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In the paper, preliminary results of the analysis of potential use of climate forecast information in
designing rainfall index insurance in the southeastern region of the U.S. are reported. Joint
distributions of bi-monthly rainfall and EI Nino Southern Oscillation (ENSO) indexes are
estimated using copula analysis of historical data. The risk reducing effectiveness of introducing
premiums conditional on ENSO forecast is evaluated. The results indicate some dependence of
the downward volatility of rainfall on the lagged ENSO (forecast) index, particularly in the
coastal areas and in the late winter and spring.

JEL codes: Q14, Q54



Introduction

Over the past decades, several alternative designs of agricultural crop yield and revenue
insurance have been tried in an attempt to increase participation rates and to lower the loss ratios.
Some programs were aimed at reducing the moral hazard and adverse selection issues inherent in
insurance contracts and some tried to make contracts more efficient (cover larger portions of
risks born by the producer) by utilizing new methodologies and data. The two objectives are
often in conflict as exemplified by the tradeoff between the area-yield (GRP) and farm-level
(APH) yield insurance. Up until recently, none of these pilot designs were ultimately successful
(Glauber, 2004).

One of the promising venues in the agricultural insurance design is index insurance that
largely avoids the moral hazard issues and is especially applicable for crops and areas with
limited yield/revenue records. While the GRP has been relatively successful, rainfall index
insurance has been showing promise where agriculture is more rainfall dependent and reliable
yield records are lacking (Skees, 2008). In the United States, rainfall index (RI) insurance and
vegetation index insurance (V1) were offered as pilot programs starting 2007.

The RI insurance started in 2007 as pasture, rangeland, and forage (PRF) crop insurance
program in ten states and expanded to another seven by 2009. PRF is a group risk policy that
covers livestock grazing and forage land and is based on one of two bi-monthly indices: a
Rainfall Index and a Vegetation Index. The Rainfall Index uses National Oceanic and
Atmospheric Administration data. Insurance payments to a producer are calculated as a deviation
of the actual bi-monthly rainfall index from the covered portion of the normal/average RI within
the area. The Vegetation Index uses the Normalized Difference Vegetation Index (NDVI) data
from the U.S. Geological Survey Earth Resources Observation and Science data center.

Currently, the premiums for the RI insurance are calculated using historical time series data
pooled over all inter-annual climate conditions. However, climate research on the southeastern
region of the country indicates a significant relationship between (seasonal) rainfall and
continuous EI Nino Southern Oscillation (ENSO) index (Hansen, Hodges, Jones, 1998;
Gershunov, 1998; Agroclimate.org). The ENSO indexes measure the deviation of the central
Pacific sea surface temperatures from normal values and are used in classifying years as EI Nino,
La Nina, or neutral. The peculiarity of the annual ENSO phenomenon is that the indexes
measured in late Fall usually persist for 6-10 months making the indexes a potentially useful
forecast information. If the (insurable) rainfall depends on the ENSO index and the index is
predictable, incorporating the ENSO forecast information in contract design may increase the
efficiency of the RI insurance.



In this research, preliminary results of statistical analysis of bi-monthly rainfall and long-
term climate variability (ENSO indexes) are presented along with calculations of risk-reducing
effectiveness of incorporating long-term climate forecasts in the RI insurance. The main
conclusion is that conditioning the RI insurance premiums on the end of last year ENSO index
may increase producer welfare by further reducing the downward volatility of bi-monthly
rainfall, at least for the winter and spring seasons and particularly in coastal areas.

The rest of the paper is structured as follows. Section 1 presents a brief methodology
description followed by Section 2 describing the data. Results are presented in Section 3.

