum at the NC point in the middle of the zone and monotonically
declines as a decreasing rate when moving towards the boundary. At the boundary, the rent function is kinked and
becomes constant throughout the residential area. The density of employees follows the industrial bid-rent
function, having its maximum in the center and declining towards the boundary. The density of households is
constant in the residential area.

When commuting costs (in Lucas and Rossi-Hansberg, they are of the iceberg type) increase, the whole
rent function shifts down and in the residential area slopes downward from the boundary to the NC point. With
further increases in commuting costs, the boundary line becomes a boundary zone within which industry and
households are mixed. As commuting costs are further increased, at some point, the two areas will split into four,
and so on.

Now augment the model with two areas so that factories pollute. The rent function and the density will
decline in the two areas, especially near the boundary zone, which shrinks and becomes a boundary line once
again. The rent function in the residential area becomes flatter. As pollution becomes increasingly severe, rent and
density decline even more near the boundary line and may disappear, with a buffer zone appearing. The rent
function in the residential zone near the boundary line may increase before it starts declining again. When optimal
pollution taxes are levied, rents and density increase and the buffer zones shrink or disappear.
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Appendix A (for Publication)

Derivation of the First-Order (Kuhn-Tucker) Conditions for a Local Optimum

Let L be the Lagrangean of the model, where the variables, constraints and shadow prices are as

defined in sections 2 — 4 of the paper.

A1) L=[ fa(x)fin(x).e (x))—(Zgi;z(x)+|T(x)|t)]dx+ﬁx(x)[U(h(x),z(x),c(x))-Uo]dx

# [0 = [, a0ID"er)x kv [ 2aD Tew)y -l +

b(y)

Hy) OOy - [ To(x)a(x)+ bx) 1) - r{x)alx)- alx)olx) e

e -[172

It should be noted that{(x), the shadow price of the commuting constraint, is different from
‘P(x), the co-state of 7(x) as defined in the text. We elaborate below on the relation between

the two. The necessary conditions are as follows.?4 2

(42)  n(x)  a(x)[f,(x)+ f c(y)dy]l=

U3) ) @A MID e, y-ndy - [ L NOIDT (@), x= )] =0

24 The variable of differentiation is noted on the left-hand side of each equation. Note that a function with a
number as a subscript indicates derivations of the function with respect to the variable of the order of the subscript.
25 With a slight abuse of notation, f(x)= f(n(x), e(x)) etc.
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U9 aw O] n0)D e,y —xdy+

# [, MO (e )1+ () [ )y = p()1()=0

A9 W ) AW, () [ £ =0
h(x)?
(46)  b(x) h(("; h(l 5 L6t di= peo+ uo =0

(47) 2(x) E ;+/1(x)U (x)=0

Since |T'(x) = [sign(T (x))]T (x), differentiation of L with respect to T(x) yields:26
(A8)  T(x) signT(x)lt+(x)=0
(49) c(x) AU (x)+1(x)=0
Define the co-state of T(x) to be W(x):
(410)  W(x) = [ {()dy
Then

(410" W(x)=C(x) =[signT (x)].

26 Sign(c) is differentiable and its derivative equals zero everywhere except at x = 0 where the derivative is not
defined. The function sign enables differentiation of |T (xj everywhere except at x = 0.
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Substituting out {'(x) from the above equations using (4 10), and then eliminating A (x)
from the equations by substituting from (4 9), we obtain the necessary conditions as specified in

the text.
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Appendix B (not for publication)
Proofs and Derivations

Proof of Lemma 1:

Consider the boundary points of the zones in an optimal allocation, e.g.x, and x,, x, < x,, as

depicted in Fig.3 of the paper. The bid-rent rule implies that at such boundary points the slopes

with respect to distance (designated by a dot over the function) of the bid-rent functions must

fulfill R, (x,)>R ,(x,), otherwise the allocation is not optimal. Suppose, only for the sake of

proving a contradiction, that R, (x,) < R , (x,), then industry outbids housing in the residential
zone and housing outbids industry in the industrial zone. Switch the location of a single
household at x, and a firm occupying the same amount of land at x, . Since industry outbids

housing in the residential zone and vice versa in the industrial zone, this transfer increases total
rents. It also increases total pollution damages since it shortens distances between polluters and

pollutees. Total pollution taxes therefore increase as well. According to the Henry George rule
L
( L[r(x) +Q(x)]dx = §), total rents and optimal taxes together constitute the goal function.

Since the switch increases the goal function, the initial allocation is not optimal; a

contradiction. Hence R, (x,) £ R, (x,).

