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    Multiproduct Optimal Hedging by     

Time-Varying Correlations 

in a State Dependent model of Regime-Switching   
    

     Abstract 

We determine time-varying hedge ratios in a multiproduct setting using a multivariate state dependent 

model of regime switching dynamic correlations. The model enables one to depict the time-varying 

correlations for multiple series of cash and future prices in two or more different regimes (i.e. the 

conditional correlation is not constant in this multivariate model). This provides an improved 

characterization of the multiproduct dynamic hedging process as it captures the evolution of the 

cash/futures correlation matrix when the model switches from a regime of low correlation to one of higher 

correlation or vice-versa. The model switches regimes according to a Markov chain process and does not 

have a dimensionality problem for larger numbers of series, as does the more conventional BEKK model. 

In addition, we introduce fundamental, economically related factors in the regime switching process to 

assess their effect. These are (weakly) exogenous variables with respect to the markets being considered.  

Results show that these explicit weakly exogenous variables may have an impact on the dynamic process. 

We determine the optimal hedge ratios for the soybean complex by specifically introducing the stocks-to-

use ratio of soybeans as a variable in determining the probability of switching correlation regimes, and 

compare to the case of constant transition probability between regimes. The stocks-to-use ratio contains 

specific, up-to-date information on the supply and demand conditions relevant to the soybean markets, 

and hence has a direct role in determining the price of the commodities. By introducing this variable, our 

model achieves a relative improvement in the characterization of the process over the case of constant 

transition probabilities between regimes. More importantly, there is an improvement in our estimated 

hedge ratios over simple and naïve hedge ratio estimations. Additionally, shocks to these related variables 

may permit us to identify the effect on the hedging ratios and comparison to simpler hedging estimation 

procedures. The model applied is from Tejeda et al. (2009).  

______________________________________________________________ 
Hernan A. Tejeda is a Graduate Research Assistant in the Departments of Economics and Agricultural and Resource 
Economics at North Carolina State University.  
 
Barry K. Goodwin is William Neal Reynolds Distinguished Professor in the Departments of Economics and  
Agricultural and Resource Economics at North Carolina State University.  
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Introduction 

Certain production settings consider the use of inputs and outputs in futures markets, enabling 

the potential use of a multiproduct hedging strategy for risk management purposes. Multiproduct 

hedging considers a multivariate portfolio approach with the potential advantage of production-

related commodities decreasing the price risk faced over the case of singular commodity hedge. 

The usual optimal hedging strategies rely on a mean variance (M-V) structure, as per Anderson 

and Danthine (1980), Fackler and McNew (1993), Noussinov and Leuthold (1999) among 

others.  Agents seek to maximize their expected returns and minimize the variance of their 

returns. Within the setting of a production process, these returns incorporate the difference 

between the cash prices of the inputs and the output, and also for changes of futures prices at 

different periods for each of the inputs and also for the output. Details of these returns in the 

soybean complex process are in Garcia et al. (1995).  

It is noted by Fackler and McNew (1993) that the optimal futures position can be partitioned into 

a pure speculative and a pure hedging component. By assuming unbiased futures markets - 

through the condition of expected futures price differences being equal to zero, only the pure 

hedging component remains. This hedging component - otherwise known as the minimum 

variance hedge, denotes the proportion of the cash position to hold in futures in order to 

minimize price risk. This minimum variance hedge may be expressed by the following ratio z/q: 

ݖ
ݍ ൌ  

,ܨሺݒ݋ܥ ܵሻ
ሻܨሺݎܸܽ  

Where z and q represent the futures and cash positions, respectively; such that z > 0 is a long (i.e. 

buy) position and z < 0 is a short (i.e. sell) position. Also F and S represent the futures and spot 

or cash prices, respectively. 

Anderson and Danthine (1980) lay the theoretical ground for a static scenario, where hedging 

between multiple contracts in an efficient market responds to this covariance between the future 

and cash prices and the variance of the future prices. However, ensuing studies by Myers and 

Thompson (1989) and Baillie and Myers (1991) determined that the condition for the proper 

covariance between cash and futures prices required incorporating information up to the date the 

hedge is made. (i.e. minimum variance hedging should consider conditional covariance instead 
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of unconditional covariance). Estimation of the conditional covariance became available with the 

use of ARCH and GARCH models, and Baillie and Myers (1991) estimate optimal time-varying 

hedge ratios by using a bivariate GARCH model with diagonal vech parametrization. Another 

study by Garcia et al. (1995) used constant correlation within a MGARCH model to estimate the 

optimal hedging ratio of a soybean complex.  

As mentioned previously, certain production settings – such as cattle feeder production or a 

soybean complex process consider the use of inputs and outputs in futures markets. This setting 

enables the use of a multiproduct hedging strategy for risk management purposes. Multiproduct 

hedging considers a multivariate portfolio approach, with the potential advantage of production-

related commodities decreasing the price risk faced over the case of singular commodity hedge. 