1. Methodology.

The objective of this research is to evaluate the usefulness of long-term climate forecast
information in the RI insurance contract design. A particular aspect of using this information is
chosen, which is conditioning the premiums on the forecast. At the present stage, the analysis is
abstract from the actual subsidized rates established by the USDA’s RMA, focusing instead on
the actuarially fair premiums. The rationale behind this approach is that, conditional on no
expected income transfer, actuarially fair premiums are the best at consumption smoothing and
maximizing the insured’s utility. In the framework of basic insurance analysis, charging uniform
fair premiums over realizations with different distributions is worse, in terms of consumption
smoothing, than charging separate different premiums for each distribution if the distribution
differences are known. Thus, over a period of numerous realizations of the insured variable,
conditioning the premiums on information that affects the variable’s distribution increases the
expected utility of insured outcome, or certainty equivalent revenue, of a risk-averse agent (while
preserving the expected income of the insurer).

At present, the RI premiums are calculated using pooled historical rainfall data for the
last 50+ years. However, climate research suggests that rainfall in the southeastern region
depends on the ENSO phase (EI Nino, La Nina, and neutral) the strength of which is measured
by the continuous Nino and JMA indexes. The peculiarity of the ENSO phenomenon is that the
value of the signal at the end of a calendar year usually persists until the late summer of the next
year (hence years are categorically classified as EI Nino, La Nina, or neutral). Incidentally, the
RI insurance contracts are signed also by the end of the year. Thus, the end of year ENSO index
represents forecast information that may affect rainfall distributions. Accommodating this
forecast information in the premiums may benefit the producer in terms of further consumption
smoothing. Again, the premiums are assumed fair but adding a proportional loading factor would
not change the ordinal results. The approach is thus to

1) estimate rainfall index distributions conditional on the end of previous year ENSO

index representing long-term climate forecast,



2) calculate the conditional and unconditional (pooled) premiums, and
3) estimate rainfall volatility reduction from applying conditional premiums using
reliable historical rainfall index data for four locations in Alabama.
In addition to that, for the purpose of verifying the existence of a relationship between ENSO
indexes and rainfall, bivariate kernel densities are estimated and their plots are examined. As we
are interested in the forecast value for insurance, the impact of ENSO on local rainfall is also
estimated using quantile regression.

Pending some indications of a relationship, joint densities of historical bi-monthly rainfall
and ENSO indexes are estimated using copulas. Copula modeling is employed when
- historical data series are too short for traditional (non-)parametric density estimations.
Reliable rainfall data span only 59 years; ENSO-specific series are even shorter
- marginal distributions of jointly distributed variables are of different families, and
- variables are non-linearly correlated

Copulas are functions that combine marginal distributions of jointly distributed variables into
their joint distributions. The connection between copulas and probability distributions is
established by the Sklar’s theorem stating that for any group of jointly distributed variables there
exists a unique copula (Nelsen, 1999). The usefulness of copulas comes from the fact that, once a
copula has been estimated, it can be used to construct joint distributions by combining variables
with different marginal (e.g. parametric) distributions, which is handy in cases like farm revenue
insurance where yields may be modeled as Beta and prices as log-normal distributions (Tejeda
and Goodwin, 2008). Copulas can also be used for generating Monte Carlo series based on
estimated marginals and ultimately utilized in contract optimization (Vedenov, 2008). The
primary advantage of the copula approach is that it allows for joint distributions with dependence
structure other than linear correlation.*

In order to accommodate seasonal differences in rainfall, annual series are constructed for
each insurable bi-monthly period. Parameters of both ENSO index and rainfall marginal
distributions are estimated by fitting and choosing among alternative distributions (Beta,
Gamma, Lognormal, Normal, and Weibull). Then, cumulative densities are calculated at each
observation. According to the probability integral transformation, these densities are then used in
estimating the correlation parameters of a copula (Gaussian and t). Then, a large number of
jointly distributed draws with uniform marginals are generated from the estimated copula. These
draws are then converted into simulated ENSO index and rainfall index data by applying the
inverse of the fitted marginal distributions. Conditional distributions of rainfall are formed for an
arbitrary number of ENSO index intervals (10 or more, representing long-term forecast) and used
for calculating the fair premiums for each interval (forecast). Any consistent patterns in the

! For a brief technical description of copulas, see Vedenov. For a detailed discussion, see Nelsen.