Calculating the Spatial Derivatives of the Bid Rent Functions

We differentiate the bid-rent functions with respect to distance x. First we differentiate Eq. (17) at

locations where a(x) > 0 and substitute (7), (8), (13), and (14b) into the result to yield:

R[ = f,e—ny — Q
(B1) = —Sign[T(x)]t n+{n(x+L/2)[D"(e(x),L/2)— D (e(x),L/2)]

. £+% 1) D5 (e(x), y — X)dv) — f_% n1(»)D; (e(x),x — y)dy
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Use has also been made of the continuity assumption D" (e, 0) = D" (e, 0)and
n(x+ L/2) = n(x — L/2) (because (x + L/2) and (x — L/2) are the same point.)

U,(x)
U (x)

By differentiating (1) with respect to x and substituting R, (x)= into the result, we get the

expression R,jz +z+(U,/U,)¢= Rhfz + z —hn ¢ =0, where the second equality is obtained by

substitution of (12) with b(x)=1 into the first equality. We then differentiate (17) and substitute

R, (x)= U,x) into the result to obtain the first equality:
U. (x)
4 ) 1 . U.(x) .
B2a R, =—-nc=——[sign|T(x)|t + ——c(x
(B2a) V= e g el el

The second equality is obtained after substitution of (12) and (8) into the previous term.

Differentiating (2) with respect to x yields

&)= [, aDle(y),x = vy = [ 2 a()D; e(),y — 1y

—a(x+ L/2)[D" (e(x — L)/2),L/2) = D~ (e(x + L/2), L/2)]

(B2b)

where once more we have made use of the facts that x + /2 = x — L/2 and that
D" (e, 0) = D™ (e,0). Substituting (B2b) into (B2a) yields the desired expression for R i

Buffer Zones and Boundary Conditions In a Two AA’s Case

In Fig.3 of the paper the following chain of inequalities holds:

(B3) 0<x <x,<x;<x,<L
where x,, i =0,1,2,3 are the boundaries of the different zones. A necessary condition for optimal

boundaries is R,(x,) = R, (x,) and R,(x;)= R, (x,). If x, = x, and x; = x, buffer zones do not
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exist and there is only a residential zone and an industrial zone. However, if in the optimum only
strong inequalities hold between the boundaries specified in (B3), the solution also includes buffer
zones.

A segment of the ring is a buffer zone if for all x of the segment, R,(x)<0, R, (x)<0 (by
saying that R, (x) <0 we mean that if z(x) fulfills U(o0,z(x),c(x)) =u,, then
W (x) - z(x) (=h(x) R,(x))<0). At the boundary of a buffer zone and an industrial zone R,(x)= 0,
and at the boundary of a residential zone and a buffer zone R, (x) = 0. Additional necessary

conditions for the general zoning case are:

R/(x)< R (x)>0 forx,<x<L; and 0 <x <x,
(B4)
0<R,(x)>R,(x)forx, < x<x,

and the following conditions are specific to buffer zones.

R (x)<0, R(x)<0 forx, <x=<x, and x; < x <X,
(B5) R,(x,) =R,/(x;)=R/(x,)=R,(x;) =0 and
R,(x,) <0, R(x;)<0 R(x))<0 R (x,)<0

Since we use the assumption D" (e,y) = D™ (e,y)(Assumption 1) and disregard problems
of indivisibility and multiple optima, there is complete symmetry between north and south. That is
0O, the line through the origin and the second NC point, divides the circle into two halves and
serves as an axis of symmetry between two mirror images. Thus x, +x, = L = x, +x;; see Fig. 3,

which depicts a case where this assumption holds.

Application of the Bid-Rent Rule to Case Zero:

Consider first the southern boundary of the residential zone, x, . It is either an intersection

point of the two bid-rent curves and there is no buffer zone south of the residential zone, or
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R, (xg)=0, R,(x;)< 0 and an empty buffer zone exists between the residential and industrial
zones (see Fig. 3 ). Since in case zero =0, the first term in the RHS of (B2a) disappears. The
second term there depends on c'(xg ) given in (B2b). The assumption D (e, y) = D (e,y) =D(e,y)
implies that the last term of c'(xg ) is zero. Upon substitution of x=x, and the above symmetry of

the dispersion functions assumption into (B2b), we obtain

0 0
0 o+/
0

B6)  é(x)= |, 1, 9D, [e(y). Xo — yldy - f 2 a(y)D, e(y),y - x01dy

There are four cases:

No buffer zone (x; =x;, and x; =x{ ), and x| + L —x{ > x| —x;

0 0 0 0
No buffer zone, and x; + L —x, <x; —x,

0 0 0 0
Buffer zone , and x, + L—x, > x; —x,

0 0 0 0
Buffer zone, and x, + L —x, <x; —x,

The condition x{ + L — xj > xy — x, is that the residential area exceeds the industrial area and vice

versa when the inequality is reversed. In all cases, the first term on the RHS of (B6) is negative
since a(y)> 0 for at least a subset of (xg - %,x? ) and zero elsewhere, and since D, []<0.

