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ABSTRACT 

How and how well growers manage the risks inherent in agriculture has direct welfare 
implications for producers and consumers at both local and societal levels. While better weather, 
pest and disease forecast information are rapidly disseminating among producers and are often 
touted as promising inputs to production and risk management, little is known about how this 
new information actually shapes producer behavior in practice. We argue that better forecast 
information can benefit growers and improve their capacity to manage disease and pests 
effectively, but that we must jointly consider the various margins of adjustment available to 
growers in order to properly understand their response to this improved information. Using the 
case of California wine grape growers and high resolution panel data that includes plot-level 
powdery mildew treatments, we characterize growers’ response to a popular powdery mildew 
risk model that generates forecast in the form of a daily risk index (PMI). Our analysis suggests 
that growers using the PMI primarily adjust their choice of product in response to the PMI by 
switching to higher potency synthetic fungicides when the risk is high. Since these products have 
longer minimum intervals, this implies that – if anything – PMI users have longer intervals as the 
PMI increases. Our preliminary results also suggest that the net environmental impact of this 
documented multi-dimensional response to the PMI may actually be negative, although we 
emphasize that these are preliminary results. Futhermore, it is important to note that the 
magnitude of this effect is small compared to the general improvements in wine grape growers’ 
environmental impact over the past several years.  
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POWDERY MILDEW RISK & FORECASTING IN WINE GRAPES:  

DO GROWERS CHANGE RISK MANAGEMENT STRATEGIES  

IN RESPONSE TO DISEASE FORECASTS? 

 

How well or poorly agricultural producers manage the risks inherent in agriculture has direct 

welfare implications for producers and consumers at both local and societal levels. Furthermore, 

producers’ behavioral responses to these risks can have environmental implications and other 

spillover effects. Generously over-spraying pesticides, for example, can provide insurance 

protection for a producer (Mumford and Norton, 1984) – a form of insurance that is effectively 

subsidized by external environmental and human health costs borne by society. Over-spraying 

pesticides is a particularly attractive form of insurance when crop insurance against pest damages 

is unavailable or relatively expensive (Carlson, 1979; Feinerman et al., 1992) or when pest 

outbreaks are unpredictable. Motivated by the latter justification for using pesticides as 

insurance, integrated pest management (IPM) aims to reduce pesticides by inter alia providing 

growers with better, more precise pest information – an objective that has been facilitated by 

rapid advances in remote sensing, telemetry, GPS, and other technologies that improve the 

collection and processing of high resolution spatial data. While better weather, pest and disease 

forecast information are often touted as promising inputs to production and risk management – 

inputs that enable producers to refine their expectations and operations – little is known about 

how this new information actually shapes producer behavior in practice. 

 

The dynamics of agricultural production, risk management and pesticide use are distinctly crop- 

and location-specific. In the case of California wine grape growers, the management of powdery 

mildew risk is among the most important management practices. Growers’ only real hope in the 

powdery mildew battle is proper preventative management, which is complicated by the 

explosive episodes of powdery mildew growth that are possible when optimal temperature and 

humidity conditions prevail. These growth explosions pose substantial production risks to 

growers; an entire season can be lost with a single poorly timed powdery mildew treatment. In 

response, growers apply heavy and frequent doses of sulfur products and relatively more toxic 
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synthetic fungicides1 in their vineyards, which are often located in picturesque but 

environmentally sensitive areas. The importance of vineyard location in the branding of wines 

can amplify growers’ sensitivities to the environmental impacts of their production practices 

(Friedland, 2002; Warner, 2007) and their interest in local partnerships for promoting sustainable 

viticulture practices (Broome and Warner, 2008).  

 

Founded on the observation that powdery mildew growth is largely a function of length of 

exposure to different temperature ranges, the Gubler-Thomas Powdery Mildew Index (PMI) 

(Thomas et al., 1994; Weber et al., 1996) is designed to help growers anticipate outbreaks so 

they can more precisely time their preventative powdery mildew treatments and reduce fungicide 

applications in the process. The social and environmental benefits of reduced fungicide use due 

to better treatment timing could be substantial. Grape growing countries worldwide stand to reap 

similar benefits from these disease forecasts. Yet, the purported value of the PMI to growers has 

been extrapolated from controlled field trials in which powdery mildew treatments are strictly 

determined by the PMI. Does the PMI change growers’ management of powdery mildew risks in 

practice? If so, do these changes lead to a reduction in pesticide application? In addressing these 

questions, this paper is the most rigorous assessment to date of the value to agricultural 

producers of disease forecasting as a risk management tool. While we focus on California wine 

grape growers and the PMI in this paper, the availability of high resolution weather data has 

prompted the development of several similar forecast models. Our empirical analysis sheds a 

broader light on the value of forecasts derived from these models to producers and to society 

more broadly.  

 

We estimate models of growers’ disease management strategies using high resolution temporal 

and spatial data collected at the grower- and plot-level. We have collected and compiled this data 

from three sources: (i) a detailed survey of California grape growers that among other things 

elicited their perceptions and use of the PMI, (ii) Pesticide Use Reports (available from the 

California Department of Pesticide Regulation) that include detailed pesticide use histories for all 

California grape growers since 1990, and (iii) detailed intra-day weather data for dozens of 

weather stations throughout the grape growing regions of California since 1996.  

                                                 
1 Synthetic fungicides fall mainly in the category of either sterol inhibitors or strobilurins. 
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The temporal and spatial resolution of this data allows us to estimate the value of disease 

forecasts at an unprecedented level of detail. We leverage the panel structure of our data to 

identify the actual impact of PMI use on pesticide applications.  

 

Our results suggest that contrary to the intent of the PMI model, most growers do not adjust 

treatment intervals in response to this forecast information. Instead, the growers who use the PMI 

most heavily use it to decide what to spray rather than when to spray. This response, however, is 

mediated importantly by the value and susceptibility of the grapes produced. We use the panel 

nature of the data to explore the dynamics of this response over time. Finally, in order to estimate 

the impact of the PMI on total pesticide usage, we use established toxicity measures to evaluate 

the net environmental impact of growers’ response to the PMI.  

 

We begin by providing an overview of the economics of pesticide use, of agricultural forecast 

information, and of California wine grapes and our forecast of interest, the PMI. We formulate 

an economic model to convey the essential economic considerations in growers’ response to 

disease forecast information in Section 2. We describe the data we use in detail in Section 3. In 

Section 4, we present and discuss our evaluation of how the PMI has changed growers’ pest 

management strategies. After documenting these grower responses, we assess the net 

environmental impact attributable to these PMI responses. We conclude in Section 5.  