ENSO-conditioned premiums (expected loss ratios) would indicate predictable differences in the
downward volatility of rainfall and therefore of some value of climate forecast information.

Insurance outcomes are simulated for historical rainfall and ENSO index data using the
premiums conditional on the ENSO index and premiums calculated with pooled data. Ideally, a
tri-variate density of ENSO index, bi-monthly rainfall index, and hay/forage yield should be
estimated, but the lack of monthly yield data made this exercise impossible. Resorting to the
second best, volatility of insured rainfall as an (very) imperfect proxy for yields is estimated
(yields are positively correlated with rainfall except for floods).

Financial literature uses several measures of performance of risk-reducing innovations
(mean-variance analysis) such as value at risk (VAR), mean root square loss (MRSL), and
certainty equivalent revenues (CER). In production analysis, comparison of certainty equivalent
revenues is perhaps the best indicator of net benefits from risk reduction, as agricultural
producers are usually viewed as risk averse and the level of aversion matters (Schnitkey,
Sherrick, and Irwin, 2003). For the utility function, constant absolute risk aversion (CARA), or
negative exponential, specification of the form U(R)=1-exp(-A*R) is used. A is the coefficient
reflecting the level of risk aversion. As assigning different values of A has led to some confusion
in interpretation of estimation results (Babcock, Choi, and Feinerman, 1993), assumptions are
made about risk premium levels rather than the risk aversion coefficient. Risk premium is a
percentage (share) of the expected stochastic income an individual is assumed to be willing to
give up in order to eliminate all risk. Most common values for range from 30% to 5% (Vedenov
and Barnett, 2004). Having assumed a risk premium of 4, the risk aversion coefficient A is
obtained by numerically solving a fixed point problem via function iteration by equating
expected utility of revenue to the utility of expected revenue scaled by the risk premium.

2. Data Description.
The states that are currently fully or partially covered by the RI insurance are AL, CO, ID, MO,
MT, ND, PA, SC, and TX, KS, NE, NY, NC, OK, OR, SD, VA, WY are covered by the VI
insurance. The geographical scope of this research at its current stage is limited to locations in
Alabama but the locations present a variety of southeastern regions ranging from coastal to far
inland, which is important for differentiating the ENSO impact on rainfall that is usually the
strongest in the coastal areas. The locations are the four experiment stations in Fairhope (on the
Gulf coast), Headland (close to the coast), Chilton (mid-state), and Belle Mina (northern part of
the state, inland). Experiment station data was chosen as the most reliable.

Rainfall data are publicly available from the CPC (Climate Prediction Center) and local
meteorological sources. Historical data on the rainfall index (RI) are insurance are available from
the USDA’s RMA online databases. Monthly rainfall data are also available from meteorological
databases and is highly correlated with the RMA’s RI data. Two ENSO indexes are used for
explaining the rainfall: the Nino 3.4 index and the JMA index. The Nino 3.4 index measures SST
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anomalies and has been suggested as one of the most suitable for explaining climate variations in
the Southeastern United States

(http://gcmd.nasa.gov/records/fGCMD_NOAA NWS_CPC_NINO34.html). The JIMA index is
highly correlated with the Nino 3.4 index and was designed by the Japan Meteorological Agency
(JMA) for determining EI Nino and La Nina events. Monthly and weekly data on these indices
are available from the NASA online database.

Monthly hay yield data would be highly desirable for the analysis of efficiency of rainfall
index insurance. Unfortunately, we have not yet been able to procure the data even from the
experiment station locations. To the best of our knowledge, simulated data on certain grass yields
are being generated at the University of Florida. It is expected that the monthly hay yields are
highly correlated with rainfall, which is confirmed by analyzing annual rainfall and annual hay
yield data in Alabama available from the NASS database. However, the annual data
correlation/distribution was not utilized in this analysis because the joint densities of monthly
distributions are likely sufficiently different for the annual data to be of use.