In cases I and III, the second term on the RHS of (B6) does not exist since the boundaries of
the integral are an empty set. Since ry(xg )> 0 (from (12)), from (B2a) in Case I,
R, (xf ): R, (xg )> 0, and R, (xg): Rh(x3)> 0 while in Case III,
R,(x)>0,, R,(x0)=0>R,(x?).

Now consider the other two cases. The second term of (B6) is derived from the contribution

to concentrations at x, of the segment (xg ,Xg + % ) of the industrial area. Mirror symmetry
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implies that the segment (xlo + L/ ,xf) contributes to x, the same amount of concentrations.

Thus,
-[ P a()D (), y - ¥y = .[% a(y)D"[e(),x] + L~ yldy

A shift of x{ in the positive direction decreases the left-hand side of the above equality the same

way a shift of x;’ in the negative direction effects the right-hand side. Thus, the second term on

the right-hand side of (B6) can be written as

def

ST = fé a(y)D;[e(y),y —x, 1dy = f

0
2

RamDitemy - = [,

a(y)D; [e(y),x] + L - yldy
The first equality above uses a(y)=0 for y e (xg ,X5 + L), note that x, and x; + L designate the

same point. The second inequality above follows the discussion above.

The first term on the right-hand side of (B6) can be broken down as

W+l + 3 +
FT = O_Léa(y)Dz [e(y),x = yldv + [, 1, A)D; [ey),xy = yldy
() 1v2

Subtracting ST from FT yields

: "+ s : + N
ély)= [, aD;le). w = iy + [, a)DI[e(r),x3 = y1=DiTe(y). ) + L=y
0" 172

When D;,>0 the second integral in ¢ above is negative as well as the first and therefore the whole
expression. When D,,<0, however, the second term is positive and therefore the sign of c'(xg)

may theoretically be positive. Note, however, that when D,,<0, both D,(e,y) and D(e,y) disappear

for relatively small y, so that the second term of the second integral in é(xg ) above may be non
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existent. If however, if the term does exist, é(xg ) can never be positive since then R, (xg) is
negative which means that the housing bid rent in the residential zone is negative and outside the
residential zone it is positive—a contradiction. Therefore either c'(xg) is negative or the internal

mixed solution holds.

Consider now R s (xf ) By substituting 7=0 and D" = D" the first line in the RHS of

(B1) disappears. Equation (11) with b(x)=0 outside the residential zone implies

ny) =0, forx] <y< xg. Consequently, the integrals in the second line of (B1) reduce to the

segment x; <y <x, + L only. There are two cases to consider. In the first, the industrial zone is

larger than the residential zone; in the second, the opposite is true. When the industrial zone is

larger than the residential zone, f (y)D; (e(x3° ),x3° - y)dy =0 (none of the pollution from x;

1,1

that travels counter-clockwise reaches the residential zone). As a result
. o +L N
R1<x30): J:;) 77(3/)02 (e(xé)),y—x;))dy <0.
When the industrial zone is smaller than the residential zone, the second term of (B1) for x; is

0 0L . . -
E_ y n(»)D;[e(x)),x] — y]dy = ,[32 % n(»)D;[e(x)), y — x21dy where the equality in the expression

2

follows by mirror symmetry. Substituting the above into the remaining second line of (B1) yields

By (52)= [} nOMD: ey = x0) Di ey =iy + [, (D Teted)y a7

When D;,<0 the second term in the first integral, as before may be non existent. If, however, the

first integral is positive, R, (x;) ) cannot be non-negative because then the industrial bid rent is

negative in the industrial zone and positive outside the zone. In that case a zoning solution is

impossible and the internal mixed solution holds.
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Since x, and x| are boundary points they are also points of intersection of bid-rent
curves and as such satisfy the bid-rent rule. Our results imply that north of x, residents outbid
industry and south of x; industry outbids residents. When there are no buffer zones x{ = x!, and
R, (xg ) =R, (x;) ) = r(xg =Xy )2 0. The rent function at this boundary is not differentiable and has a

positive derivative in the positive direction of the x-axis and a negative derivative from the

negative direction. Where are buffer zones r(x? ) =R, (x;) ) =0>R, (xg ) .