 

1 BACKGROUND 

The Economics of Pesticide Use 

There is a rich literature in economics focused on pesticide use. In this subsection, we quickly 

review a few strands in this literature that are directly relevant to our analysis. Broad reviews of 

the theoretical and empirical issues addressed in this literature are available elsewhere (see 

Carlson and Wetzstein, 1993; Fernandez-Cornejo et al., 1998; Norgaard, 1976). Much of this 

work, including research on insect-transmitted disease among California wine grapes (Brown et 

al., 2002), has modeled the economics of pest control with increasingly complex assumptions 

about pest populations and spatial relationships.  
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The relationship between pesticide use, production risk and risk aversion has figured 

prominently in this area of research. The conventional view is that many growers over use 

pesticides as a form of insurance (Mumford and Norton, 1984). Based on this view, crop 

insurance can in principle reduce the use of pesticides as insurance (Carlson, 1979; Feinerman et 

al., 1992). However, evidence from the U.S. Midwest suggests that crop insurance may increase 

pesticide use in practice (Horowitz and Lichtenberg, 1993). The theoretical work that suggests 

pesticides are risk-reducing hinges crucially on the assumption that pest damage is independent 

of other factors that affect output (Horowitz and Lichtenberg, 1993).  

 

Given the environmental externalities associated with pesticide use, economists have often 

focused on a variety of mechanisms to reduce pesticide usage, including direct regulation and 

fees for use (Zilberman et al., 1991). In a related vein, economists have attempted to estimate the 

value of reduced pesticide usage (Maria Travisi et al., 2006), while elsewhere recognizing that 

prevailing incentives often make these reductions difficult to achieve (Cowan and Gunby, 1996). 

Of most direct interest for our purposes, IPM has emerged as an important means for reducing 

pesticides (more here). IPM includes decision rules based on economic thresholds (Fabre et al., 

2007) (more in modeling section below?) and better knowledge and information (segue to next 

subsection).  

 

The Economics of Agricultural Forecast Information  

The value of information to producers and consumers and its impact on markets has intrigued 

economists for decades (e.g., Akerlof, 1970; Stigler, 1961). In agriculture, economists have 

studied the value of information to risk averse producers. Many of these explicitly model the 

value of information as a tool for reducing risk and decompose this value into mean and variance 

components (Byerlee and Anderson, 1982). While the degree of risk aversion directly shapes an 

individual’s valuation of new information in these models, there is not necessarily a positive 

correlation between the two “since the decision to acquire new information is itself often a risky 

decision” (Byerlee and Anderson, 1982). 

 

Several studies have assessed the value of weather information to agricultural producers. One of 

the earliest such assessments highlighted the considerable potential value of rainfall forecasts in 
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September and October when the grapes are drying (Lave, 1963). Lave (1963) uses a partial 

equilibrium model to assess the value of better late season forecasts to an individual grower, then 

discusses how general equilibrium effects moderate this valuation. Babcock provides a more 

detailed analysis of producers’ response to more accurate weather forecasts and illustrates how 

demand elasticity shapes this response (1990).  

 

A few specific assessments of the value of weather information are worth highlighting. The link 

between weather forecasts and risk is especially strong in the case of frost since frost events can 

be forecasted and can devastate growers. Using a Bayesian decision making under uncertainty 

framework, Baquet, Halter and Conklin estimate the value of frost forecasts to orchard operators 

as a function of prices, forecast accuracy, and risk aversion (Baquet et al., 1976). Parker and 

Zilberman use survey data to assess the value of the California Irrigation Management System 

(CIMIS) and characterize producers that use this public weather information (1996). More 

recently, greater attention has been paid to the value of climate forecasts, which, in contrast to 

short-run weather forecasts, offer seasonal predictions of weather outcomes (Adams et al., 1995; 

Barrett, 1998; Mjelde et al., 1988).  

 

Several studies have documented the potential value of disease and pest forecasts in the context 

of pest management decisions (Moffitt et al., 1986; Mumford and Norton, 1984; Swinton and 

King, 1994). Khanna and Zilberman study the potential environmental value of precision 

technology and the possibility of reduced pesticide applications (1997).  

 

In contrast to this weather information and risk literature, this project will use high resolution 

disease forecasts and detailed records of pesticide application to model the disease treatment 

strategies with and without forecast information. This project will thus assess the value of 

forecast information in greater detail and at a finer resolution than has been done previously. For 

example, the project will use Pesticide Use Report (PUR) data collected by the California 

Department of Pesticide Regulation and historical spatial data on disease forecasts.  

 

California Wine grapes, Powdery Mildew & the Powdery Mildew Index  
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Grapes contribute roughly 10 percent to California’s annual $30 billion in farm sales and are the 

second most important agricultural crop in California. Wine grapes constitute an important part 

of total grape production, and the California wine industry has become a major component of the 

state’s dynamic agriculture sector (Goodhue et al., 2008; Heien and Martin, 2003). Among 

California’s wine grape growers, powdery mildew control is arguably the most important single 

management practice: they spend more each year controlling powdery mildew and still suffer 

more total losses to it than any other disease. 

 

Grapevine powdery mildew can affect all succulent tissues on a grapevine, including the stem, 

fruit, and leaves, all of which can show characteristic symptoms of chlorosis in the area of 

infection and signs of the pathogen as powdery, web-like growth.2 Powdery mildew is the most 

problematic fungal disease of grapevines in California and occurs in all grape growing regions of 

California. To some extent, it affects most wine, raisin and table grape varieties, but some 

varieties are extremely susceptible to powdery mildew, including Carignane, Thompson 

Seedless, Ruby Seedless, Chardonnay, Cabernet Sauvignon, and Chenin blanc.3 Damages due to 

powdery mildew often depend on the timing of first infection – making early season control 

critical. Early fruit infections can cause stunting, scarring, or splitting of berries, and may 

increase the severity of bunch rots. The disease can also cause the epidermis to split, reducing the 

shelf life of table grapes, and can reduce the rate of photosynthesis and thus berry sugar content. 

Less than 5% disease on berries at harvest can cause off-flavors in wine (Stummer et al., 2005).  

 

In their annual battle with powdery mildew, wine grape growers use a variety of preventative 

control options (Flaherty et al., 1992). Powdery mildew is generally controlled using an 

integrated program with regular treatments occurring every 7-21 days. The default treatment is 

sulfur dust, which is relatively cheap and can be applied at faster speeds, or micronized dry 

flowable sulfur. As conditions change throughout the season, growers often switch to more 

potent synthetic fungicides such as quinoxfen, DMI or Strobilurin fungicides. Sulfur is, however, 
                                                 
2 The susceptibility of various plant parts to powdery mildew infection changes during the season. Fruit can become 
infected from just after bloom until the sugar content reaches 8 brix. Control practices are therefore essential during 
the early part of the season. Established fruit infections will continue to produce spores until the berries reach 12 to 
15 Brix. Green tissues can be infected anytime during the growing season. The epidemiology of powdery mildew on 
grapevines is explained in detail elsewhere (Pearson and Gadoury, 1987; Sall and Wrysinski, 1982; Ypema and 
Gubler, 1997).  
3 Those that are less susceptible are Petite Sirah, Zinfandel, Semillon, and White Riesling. 
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commonly maintained in the program – either mixed in the tank or in rotation – to combat 

resistance or delay the onset of resistance to narrow spectrum synthetic fungicides.  