3. Results.

In order to infer the level of dependence of local rainfall on the ENSO signal, a brief examination
of the data was conducted. Figure 1 shows bivariate kernel densities of rainfall and Nino 3.4
index averages over October-December of previous year for the most coastal (Fairhope) and
most inland (Belle Mina) locations. Last year averages of the Nino index are used as the closest
proxy for conditioning the premiums on climate forecast before the contracts come in force.
While maybe not easily discernable, the mass is shifting from low Nino 3.4 and low rainfall to
high Nino 3.4 and high rainfall indicating a positive dependence, particularly on the coast
(results using the JMA index are similar). However, the relationship becomes more and more
vague with the lag between the index and the rainfall period (later in the year).

As we are interested in the insurance implications of using climate information and
therefore in the downward volatility (expected losses) of the insured variable, quantile
regressions were run on lagged values of Nino 3.4 and JMA indexes. A sample of results
reported in Table 1 indicate that most of the impact is on the lower to mid quantiles of rainfall
distribution and that, at least for the coastal regions, the impact is significant for the index lagged
up to 8 months. However, these coefficients should be interpreted with caution because of the
seasonality of ENSO impacts.

For the copula analysis, several types of distributions were fitted to the data. The
skewness and kurtosis and Shapiro-Wilk tests reject the normality hypothesis for both RI and
ENSO index data. Out of the alternatives of Beta, Gamma, Log-Normal, and Weibull
distributions, the lognormal was chosen for the ENSO and Weibul for the rainfall indexes


http://gcmd.nasa.gov/records/GCMD_NOAA_NWS_CPC_NINO34.html�

according to the p-values of the parameter estimates. 50,000 draws from joint Nino 3.4 and
rainfall index distributions for 10 Nino 3.4 index intervals were generated using Gaussian and t
copulas. The results of Gaussian copula analysis conducted according to the description in the
methodology section are as follows.

The coastal areas in Alabama are the most consistent. Figure 2 shows expected rainfall
for insurable bi-monthly periods from January to December by intervals of the Nino 3.4 index
range (using the JMA index produces similar results). Again, the index values are averages over
the last three months of the previous year representing the forecast made available before signing
the contract.? The average winter rainfall values show the strongest dependence on the ENSO
index. At least for the first four months of the year, the higher the (lagged) index, the higher the
expected rainfall (rainfall is proportional to the index). The downward volatility of rainfall,
however, is inversely related to the index: the lower the index, the higher the volatility and,
hence, the riskier the hay production. This is reflected in the actuarially fair premiums (expected
losses for full coverage over expected rainfall) calculated for the index intervals shown in Figure
3: the premiums decrease with the index indicating that the index is a predictor of production
risk. These results are largely consistent with those of climate research.

However, starting from the May-June period, the index-rainfall dependence disappears,
which should be expected considering the lower impact of ENSO index on rainfall in the
southeast in the summer and because the lag between the index used here (end of last year) and
current period increases. By the end of the year, when the next ENSO phase comes into effect,
both average rainfall and rainfall volatility become almost flat, indicating no impact of the
forecast (last year index). Similar patterns exist for the other three locations, with the
significance of the relationship between the ENSO signal and rainfall decreasing not only with
the lag but also with the distance from the coast, as should be expected.

With regard to insurance, accommodating the ENSO index information in the premiums,
provided the demand is unaffected by premium changes, seems to make a positive difference for
the producer. The certainty equivalences for rainfall corresponding to rate setting methodology
provide only an inference for possible consideration. Due to unavailability of monthly hay yield
data, the certainty equivalences are calculated in inches/year. An alternative would be to use the
Base County Values (BCVs) defined by the RMA that represent the $ value of expected rainfall.
Still, without knowing monthly yields, converting the deviations of Rl from normal into dollar
values would require making additional assumptions but would not change the ordinal properties
of the results.