In complete mirror symmetry to the case of x, and x;, we can obtain expressions for the
slopes of the bid rent functions in x{and x, . The results imply that south of x residents outbid
industry and north of x) industry outbids residents. When there are no buffer zones x, = x;, and
R, (xlo ) =R, (xg ) = r(xlo = x;’)z 0. The rent function at this boundary is not differentiable and has a

positive derivative in the negative direction of the x-axis and a negative derivative in the positive

direction. Where are buffer zones r(xg ) =R, (xg ) =0>R, (xg)
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Appendix C (not for publication)
Further Proofs

Proof of Lemma 4

The commuting cost parameter ¢ appears in the necessary conditions explicitly only in the
expression of i (Eq. (8)). We already established that choosing the NC point of the residential
zone as the origin makes 7(x) positive clockwise of the origin up to the second NC point at L/2,
from which point on sign(7(x)) is negative up to x=L. Substituting +1 and -1 for sign(T(x)) in

t for 0<x<L/2

the appropriate places in (10) yields, y(x) = {—t Jor Li2<x<L

} which upon integration

yields (21). From (7) we know that y/(x) in the industrial zone is equal to the wage at x and
from (11), the budget constraint, that in the residential zone, w(x)is the LNE — household
earned income after commuting costs have been deducted. From (21) it is clear that the highest
wage is at x=L/2 (O in Fig. 3). In the residential zone, /(x) is independent of work location

and depends only on place of residence.

Proof of Corollary 3

Differentiating (21) with respect to ¢ yields

(C1) é’y;(tx) = é’y/(ﬁxtz;t) +(x—x2), Jor 0<x<L/2,

where x, is the boundary of the industrial zone and the term Jy(x,;#)/ 0t represents the change
in the wage rate there when # changes. dy(x,;f)/0t is essentially a shift parameter since it is
independent of location.
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Proof of Lemma 5

The generalized Henry George rule (see Arnott [2]) implies that the net city surplus
L
satisfies S = J.Or(x)dx + fQ(x)dx (see also Hochman and Ofek [9]) where #(x) equals R, (x) in

the residential zone and R,(x) at the industrial zone. The Envelope Theorem therefore implies

o f r(x)dx = _9 f QO(x)dx where y. is any control variable or shadow price, except for a(x)
ox,; ox,;

and b(x) whose derivatives are everywhere zero except at the boundary points where they are

discontinuous. Of these variables only 7(y) and e(x) appear in Q(x). Since in the residential
zone where Q(x) is zero, r(x) = R, (x) we have R, (x)/y,(x) = -0 Q(x)] dy,(x)=0, and in the
industrial zone where r(x) = R,(x), the non- zero differentials are

R, (x)]On(y) = -0 Q(x)] on(y)and R,(x)/e(x) = - Q(x)] (x). However we observe in (12)
that 77(y) is independent of 7, and from the rest of the production equations so is e(x) (actually
‘P(x) is the only variable which depends on ¢ and it does not appear in Q). From (14b) Q is also
directly independent of ¢, hence 6Q/0¢=0. Consequently by differentiating (16) with respect to ¢
we get
(C2) dR,(x)/dt =cR,(x)/3t=-n(x)¥(x)/Ot.

Similarly, by differentiating (17) we obtain

(C3)  dR,(0)dt = R, (x)/ 01 =—— (¥ (x)/1))

h(x)

Proof of Lemma 6

Differentiating (C 2) with respect to x yields
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)01 =-n(x)(@w(x)for) i (x) v (/o1
(C4) :—n(x)szgn(T(x))-i- Ei( /8t)

S-

And differentiating (C 3) gives

aR(x)/at - (lx)(a\p(x)/at Z’Ei)( /az)j

_sign (T( )) (x)(@Rh (x)/@t)
h(x)

We are still looking at the northern hemisphere in the two AA’s case. Consider the RHS

(C5)

of the second equality in (C4). The first term is always negative. The second term has the sign
of & R,(x)/Jt which is negative except in Pattern B near the boundary where R, increases with
and with it the whole term. Thus, the RHS of (C4) may or may not increase at such locations,
depending on the relative size of the two terms.

A similar argument holds for (C5) but with an opposite sign.

Proof of Lemma 9:

We obtain (i) in the lemma by differentiating (6) with respect to # and utilizing the

Envelope Theorem. When m approaches infinity, AA’s become infinitesimal and therefore
commuting costs approach zero. The solution then approaches the mixed solution of case two. An
informal?’ proof of (i) is as follows: An increase in m implies shorter commuting distances and
shorter distances for pollution dispersion before concentrations reach residential land use. This
implies that in two allocations with the same ¢, overall commuting costs are lower and overall
concentration levels higher in the allocation with more zones. Since an increase in ¢ is costlier,

when commuting distances are longer and therefore causes a larger reduction in the surplus, the

27 A formal proof of these statements can be devised along the following lines. Consider (i) in the Lemma.
Increasing the number of zones while keeping ¢ constant, shortens commuting distances thus the highest values of

|T (x)l are replaced with lower absolute values. Accordingly the total value of the integral is reduced.
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function S (m,¢) is steeper (has a more negative slope) with respect to 7 the smaller is m. To
prove (iii): The smaller is m, the larger is " (m,0), because commuting costs are zero for all m

while concentrations are lower when m is smaller.
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