 

Growth and development of powdery mildew is strongly affected by climatic conditions. It 

thrives under dry conditions with moderate temperatures (21 to 30°C), but spores and mildew 

colonies can be killed by extended durations of temperatures above 32°C. The fungus can be 

destroyed completely when air temperatures rise above 32°C for 12 hours or more (Ypema and 

Gubler, 1997). During continuous favorable temperature periods, the time between spore 

germination and production of spores by the new colony can be extremely rapid, occurring in as 

little as 5 days. The powdery mildew explosive increases that can occur from this very nonlinear 

climate relationship imply that treatment timing is essential to effective powdery mildew control: 

when optimal temperatures prevail during critical windows, a mistimed treatment can have 

catastrophic effects on the value of production at harvest. In this context, the potential value of 

disease forecasts is substantial.  

 

Based on laboratory and field epidemiological studies of grapevine powdery mildew in 

California, a disease risk assessment model was developed and validated in all California grape 

production areas.4 The UC Davis powdery mildew risk assessment model or Gubler-Thomas 

model forecasts ascospore release based on temperatures and leaf wetness periods to predict 

initial disease onset (Gubler et al., 1999; Thomas et al., 1994; Weber et al., 1996). Once infection 

has occurred, the model switches to a disease risk assessment phase and is based entirely on the 

effects of ambient temperature on the reproductive rate of the pathogen. The Gubler-Thomas 

model evaluates in canopy temperatures and assesses the risk of powdery mildew development 

using a powdery mildew index (PMI) that ranges from 0 (no risk) to 100 (extreme powdery 

mildew risk).5 Low index values of 0-30 indicate the pathogen is not reproducing. An index of 

                                                 
4 Similar disease forecasting models have been developed to predict the onset and severity of other plant diseases 
whose development is predictably influenced by climatic conditions, namely apple and pear scab, fireblight, botrytis 
bunch rot, wheat diseases and tomato diseases. 
5 After budbreak, there must be three consecutive days with a minimum of six consecutive hours of temperatures 
between 21 and 30°C for a powdery mildew epidemic to be initiated. The early season PMI therefore begins at 0 and 
increases by 20 points for each day with six or more consecutive hours in this optimal temperature range. Thus, after 
three consecutive days of six or more hours of optimal temperatures the PMI climbs to 60, with each of the three 
days contributing 20 index points. If after one day of temperatures in this range optimal temperatures do not persist 
for three consecutive days, the PMI reverts to zero. Once this early season requirement for three consecutive days of 
optimal temperatures is met, the index fluctuates between 0 and 100 based on daily temperatures for the remainder 
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40-50 is considered moderate and would imply a powdery mildew reproductive rate of 

approximately 15 days. Index values of 60-100 indicate that the pathogen is reproducing rapidly 

(as fast as every 5 days) and that the risk for a disease epidemic to occur is extreme. Since the 

mid 1990s, the PMI has been available in many regions as either a specific value for a single 

location or as a contour map for a defined space (see Figure 1) – typically via faxes or emails 

sent every day or two. Increasingly, the PMI is computed using on-site weather stations and 

software.  

 

Per its original motivation, the PMI can potentially enable growers to sync their fungicide 

treatments more precisely with the actual disease risks that prevail in their vineyards. In 

particular, growers may postpone fungicide applications during extended periods with low PMI 

values. This potential value of the PMI has been demonstrated in field trials, which have shown 

that spraying according to the PMI can reduce fungicides “by 2-3 applications over the course of 

the growing season with equal or better disease control” (Gubler et al., 1999 p.10). The social, 

economic and environmental benefits of this reduction in fungicide use could be substantial. For 

example, it is estimated that the PMI could have reduced total sulfur applications by over one 

million pounds in 2003 (8 percent) if only a quarter of raisin growers followed the PMI (UC 

Agriculture and Natural Resources, 2005).  

 

The magnitude of the actual benefits associated with growers’ use of the PMI depends on two 

important factors (see Lybbert and Gubler, 2008). First, how growers make powdery mildew 

treatment decisions in the absence of the PMI provides a baseline from which the PMI response 

must be assessed. Although many assume that growers’ baseline tendency is a calendar (or 

minimum interval) spray schedule, aggregate analysis of pesticide use reports in California 

suggest that these baseline schedules often deviate from a strict calendar spray regimen and may 

be partly conditioned on other factors (Epstein and Bassein, 2003). For example, prior to the 

development and diffusion of the PMI, plant pathologists typically told growers, “If you like the 

weather outside (mild and dry), then so does powdery mildew.” Second, the actual benefits from 

PMI use obviously hinges on PMI adoption among growers, especially those responsible for 

                                                                                                                                                             
of the season: the PMI gains 20 points for each day of optimal temperatures and loses 10 points for each day that 
does not meet this six hour optimal temperature requirement. The PMI also loses 10 points if at any point during the 
day temperature rose to 35°C or higher for at least 15 min.  
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large shares of total fungicide applications. Despite favorable trials and widespread availability 

of high resolution PMI forecasts, only about half of California wine grape growers actively use 

the PMI to control powdery mildew, but adoption rates seem to be steadily increasing and are as 

high as 75% in regions such as Napa and Sonoma Counties with high value and susceptible wine 

grape varieties.  

 

 

2  MODEL 

Among the many existing economic models of pesticide use there are a few common concepts 

that are relevant to our analysis in this paper. The concept of an economic threshold, defined as 

the population level of the pest or disease at which the marginal benefit from damage prevented 

by the control program is equal to the marginal cost of realizing that population through a control 

program (e.g., Hall and Norgaard, 1973), is pervasive and foundational to the IPM movement. 

The role of uncertainty in disease or pest control is central in many models (e.g., Feder, 1979). 

Similarly, the formulation of expectations associated with the pest damage function and the 

updating of these expectations in response to new information is central to pest treatment 

decisions. Bayesian models have therefore been used to derive optimal crop disease control 

practices (Carlson, 1970). The dynamic dimensions of disease control are particularly difficult to 

incorporate explicitly into analytical models – and yet it is precisely these dynamic dimensions 

that make the economics of disease control interesting. Treatment intervals play a key role in our 

analysis and are inherently dynamic. In this section, we model this dimension but also 

incorporate product choice as an interrelated decision. Where others take a dynamic 

programming approach to model similar duration decisions (e.g., see Rust, 1987  for a model of 

engine replacement decision), our focus on a multidimensional response requires a numerical 

simulation approach.  

 

The first dimension of the treatment choice is how often to treat or, posed as the real-time 

decision facing the grower, “How many days since my last treatment should I let pass before 

treating again?” At one extreme, which serves as a useful illustration in our model, a naïve 

grower can lock in a treatment calendar at the beginning of the season and stick with it 

throughout the season, regardless of daily changes to powdery mildew risk. While admittedly 
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unrealistic, this is a common accusation leveled at growers. In contrast, a grower who receives 

the PMI might set out with a calendar in mind, but will constantly modify their intervals 

according to this information (and their confidence in it). For this informed grower, treatment 

intervals are determined real-time as the result of daily binary choices of whether to spray or wait 

to spray. In the derivation of our model, we continue to contrast these two prototypical growers – 

a naïve grower who receives no weather or powdery mildew risk information as the season 

unfolds and an informed grower who receives and uses the PMI – in order to highlight 

differences in optimal treatment responses that are attributable to the PMI.  