2 This of course contradicts the design of many insurance contracts but, in this case, availability of the forecast
information to both the insurer and the insured may be beneficial and not cause additional agency problems.



The results presented in Table 2 are extremely sensitive to the utility function parameter
and dependent on the risk aversion assumptions. Nevertheless, preliminary estimates indicate
sizeable (loosely defined) benefits from accommodating ENSO forecast information in the
insurance contract design only in the beginning of the contract year and in the coastal areas
where rainfall is more susceptible to the ENSO signal. The certainty equivalent rainfall
(calculated according to the methodology described above) is the highest for the rainfall index
insured using ENSO index-contingent (conditional) premiums and the lowest for the uninsured
rainfall series. Interestingly, the volatility of rainfall (not shown here) declines, making insurance
less desirable, in the warm season (April-October). The gains from additional “rainfall income”
smoothing due to making premiums conditional on lagged ENSO indexes increase with the
number of index intervals. This introduces a tradeoff between the gains and the costs of data
processing.

Due to the lack of monthly hay yield data, it is impossible to calculate certainty
equivalent revenues from rainfall insurance. Nevertheless, the results presented here only suggest
some potential for improving the efficiency of the rainfall index insurance in the beginning of the
year by using climate forecast information. In later months, forecasts become largely irrelevant
for rainfall distribution. Thus, unless further refinements in the methodology produce better
rainfall distribution predictability, incorporating ENSO forecast information in premiums may be
of limited practical use. However, it is impossible to infer the proper value of forecasts without
knowing the relationship between rainfall and hay yields.

Conclusion.

One of the promising venues in agricultural insurance development is index insurance which
largely avoids the moral hazard issues and is especially applicable for crops and areas with
limited yield/revenue records. In the United States, rainfall index (RI) insurance and vegetation
index insurance (V1) were offered as pilot programs starting 2007. Currently, the premiums for
the RI insurance are calculated using pooled time series. However, climate research on the
southeastern region of the country indicates a significant relationship between seasonal rainfall
and continuous El Nino Southern Oscillation (ENSO) index. The objective of this research is to
evaluate the risk-reducing effectiveness of incorporating long-term climate forecasts in the RI
insurance contract design. This is accomplished by (1) estimating rainfall index distributions
conditional on the end of previous year ENSO index, (2) calculating conditional and
unconditional (pooled) premiums, and (3) estimating rainfall volatility reduction changes from
applying conditional premiums using historical rainfall index data for the four locations in
Alabama. Preliminary results indicate some potential for improving the efficiency of the rainfall
index insurance in the beginning of the year by using climate forecast information. In later
months, forecasts become largely irrelevant for rainfall distribution. Thus, unless further
refinements in the methodology produce better rainfall distribution predictability, incorporating
ENSO forecast information in premiums may be of limited practical use.
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FIGURES AND TABLES.

Figure 1. Joint Kernel Densities of Bi-Monthly Rainfall Index (R1) and Nino 3.4 Index.
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Figure 2. Average Rainfall by the Nino 3.4 Index for Bi-Monthly Insurable Periods.
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Figure 2 (continued)
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Figure 3. Expected Losses for Full Coverage by Nino 3.4 Index for Bi-Monthly Periods.
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Figure 3 (continued).
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Table 1. Quantile Regression Coefficients for Monthly Rainfall.

