The Role of Risk Attitude in Preference Rankings of Vaccine Use for Foot and Mouth Disease Eradication in the U.S.

Amy D. Hagerman
Post-doctoral Research Associate
The National Center for Foreign Animal and Zoonotic Disease Defense
Department of Agricultural Economics
Texas A&M University

Bruce A. McCarl
Distinguished Professor
The National Center for Foreign Animal and Zoonotic Disease Defense
Department of Agricultural Economics
Texas A&M University

Hen-I Lin
PhD Candidate
Department of Agricultural Economics
Texas A&M University

Poster prepared for presentation at the Agricultural & Applied Economics Association 2010
AAEA, CAES, & WAEA Joint Annual Meeting, Denver, Colorado, July 25-27, 2010

Copyright 2010 by A.D. Hagerman, B.A. McCarl and H-I Lin. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies.
The Role of Risk Attitude in Preference Rankings of Vaccine Use for FMD Eradication in the U.S.

Amy D. Hagerman\(^1\), Bruce A. McCarl\(^2\), and Hen-I Lin\(^3\)

\(^1\)Post-Doctoral Research Associate, \(^2\)Distinguished Professor, \(^3\)PhD Candidate
Department of Agricultural Economics, Texas A&M University, College Station, TX

Introduction

The increasing global incidence of outbreaks of foreign animal disease has renewed interest in the use of emergency vaccination as a means of suppressing disease spread, particularly in response to a foot and mouth disease (FMD) incursion. It would seem that, since a viable vaccine is available, vaccination would be an important part of a FMD response policy. The benefits of emergency vaccination are offset by significant costs, which cause emergency vaccination to be a cost inferior strategy. Here emergency vaccination is examined using FMD epidemic scenarios for the Texas High Plains and the Central Valley of California using a national agricultural sector economic model that includes an epidemic cost component and an economic choice component.

Emergency FMD Vaccine Use

- "Emergency" vaccination used to slow disease spread, confining it to a smaller region.
- Inoculating animals in either a ring around infected premises or on targeted premises.
- High cost of implementation, including additional stress on scarce resources like skilled labor.
- Vaccine to Die: leads to higher slaughter rates when inoculated animals must be euthanized along with infected animals.
- Trade implications can be extensive, but by slaughtering all animals vaccinated the trade implications can be reduced to the same level as with no vaccination.

Whether or not emergency vaccination is a part of the US disease response policy depends on whether it is both epidemiologically and economically sound in comparison to a policy of eradication through slaughter alone. We consider BOTH vaccination as a cost reducing strategy AND vaccination as a resiliency increasing (risk management) strategy (i.e. its ability to reduce the chance of an extreme outcome).

Integrated Modeling Method

Discussion

- Emergency vaccination does reduce disease related slaughter.
- Emergency vaccination also increases total disease eradication cost and total economic cost.
- Emergency vaccination does result in smaller incidence of high loss outcomes in the probability distribution of economic loss outcomes.

Emergency vaccination was found to be a viable option for increasing resiliency but not a cost minimizing policy. The results differed in strength in dairy as opposed to feedlot regions. Namely, when animals are not slaughtered after vaccination then we find in a dairy, where the benefits are a flow of milk that may need to be dumped, that vaccination is more valuable than where the animals continue to grow and are then sold (as in a feedlot).

Conclusions

Vaccine Preference Ranking

- Risk Neutral: Weighting outcomes equally.
- Risk Averse: Weighting high loss outcomes more heavily.

Time to Recover “FMD Free” Status

- Vaccination Strategy: A 100% vaccination in the first 90 days of FMD incursion.
- Vaccination Strategy: A 50% vaccination in the first 210 days of FMD incursion.

Supporting Documents

Acknowledgements

This project was funded through the Foreign and Zoonotic Diseases Defense (FAZD) Center of Excellence by a grant from the Department of Homeland Security, Science and Technology Directorate, Office of University Programs. Special thanks are extended to Dr. Michael Ward, Dr. Linda Highfield, Josh O’Brien and Dr. Tim Carpenter for providing the epidemic data.

For information, please contact: Dr. Amy D. Hagerman, Department of Agricultural Economics, Texas A&M University, ahdagerman@ag.tamu.edu.