 

The second margin of adjustment available to the grower in our model is chemical choice. There 

are several chemicals available for treating for powdery mildew, with different costs, protective 

strength, and environmental consequences. Chemical choice at least partially depends on a 

grower’s perception of risk on any given day, either as determined by weather information or 

preconceived notions about the expected risk of infection at a given point in the season. 

Chemical choice can also be influenced by state imposed minimum intervals, which disallow 

treating the same area with the same chemical before waiting a mandated number of days.   

 

The third and final dimension of the grower’s treatment response in our model is the quantity, or 

dosage, of chemical to use on a given day. Even after deciding to spray a particular fungicide to 

treat for powdery mildew, a grower has some latitude to determine the dosage rate. Most 

pesticide labels, which contain information that is strictly regulated and requirements that are 

enforced (or, at least, enforceable), include a range of acceptable dosage rates. For example, 

Quintec, a popular product and the most common synthetic fungicide in our sample (see Table 

1), includes a recommended range of dosage rates of 3 to 6.6 fluid oz per acre depending on the 

interval.  

 

[At this time, the model only deals with the first two dimensions.]  

 

For simplicity, we limit chemical choice to sulfur (X) and synthetic (Y) fungicides. We begin 

with an expected loss function for infection on plot i at day t. Expected loss is a function of the 

weather, ܲܫܯ௜௧, the interval since the last sulfur treatment ܫ௜௧
௑, and the interval since the last 
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synthetic treatment, ܫ௜௧
௒ . The loss function can be allowed to vary from plot to plot to reflect 

differences in microclimate and grape variety grown, and from day to day to reflect variable 

levels of risk throughout the season.  

௜௧ߨ  ൌ ௜݂௧ሺܲܫܯ௜௧, ௜௧ܫ
௑, ௜௧ܫ

௒) (1) 

These intervals are determined by the historical use of these chemicals up to most recent 

treatment of each. This could conceivable go all the way back to the beginning of the period of 

powdery mildew risk, which we denote as t = 1.  

௜௧ߨ  ൌ ௜݂௧ሺܲܫܯ௜௧, ௜௧ܫ
௑ሺ ௜ܺ௧, ௜ܺ௧ିଵ, ௜ܺ௧ିଶ,, … , ௜ܺଵሻ, ௜௧ܫ

௒ሺ ௜ܻ௧, ௜ܻ௧ିଵ, ௜ܻ௧ିଶ,, … , ௜ܻଵ,ሻ) (2) 

where ௜ܺ௧ = 1 if X is sprayed on day t and zero otherwise (Y is defined analogously). 

 

Under the simplifying assumptions that the grower is risk neutral (more below on how risk 

aversion might change growers’ behavior in the model), and that damages incurred on any given 

day do not affect the probability of magnitude of future losses, the grower optimizes by limiting 

the sum of expected losses as chemical costs for the remainder of the growing season. 

 
MIN

,೅ࢅ,…,೟೚ࢅ,೅ࢄ,…,೟೚ࢄ
෍ ௜݂௧ሺܲܫܯ௜௧, ௜௧ܫ

௑ሺ ௜ܺ௧, ௜ܺ௧ିଵ, ௜ܺ௧ିଶ,, … , ௜ܺଵሻ, ௜௧ܫ
௒ሺ ௜ܻ௧, ௜ܻ௧ିଵ, ௜ܻ௧ିଶ,, … , ௜ܻଵ,ሻሻ

்

௧ୀ௧೚

൅ ෍ ሺ݌௑ · ௜ܺ௧ ൅ ௒݌ · ௜ܻ௧ሻ

்

௧ୀ௧೚

 

(3) 

Finally, the grower is also subject to a minimum interval constraint for each chemical. 

௜௧ܫ 
௑ ൒ ,௑ܫ ௜௧ܫ

௒ ൒  ௒ (4)ܫ

 

The problem can be solved analytically for a naïve grower, who determines a calendar at the 

beginning of the season based on preconceived expected value of ܲܫܯ௜௧. For the informed 

grower, however, the problem is much more complicated because it involves a series of discrete 

choices that depend on continuously updated weather information. Therefore, the problem must 

be solved numerically using stochastic integer programming.  

 

Uni-dimensional Response: Interval Choice Only  

The goal of the numerical simulation is to compare the optimal spraying patterns for the naïve 

and informed growers under different conditions of weather, chemical efficacy, and chemical 
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price.  In particular, we examine how the changes in the optimal spraying pattern differ between 

a one-dimensional problem (when to spray only) and a two-dimensional problem (what to spray 

and when to spray).  As a point of departure, we reduce the problem to a single dimension; the 

farmer has only one treatment option.  We assume a functional form for ௜݂௧ , which we assume is 

constant across farmers and time. 

 ݂ሺܲܫܯ௜௧, ௜௧ܫ
௑ሻ= ߙ · ௜௧ܫܯܲ െ ௑ߜ · ሺߚ െ ௜௧ܫ

௑ሻఊ೉ where 0 < ߛ௑ <1, ߚ െ ௜௧ܫ
௑ ൌ ߚ݂݅ 0 ൏ ௜௧ܫ

௑  (5) 

 

The weather variable ܲܫܯ௜௧ is intentionally analogous to the PMI: it ranges from 0-10 that moves 

in a random walk.  We solve the model for a period of 10 days. In actuality, the period of 

powdery mildew risk spans much of spring and summer, but 10 days is sufficient to see patterns 

develop and change based on a grower receiving information of not.6   The growers are 

constrained by a minimum interval constraint that does now allow them to spray on consecutive 

days, a stylized version of the common 7 to 14 day regulated minimum interval. To start the 

model, we assume that the 10 day interval is preceded by a period (t=0) of zero powdery mildew 

risk. 

  

For both the naïve and the informed grower, we solve the problem under conditions of a high 

PMI trajectory and a low PMI trajectory. The results of this simulation are shown in Table 2. The 

naïve grower does not have any expectations what ܲܫܯ௜௧ will be on any given day, and therefore 

solves their spraying problem under a constant expectation of ܧሾܲܫܯ௜ሿ ൌ 5. Therefore, the 

optimal decision is a calendar spray that can be determined at the beginning of the growing 

season. Her solution to the problem will be the same under both trajectories, spraying every other 

day starting on the first day, but will result in different levels of expected damages. The informed 

grower responds to the PMI and consequently exhibits different behavior under the two 

trajectories. When the PMI is low, she stretches intervals and sprays 4 instead of 5 times. This is 

precisely the logic behind the inception of the PMI, but – as we will see – this response hinges on 

our assumption that growers only have one response (interval) at their disposal. Under the high 

PMI trajectory the informed grower sprays every other day since the minimum interval 

constraint does not allow her to spray more frequently, and the two growers behave identically. 