Fairhope
(costalr)) nino34 |I1nino34 (I2nino34 (I3nino34 |14nino34 |[I5nino34 |I6nino34 |[7nino34 |I8nino34
ql0 0.183* |0.223** |0.633***|0.485***|0.269 0.247 0.383** |0.478***|0.698***
q30 0.381** |0.364* |0.631***|0.627***|0.443** |0.320 0.473** |0.503** |0.872***
g50 0.545%**10,434***|0,482*** |0.444*** |0.461*** |0.412** |0.395***|0.375 0.545%**
q70 0.410 0.274 0.301 0.364 0.269 0.134 0.153 0.109 0.282
q90 0.950***|0.657* |0.502 0.778** |0.663 0.584 0.721 0.495 0.218
Headland |nino34 |I1nino34 |I2nino34 |I3nino34 (I4nino34 (I5nino34 |I6nino34 (I7nino34 |I8nino34
ql0 0.0579 |0.0794 |0.148 0.208 0.118 0.132 0.132 0.191 0.367
q30 0.315** |0.421** |0.626***|0.542** |0.316* [0.118 0.121 0.163 0.464*
g50 0.589***|0,508*** |0.536*** |0.612*** [0.630*** [0.317 0.338 0.372* |0.644***
q70 0.511** |0.507***|0.491** |0.578***|0.452 0.271 0.340 0.353 0.520
q90 0.182 0.383 0.357 0.313 0.308 0.331 0.280 0.452 0.882**
Chilton nino34 |[1nino34 (I2nino34 (I3nino34 |14nino34 |I5nino34 |I6nino34 |I7nino34 |I8nino34
ql0 0.313** |0.173 0.262* |0.312* |0.375** |0.163 0.132 0.265 0.352%*
q30 0.307***|0.263* |0.370***|0.418***|0.225 0.213 0.0309 1|0.168 0.458**
g50 0.271 0.184 0.303 0.251 0.165 -0.0152 | -0.0203 | 0.0163 | 0.515
q70 0.373** | 0.206 0.216 0.197 0.225 0.101 0.0183 | 0.0792 | 0.287
q90 0.641 0.141 0.0735 | -0.194 | -0.413 | -0.513 | -0.556 |-0.840 | -0.330
Belle
Mina
(inland) | nino34 | I11nino34| 12nino34| 13nino34| 14nino34| I5nino34| I6nino34| |7nino34| I8nino34
ql0 -0.197 | -0.194* | -0.0541 | -0.0703 | -0.172* | -0.203 | -0.195 | -0.126 | -0.145
q30 0.0535 | 0.0478 | 0.0701 | 0.123 0.131 0.111 -0.0323 | 0.0602 | -0.154
g50 -0.0250 | -0.145 | -0.113 | -0.101 | -0.127 |-0.145* | -0.141 | -0.113 | 0.0426
-0.527
q70 -0.275 | -0.269 | -0.205 | -0.100 | -0.459* | *** -0.376 | -0.0585 | 0.145
q90 -0.126 | -0.0762 | -0.0318 | 0.00948 | 0.0690 | 0.00633| 0.239 0.300 0.745%*

Note: *’s define significance (1, 5, and 10%). I# defines the number of lags for Nino3.4 index.
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Table 2. Certainty Equivalent Rainfall VValues (calculated in in/yr)

No Pooled Premium No Pooled Premium
Insurance |Premium | Conditional on | Insurance [Premium Conditional on
ENSO Index ENSO Index
airhope Chilton
Jan-Feb 78.81 89.49 97.83 78.79 93.14 95.43
Mar-Apr | 78.34 87.96 98.01 76.49 92.71 94.95
May-Jun | 76.93 91.04 96.26 75.04 89.97 92.15
Jul-Aug 75.42 91.43 94.63 75.42 91.62 93.86
Sep-Oct 75.84 90.93 94.55 74.85 85.74 86.70
Nov-Dec | 77.03 92.35 93.43 77.83 94.32 94.62
Headland Belle Mina

Jan-Feb 79.46 95.07 98.18 75.77 90.54 92.05
Mar-Apr 78.85 92.86 95.89 77.17 92.52 93.11
May-Jun 75.25 90.93 92.70 75.96 91.07 92.29
Jul-Aug 77.10 92.09 94.83 78.64 91.96 92.54
Sep-Oct 77.92 92.14 96.09 75.57 90.70 89.94
Nov-Dec | 78.81 94.15 98.10 76.51 91.74 91.15
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