                                                 
6 The problem entails a discrete choice variable for each day of the program. Since the optimization software 
(GAMS in this case) cannot use derivatives to search, it must choose between all available alternative combinations 
that satisfy the constraints. The curse of dimensionality quickly becomes a major barrier when more days are added. 
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Two Dimensional Response: Interval & Chemical Choice 

When a farmer has two chemicals of differing strengths and duration of coverage, the problem 

becomes: 

 ݂ሺܲܫܯ௜௧, ,௜௧ܫ
௑ ௜௧ܫ

௒ሻ = ߙ · ௜௧ܫܯܲ െ ௑ߜ · ሺߚ െ ௜௧ܫ
௑ሻఊ೉ െߜ௒ · ሺߚ െ ௜௧ܫ

௒ሻఊೊ where 0 < ߛ௑, ߛ௒ <1, 

ߚ  െ ௜௧ܫ
௑ ൌ ߚ݂݅ 0 ൏ ௜௧ܫ

௑, ߚ െ ௜௧ܫ
௒ ൌ 0 ߚ݂݅ ൏ ௜௧ܫ

௒  

(6) 

 Here we use a similar simulation as before for the naïve and informed growers, but allow them 

to adjust chemical type in addition to spraying intervals (see Table 2 bottom panel). 

   

The naïve grower once again uses the same strategy under the low and high PMI trajectories, but 

the unique strategy is very different from the one-dimensional case.  She delays treatment until 

the fifth day, but treats with the much stronger chemical Y. On the ninth day she follows with a 

treatment of the less potent chemical X. Under the low PMI trajectory the informed farmer only 

uses chemical Y, but sprays only twice (as opposed to four times in the one-dimensional case).  

Under the high PMI trajectory she sprays five times, twice with chemical X and three times with 

chemical Y. In the one dimensional case she also sprayed five times, but only with chemical X.  

 

In sum, once we allow for a two dimensional response, use of the PMI no longer leads to 

stretched intervals (on average) when the PMI is low and seems to lead to more frequent use of 

the more potent treatment. This result is robust across a range of parameter values (the final 

parameter values were chosen because they allow the model to converge across all variations of 

the model). While the above model assumes growers are risk neutral, assuming they are risk 

averse is likely to further magnify this result. In particular, it may introduce an asymmetry in the 

PMI response since growers are likely to respond more strongly to information of high risk than 

they are to information of low risk. Although this simulation is obviously a stylized version of 

what wine grape growers face in reality, the core insight is important and will be tested 

empirically in the analysis below.   

 

3  DATA 

The empirical merit of our analysis stems largely from the spatial and temporal resolution of the 

data we use to estimate growers’ response to the PMI. By merging data from multiple sources, 
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we construct a high resolution panel dataset that tracks daily fungicide use and yearly PMI use 

among roughly 100 wine grape growers from 1996 to 2007 and includes daily PMI forecasts for 

this period.  

  

As the starting point for constructing this dataset, we conducted an online survey of California 

wine grape growers in January and February 2008. The survey included questions on disease 

management generally and powdery mildew specifically, on vineyard and vineyard manager 

characteristics, and on their use of the PMI. Members of the California Association of Wine 

grape Growers and several other state and local grape growers’ associations were invited to 

participate in the survey. Ultimately, 108 wine grape growers participated in the survey. Nearly 

two-thirds of our surveyed growers have used or currently use the PMI to some degree (see 

Figure 2). This seems consistent with Californian wine grape growers generally, who tend to rely 

on the PMI more than table and raisin grape growers (see Lybbert and Gubler, 2008 for a 

preliminary analysis of the forecast adoption decision). In the present analysis, we include 67 

growers from seven major wine grape growing counties for which we had adequate PMI data 

(more below): Fresno (5 growers), Madera (5), Mendocino (4), Napa (8), San Joaquin (9), San 

Luis Obispo (17), and Sonoma (19).  

 

We obtained from agroservices providers7 daily PMI values for locations near our surveyed 

growers. In some cases, we reconstructed the PMI from raw hourly temperature data collected 

from weather stations near these growers. Most of these PMI data begin when the model was 

first used in 1996 and continue until 2007. We matched growers in our survey to the nearest 

station for which we have PMI data. The mean distance from growers central location to the 

nearest station is 13 km. To capture intervals between pesticide applications, we generated a data 

point for each day of the grape growing season for which PMI data was available (typically 

March through October) from 1996 to 2007 for each plot managed by a grower in our survey 

sample, resulting in 940,065 observations.   

 

                                                 
7 We thank Terra Spase and AgUnlimited for providing these data for several regions in northern California. In 
central and southern California, we accessed the PMI or raw temperature data with the help of the University of 
California Statewide IPM Program and Jenny Broome.  
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The unprecedented temporal resolution of our data stems from the rigorous pesticide use 

reporting system administered in California by the Department of Pesticide Regulation (DPR). In 

this system, growers must obtain a pesticide use permit before applying any pesticides and then 

must then file a pesticide use report (PUR) with their respective county agriculture commissioner 

each time they apply a pesticide. These PURs are then aggregated across counties by the DPR 

and are publicly available via the DPR website (see Epstein, 2006 for more details about the 

PUR system). Each PUR contains the grower’s county-level grower ID, which allowed us to 

match our surveyed growers to their PURs, along with an impressive battery of other details, 

including the crop treated, the product used, its active ingredient, the application rate, the number 

of acres treated, and the total size and spatial location of the plot. In our analysis, we use plot-

level PURs to understand growers’ powdery mildew treatment decisions; each grower in our 

survey has an average of five plots during years of our analysis. One aggregate analysis of PUR 

data and the potential impact of IPM on pesticide usage precedes our grower-specific analysis 

(Epstein and Bassein, 2003).8 The value of our analysis derives from leveraging the temporal 

resolution of the PUR data by integrating it with spatial PMI data and grower survey data that 

includes PMI usage over time, which allows us to directly test the impact of the PMI on growers’ 

powdery mildew strategies and on total pesticide usage.  

 

There are, however, a number of limitations with PUR data, many of which have been explored 

elsewhere (add REFS). Two limitations are worth mentioning here. First, PURs do not include 

why the grower applied the pesticide (e.g., the pest or disease targeted). Fortunately, powdery 

mildew treatment can be inferred quite accurately based on the product used since most of the 

fungicides used to control powdery mildew focus narrowly on this disease. We used data from 

the UC IPM Program on the efficacy of different fungicides for grapes9 and consultations with 

plant pathologists to identify powdery mildew treatment. The most commonly used powdery 

mildew products in our PUR data are shown in Table 1. Second, growers choose their own plot 

labels and sometimes change their plot labels from one year to the next, which makes it difficult 

to track plot trends over years. While the consistency within a given year is sufficient to enable 

us to construct treatment intervals at the plot level and thereby use plots as our unit of analysis, 

                                                 
8 Several other inquiries – including both environmental and human health related – have used PUR data (e.g., 
Davidson, 2004; Reynolds et al., 2002). 
9 Available at http://www.ipm.ucdavis.edu/PMG/r302902111.html (accessed 10 March 2010). 
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we are unable to control for unobservable plot characteristics over time (e.g., with plot fixed 

effects).  

 

Since descriptive statistics from our survey data are presented and discussed elsewhere (Lybbert 

and Gubler, 2008), we focus here on a brief statistical description of the interval and fungicide 

use tendencies of the growers in our sample (Table 3). From these unconditional comparisons, 

there appear to be some differences between those receiving the PMI and those not receiving it. 

Those getting the PMI seem to have longer intervals after spraying sulfur, but are statistically 

indistinguishable from their non-PMI counterparts when it comes to synthetic intervals. 

   

4  EMPIRICAL MODEL & RESULTS 

The objectives that guide our empirical analysis are twofold. First, we aim to test whether wine 

grape growers respond to the PMI by adjusting their powdery mildew treatment strategies and to 

characterize any such response along three potential margins of adjustment: treatment timing, 

product choice, and dosage rate. Second, we aim to assess the net environmental impact of any 

PMI response, which is complicated once we allow for simultaneous adjustment on more than 

one margin. For example, PMI users may – as its inventors intended – stretch intervals when the 

PMI is low, but they may also increase dosage rates when it is high. Furthermore, growers may 

respond asymmetrically to changes in the PMI. They may respond aggressively and promptly to 

increases in the index, while being relatively unresponsive to a low PMI. Throughout our 

analysis we leverage the panel structure of our data. Thus, in addition to comparing the treatment 

tendencies of growers using the PMI to those not using the PMI, we can also focus exclusively 

on growers who initially did not use it but switched to using the PMI during the coverage of our 

data. In the latter case, growers serve as their own counterfactual in a before-after identification 

approach.  

 

A. How do growers respond to the PMI?  

To characterize growers’ response to the PMI, we rely heavily on  non-parametric estimation in 

order to allow flexibility and to facilitate interpretation of the relationship between PMI use and 

the three margins of adjustment. We begin with a simple conditional mean estimation that  non-

parametrically maps growers’ treatment intervals on PMI values. As described above, the 
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hypothesized relationship for PMI users is negative, which would suggest that users safely 

stretch intervals when the PMI is low but tighten the intervals as it increases. We compute plot-

level powdery mildew treatment intervals using the PUR data.10 We compare each interval to the 

minimum interval that corresponds to the previous product used on that plot in order to construct 

an interval stretching variable. We then non-parametrically regress this variable, the number of 

days a grower stretches his powdery mildew interval, on the value of the PMI on the day the 

grower chooses to end the interval. Figure 3 shows this regression for all regions and all growers 

(right) and suggests that growers using the PMI seemed to stretch intervals relative to non-users 

when the PMI was low, but also (somewhat surprisingly) when it was high. The right-hand panel 

provides a cleaner comparison by focusing only on growers who switched to using the PMI 

(“switchers” hereafter). In this panel, there is no clear interval response to the PMI when growers 

begin using it. If anything, after adopting the PMI, growers tighten their intervals across the 

board. Furthermore the relationship tends to be positive rather than negative. Since powdery 

mildew treatment and viticulture more generally can change dramatically from location to 

location, we display the same  non-parametric regression for Napa and Sonoma county growers 

alone in Figure 4. Again, PMI users seem to run tighter intervals than non-users regardless of the 

PMI – although both types of growers apparently respond to the index (recall the rule of thumb 

“if you like the weather, then so does powdery mildew”).  

 

Next, we use analogous non-parametric conditional mean regressions to assess the second 

margin of adjustment, fungicide choice. We do this by computing each grower’s probability of 

spraying sulfur on a given day conditional on the grower choosing to treat for powdery mildew 

that day. Figure 5 (top) shows these sulfur probability regressions, which suggest that PMI users 

(switchers) are significantly less likely to spray sulfur when the PMI is high than their non-user 

counterparts (selves). For more potent synthetic fungicides the pattern is flipped: PMI use seems 

to induce an offsetting increase in the probability of spraying synthetic fungicides when the PMI 

is high. This pattern is even more pronounced when we zoom in on Napa and Sonoma growers 

(Figure 6): PMI-users are nearly three times more likely to spray synthetic fungicides when the 

PMI is high than their counterparts. To emphasize how spatially heterogeneous these responses 

                                                 
10 Details of our construction of these intervals, which are complicated, are forthcoming as an appendix.  
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are, Figure 7 shows these fungicide response regressions for Mendicino growers, which suggest 

a much more muted response along this margin.  

 

[We are in the process of estimating similar regressions for dosage rate response.] 

 

While the  non-parametric conditional mean regressions are a useful first step, there are many 

factors that influence growers’ powdery mildew treatment that are not captured by these 

regressions. We are in the process of estimating a semi-parametric model that will enable us to 

control for a host of other factors and more cleanly identify the impact of the PMI on these 

margins of adjustment. Specifically, we are estimating a semi-parametric smooth coefficient 

model (Li et al., 2002) of the following form:  

 ( ) ( )ijt it it it ijtInterval PMI PMI UsePMI     ijtx φ  (1) 

where ( )itPMI is a stand-alone  non-parametric function, ( )itPMI is a  non-parametric function 

that allows the impact of PMI use on treatment intervals to vary flexibly as the PMI changes, and 

ijtx is a vector of control variables that include grower, year and county fixed effects, dummy 

variables for relevant sub-seasons for grower i’s location (i.e., bud break, shoot growth, etc.), and 

an estimate of grower’s expected value of the current season grape harvest at the plot-level. 

[Results are forthcoming.] 

 

So far we have focused on  non-parametric techniques to understanding growers’ response to the 

PMI. We have also estimated several parametric models to test this response. Specifically, we 

have estimated a selection model in which (i) growers first decide whether to spray for powdery 

mildew on a given day and then, (ii) conditional on having decided to spray, they decide what 

product to use. This approach allows us to compare PMI users to non-users in both stages. The 

results of this parametric approach shown in Table 2 corroborate the  non-parametric results 

above. Because of the interactions and quadratic terms in this specification, the parametric 

results are difficult to interpret as separate coefficients. We use graphical depictions of these 

results instead. Figure 7 uses these results to graph the difference between PMI users and non-

users in their probability of spraying (left) and in the efficacy of the product used conditional on 

choosing to spray (right) as a function of the PMI. These results suggest a clear pattern: Relative 
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to non-users, PMI users are actually less likely to spray as the PMI gets high, but more likely to 

shift to more potent, more effective (and more expensive) treatments. Both dimensions of this 

pattern, which is robust to including only switchers, stem from PMI users product choice 

response to the PMI. They shift to more effective products as the PMI increases. These synthetic 

fungicides offer longer protected intervals, which imply that the probability of spraying on a 

given day actually decreases.   

   

B.  What is the net environmental impact of growers’ multidimensional PMI response?  

Our analysis allows for growers to respond to the PMI by adjusting their intervals, product 

choice and (ultimately) dosage. We find evidence that changing their product choices is at least 

as important as a margin of adjustment for growers as is altering their treatment intervals. Given 

this two dimensional response, it is impossible to predict the environmental impact of the PMI 

without a taking into account both dimensions (all three) simultaneously. To do this we use the 

Pesticide Use Risk Evaluation (PURE) model under development by Zhang and Zhan at the 

Department of Land, Air and Water Resources at UC Davis. This model merges plot level PUR 

data with physical, soil, topographical, and meteorological characteristics to compute a pesticide 

use risk index for four dimensions: surface water, groundwater, soil, and air (see Figure 8). Risk 

scores from these four dimensions are then aggregated into an aggregate risk index. We use these 

risk scores, which are normalized as an index ranging from 0 to 100, as indicators of the overall 

environmental impact of a particular grower’s pesticide usage in a given year. In this way, we 

can test whether adopting the PMI changes a grower’s pesticide risk scores as a way to estimate 

the net environmental impact of growers’ multidimensional PMI response.  

 

With the collaboration of Zhang and Zhan, we have PURE risk scores for 69 of our surveyed 

growers. To assess the impact of PMI adoption on these scores, we estimate the following model 

 0 1 2 ( )z
ijt it it t j i ijtRisk GetPMI UsePMI              (2) 

where z={aggregate, surface water, groundwater, soil, air}, GetPMI is a dummy variable 

indicating whether grower i received the PMI in year t, UsePMI is a dummy variable indicating 

whether a grower used the PMI ‘heavily’ or ‘often’ in that year, t is a year fixed effect, j is a 

county fixed effect, and i is a grower random effect. Before discussing the results, note that the 
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Riskijt scores we use in equation (2) include all pesticides used by grower i in county j in year t – 

i.e., they do not focus narrowly on powdery mildew treatment. Furthermore, as is apparent in 

Figure 3, several of the environmental factors included in these scores lie outside growers’ 

control. Combined these two features should dilute the relationship between the PMI variables 

and risk scores in equation (1) and thereby strengthen the test of the PMI coefficients in (1).  

 

Table 5 contains the estimation results from this specification. Several specific results are worth 

highlighting. First, growers receiving the PMI tended to have slightly lower risk scores, although 

this is mostly statistically insignificant. Second, conditional on receiving the PMI, those using it 

heavily or often in a given year had slightly higher risk scores. While this result is at least 

weakly significant for all but the groundwater risk model, it is also much smaller in magnitude 

than general decline over time in risk scores that is evident in the year fixed effects. Still, it is 

insightful that even after controlling for year and county unobservables the net environmental 

impact of using the PMI appears to be slightly negative. Furthermore, this impact increases in 

both magnitude and statistical significance when we include only those growers who adopted the 

PMI during the 1996-2007 window. This suggests that the result is robust and is not due to 

inappropriate comparisons between growers. It should be noted that this may be driven by a 

distinctly asymmetric response on the part of PMI users: they may respond aggressively when 

the PMI is high, but pay little attention to the PMI when it is low. This asymmetry may be 

magnified slightly by the model itself, which is understandably conservative (false negatives are 

potentially more costly to growers than false positives).  

 

5  CONCLUSIONS 

We began this paper with the observation that how and how well growers manage the risks 

inherent in agriculture has direct welfare implications for producers and consumers at both local 

and societal levels. While better weather, pest and disease forecast information are rapidly 

disseminating among producers and are often touted as promising inputs to production and risk 

management, little is known about how this new information actually shapes producer behavior 

in practice. In this paper, we argue that better forecast information can certainly benefit growers 

and improve their capacity to manage disease and pests effectively, but we must jointly consider 
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the various margins of adjustment available to growers in order to properly understand their 

response to this improved information.  

 

Using the case of California wine grape growers and high resolution panel data that includes 

plot-level powdery mildew treatments, we characterize growers’ response to a popular powdery 

mildew risk model that generates forecast in the form of a daily risk index (PMI). Our analysis 

suggests that growers using the PMI primarily adjust their choice of product in response to the 

PMI by switching to higher potency synthetic fungicides when the risk is high. Since these 

products have longer minimum intervals, this implies that – if anything – PMI users have longer 

intervals as the PMI increases. While this core empirical result is robust across a variety of 

specifications (both parametric and non-parametric), we also find substantial spatial 

heterogeneity, which is logical given the dramatic spatial differences that exist among wine 

grapes and wine grape growers (e.g., differential susceptibilities of grape varieties to powdery 

mildew, differential harvest values, etc.).  

 

Our preliminary results suggest that the net environmental impact of this documented multi-

dimensional response to the PMI may actually be negative, although we emphasize that these are 

preliminary results. Futhermore, it is important to note that the magnitude of this effect is small 

compared to the general improvements in wine grape growers’ environmental impact over the 

past several years.  

 

Finally, although we have been able to characterize growers’ response to the PMI, we are unable 

to document the impact of their response on disease control. Based on widespread evidence from 

field trials, we presume that PMI users are more effective at controlling powdery mildew in their 

vineyards as a result of their responses to the PMI. Indeed, our survey evidence suggests that 

growers using the PMI value it as an important tool in their decision making. Without data from 

our growers on the efficacy of changes in their treatment strategies, we are unable to completely 

assess the value of the PMI from the growers’ perspective.   
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Figure 1 Spatial PMI contour map for Napa County (18 June 1996; left) and evolution of PMI 
for three sites in Napa County (2007; right) (Source: Terra Spase) 
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Figure 2 Intensity of PMI use over time for surveyed growers 
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Figure 3  Non-parametric regression (mean and 95% confidence intervals) of interval stretching 
on the PMI (blue= non-PMI users, orange=PMI users) 
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Figure 4  Non-parametric regression of interval stretching on the PMI for Napa and Sonoma 
growers (blue= non-PMI users, orange=PMI users) 
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Figure 5  Non-parametric regression of probability of spraying sulfur (top) and synthetic 
fungicides (bottom) on the PMI (blue= non-PMI users, orange=PMI users) 
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Figure 6  Non-parametric regression of probability of spraying sulfur and synthetic fungicides 
on the PMI for Napa and Sonoma counties (blue= non-PMI users, orange=PMI users) 
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Figure 7  Non-parametric regression of probability of spraying sulfur and synthetic fungicides 
on the PMI for Mendicino county (blue= non-PMI users, orange=PMI users) 
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 ΔPr(Spray)=Pr(Spray|UsePMI) - Pr(Spray|NotUse) ΔEfficacy=Efficacy|UsePMI - Efficacy|NotUse 
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Figure 8 Difference in probability of spraying and choice of product (efficacy) between PMI 
users and non-users implied by parametric selection model estimation results
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Figure 9 Elements in the Pesticide Use Risk Evaluation (PURE) model 
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Table 1 Most frequently used products for treating powdery mildew among our surveyed 
growers, 1996-2007 

Efficacy 

Toxicity 
According 
to Label* Product Name 

Minimum 
Interval 

Frequency of Use for 
Powdery Mildew 

Treatment 

High Caution PRISTINE FUNGICIDE 14 9%

Caution QUINTEC 14 7%

Warning! RALLY 40 WSP 10 5%

Caution FLINT FUNGICIDE 10 4%

Warning! ELITE 45 WP FOLIAR FUNGICIDE 10 3%

Caution JMS STYLET-OIL - 2%

Caution ABOUND FLOWABLE FUNGICIDE 14 1%

Medium Caution SULFUR products 7 58%

Low Caution KALIGREEN - 2%

Caution SERENADE 7 1%

  Caution SONATA 7 0.4%

* Three levels of toxicity are indicated on the label: highly toxic (Danger!), moderate toxicity 
(Warning!) and low toxicity (Caution). 
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Table 2 Results of stochastic integer programming model: (a) interval stretching when one 
dimensional choice (interval) is assumed, (b) risk of slightly higher damages from interval 
stretching, and (c) PMI-induced shift to higher potency (efficacy) chemicals.  

Interval 
Only Day: 1 2 3 4 5 6 7 8 9 10 # Sprays Cost 

Crop 
Damages 

 Low PMI 
(3.6 avg) 

5 3 2 2 3 3 4 5 4 5    

Naïve Spray X 1 0 1 0 1 0 1 0 1 0 5 10 (b)  31.1 
Informed Spray X 1 0 0 0 1 0 1 0 1 0 (a) 4 8 33.6 
 High PMI 

(8.4 avg) 
5 3 2 2 3 3 4 5 4 5    

Naïve Spray X 1 0 1 0 1 0 1 0 1 0 5 10 252.3 
Informed Spray X 1 0 1 0 1 0 1 0 1 0 5 10 252.3 
ߙ  ൌ 5, ௑݌ ,௑ = 0.8ߛ ൌ ௑ߜ ,2 ൌ 3   

Interval & 
Chemical Day: 1 2 3 4 5 6 7 8 9 10 # Sprays Cost Damages 

 Low PMI 
(3.6 avg) 

5 3 2 2 3 3 4 5 4 5    

Naïve Spray X 0 0 0 0 0 0 0 0 1 0 (c)  1 5 0 
 Spray Y 0 0 0 0 1 0 0 0 0 0 1   
Informed Spray X 0 0 0 0 0 0 0 0 0 0 0 6 7.6 
 Spray Y 0 0 0 0 0 0 1 0 1 0   2   
 High PMI 

(8.4 avg) 
5 3 2 2 3 3 4 5 4 5    

Naïve Spray X 0 0 0 0 0 0 0 0 1 0 1 5 100.8 
 Spray Y 0 0 0 0 1 0 0 0 0 0 1   
Informed Spray X 0 0 0 1 0 0 1 0 0 0 2 13 34.2 
 Spray Y 0 0 1 0 1 0 0 1 0 0 3   
ߙ  ൌ 5, ௑݌ ,௑ = 0.8ߛ ൌ ௑ߜ ,2 ൌ 3, ௒ߛ ൌ 0.7, ௒݌ ൌ ௒ߜ ,3 ൌ 6   
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Table 3 Descriptive statistics for fungicide use and intervals for the wine grape growers in our 
survey  
Variable Combined Get PMI Do not get PMI 
Percentage of sprays with sulfur 47.6% 47.1% 48.0%*
Percentage of sprays with synthetics 
(sterol inhibitors or strobulurins) 

55.0% 53.3% 56.2%***

Percentage of sprays with sterol inhibitors 42.9% 32.2% 50.3%***
Percentage of sprays with strobulurins 12.67% 21.9% 6.3%***
Interval after using sulfur 12.27 13.8 11.1***
Interval after using synthetic 15.0 14.6 15.2
Stretching past recommended interval 
(next treatment with any chemical) in days 

-2.22 -2.06 -2.33

***0.01, **0.05,*0.1 indicates statistical significant differences between those receiving the PMI and those 
not receiving it.  
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Table 4 Selection equation results 

Spray Selection Equation 
(Probit) 

Efficacy Choice   
(Ordered Probit) 

Coef. StdError Coef. StdError 
UsePMI 0.143218 0.01742 -0.33421 0.226441 
PMI 0.00417 0.000515 -0.01288 0.006587 
PMI2 -1.9E-05 4.77E-06 0.000057 0.000031 
PMIt-1*UsePMI -0.00285 0.000667 0.009735 0.004664 
PMIt-1

2*UsePMI 8.44E-06 6.24E-06 -3.6E-05 0.000019 
Last spray (days) 0.139528 0.002796 -0.46655 0.218816 
Last spray2(days) -0.00479 0.000118 0.016947 0.007516 
Bud break 0.099014 0.017114 -0.49647 0.159821 
Shoot growth 0.211024 0.012738 -0.64989 0.329572 
Bloom 0.114393 0.012314 -0.19845 0.17884 
Veraison -0.08155 0.011608 0.403747 0.129815 
Constant -2.32423 0.027668
Inv.Mills ratio -3.74038 1.872143 
Year fixed effects YES  
County fixed effects  YES  
N 212835 19504
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Table 5 Impact of PMI usage on pesticide use risk with grower random effects and p-values based on cluster robust standard errors in 
parentheses (NOTE: Models with ‘Switchers only’ are estimated with only those growers who switched from not using to using the 
PMI during 1996-2007.) 

 Aggregate Risk Surface Water Risk Groundwater Risk Soil Risk Air Risk 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

Received PMI -2.06 -3.01 -1.58 -0.61 -4.02 -9.60* 0.24 -3.03 -1.92 -2.74 

 (0.24) (0.27) (0.55) (0.87) (0.18) (0.061) (0.88) (0.23) (0.37) (0.37) 

Used PMI 
heavily or often 

3.06* 5.18** 5.06* 4.69 3.21 4.71 2.50* 3.19* 2.65 5.35** 
(0.086) (0.019) (0.056) (0.14) (0.37) (0.29) (0.080) (0.068) (0.17) (0.014) 

1997 -2.45 -2.50 -4.88 -1.91 -5.64 -4.52 -0.74 3.16 -1.55 -3.38 

1998 -0.71 0.83 -2.50 0.53 6.64 10.8 -1.23 0.34 -3.09 -2.70 

1999 -6.91*** -8.68* -20.3*** -21.1*** -8.43** -12.7 -3.52 -3.76 -4.19 -6.54 

2000 -6.72*** -11.6*** -12.5*** -15.9*** -14.6*** -22.5*** -2.97 -3.20 -5.00* -10.1** 

2001 -7.27*** -13.9*** -5.21 -11.8** -14.6*** -23.1*** -2.50 -3.52 -8.76*** -15.6*** 

2002 -0.57 -4.19 -8.34** -8.63* 14.0*** 4.91 -4.72** -1.84 -7.25** -11.4*** 

2003 -4.01 -6.13* -10.2** -8.00 9.42** 3.13 -5.51** -3.21 -9.61*** -12.5*** 

2004 0.20 1.00 -6.35 -4.54 21.3*** 25.8*** -5.71** -0.44 -9.99*** -11.8** 

2005 -4.80* -10.6*** -7.89* -6.10 -4.44 -7.61 -4.44* -1.74 -6.41** -16.4*** 

2006 -3.00 -6.20 -4.39 -2.11 -0.45 -1.61 -4.76** 0.25 -5.83* -11.7** 

2007 -10.7*** -17.9*** -21.3*** -23.7*** -18.2*** -26.6*** -7.20*** -5.61* -6.78** -16.1*** 

Switchers only NO YES NO YES NO YES NO YES NO YES 

Grower RE YES YES YES YES YES YES YES YES YES YES 

County FE YES YES YES YES YES YES YES YES YES YES 

R2 Overall 0.21 0.43 0.39 0.51 0.39 0.47 0.13 0.29 0.18 0.44 

R2 Between 0.28 0.63 0.48 0.58 0.52 0.65 0.18 0.66 0.27 0.70 

R2 Within 0.094 0.23 0.15 0.26 0.28 0.35 0.038 0.069 0.053 0.12 

N 546 250 546 250 546 250 546 250 546 250 
* (**) [***] indicates statistical significance at 10% (5%) [1%] level 