Early studies by Peterson and Leuthold (1987), Tzang and Leuthold (1990), Fackler and McNew 

(1993) and Garcia et al. (1995) determined empirical estimates of multiproduct optimal hedges 

with relative advantages over single commodity hedging strategies. These latter three studies 

incorporated the conditional covariance requirement posed by Myers and Thompson (1989) and 

Baillie and Myers (1991).  

Subsequent papers by Noussinov and Leuthold (1999), Manfredo et al. (2000) and Haigh and 

Holt (2000 and 2002) analyzing multiple hedging estimations within a time-varying context, 

have arrived at favorable results for periods of higher volatility. Recent studies for time-varying 

minimum hedge ratios in univariate settings have been made by Lee et al. (2006), Lee and Yoder 

(2007a and 2007b) with some improvements over previous dynamic models. Our model 

considers hedging estimation within a multiproduct setting.  

Specifically, our model determines optimal hedge ratios for a soybean complex process by 

considering time-varying conditional correlations, in a two correlation regime setting. The switch 

between one regime of correlation and the other is governed by a Markov chain. The optimal 

hedge ratios for the soybean complex are estimated by specifically introducing the stocks-to-use 

ratio of soybeans as a variable in determining the probability of switching between correlation 

regimes. Yet similar results are also obtained by considering constant transition probabilities 

between the two regimes. 
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We next discuss the multiproduct hedging method in a soybean complex, followed by a 

presentation of the econometric model used which includes time varying correlations in a state 

dependent model of regime switching.  A brief description of the estimation procedure is 

presented afterwards, along with results for a multiproduct optimal hedging strategy for a 

soybean complex and also with a comparison to a simple hedging strategy which just considers 

time-varying correlations. Discussions and Conclusions follow. 

 

Multiproduct Hedging in a Soybean Complex 

A soybean processor operation requires soybeans as input and results in soybean meal and 

soybean oil as output. Hence the return or margin from the soybean process is the difference 

between the sale prices of soybean meal and soybean oil and the cost prices of soybeans. This 

margin varies according to the variability of these prices, and soybean processors may hedge 

these three prices in the cash markets, forward cash markets, and the futures and options markets. 

This study considers hedging with futures instruments (i.e. options are not included in this 

study). 

The processor’s crushing margin depends on the ratio of input/output soybean crushing 

technology employed.  It is assumed here that 48 pounds of soybean meal and 11 pounds of 

soybean oil are produced from each bushel of soybeans (i.e. 59 lbs.), neglecting any loss for 

simplicity.  

A framework in line with Tzang and Leuthold (1990), Garcia et al. (1995), and Manfredo et al. 

(2000) for soybean processing, is established considering two stages in a total of three periods or 

weeks in this case. The first stage involves two weeks in just production planning (i.e. previous 

to the actual purchase of soybeans). Here futures hedges include concurrently going long (i.e. 

buy) in soybeans1 (Fb,t-3) and short (i.e. sell) in both soybean meal (Fm,t-3) and soybean oil (Fo,t-3). 

The second stage involves the operation, which includes one week in actually buying the 

soybeans in the cash market (Sb,t-1) and concurrently placing a short (Fb,t-1) in the futures market, 

thus liquidating previous soybeans long position. Subsequently, after a week following a period 

                                                            
1 Soybean is denoted by subscript “b”; Soybean meal is denoted by subscript “m”; Soybean oil is denoted by 
subscript “o”. 
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of crushing, the producer sells the soybean meal (Sm,t) and soybean oil (So,t) in the cash market 

and concurrently places a long in the futures markets for both these outputs (Fm,t and Fo,t), and 

thus liquidates previous shorts of soybean meal and soybean oil. 

Hence the hedged soybean returns or margin, considering the two previous stages (with two 

periods/weeks for planning and one period/week for operation), is as follows: 

Rt = Sm,t + So,t – Sb,t-1 + bb,t-3 (Fb,t-1 – Fb,t-3) – bm,t-3 (Fm,t – Fm,t-3) – bo,t-3 (Fo,t – Fo,t-3) – c 

where bb, bm, bo are respectively soybeans, soybean meal and soybean oil bushels of futures 

contracts on a per bushel soybean basis at the first time period t-3, and c is a processing cost 

which is assumed constant. These bushels of futures contracts will determine the respective 

hedge ratio obtained below, by providing the optimal number of futures contracts from 

minimizing the variation of the returns as mentioned previously.  

That is, by using the mean variance framework described in the introduction under the condition 

of unbiased futures markets, ( i.e. expected futures price differences being equal to zero), we are 

able to determine the minimum hedge ratios from the variance of the returns2 presented below, as 

per Garcia et al. (1995) and Manfredo et al. (2000).: 

V(R) = V(Sb) + V(Sm) + V(So) + ܾ௕
ଶV(Fb) + ܾ௢

ଶV(Fo) + ܾ௠
ଶ V(Fm) – 2cov(So, Sb) – 2cov(Sm, Sb) + 

 + 2cov(Sm, So) – 2bbcov(Fb, Sb) + 2bbcov(Fb, So) + 2bbcov(Fb, Sm) + 2bocov(Fo,Sb) –  

 - 2bocov(Fo,So) – 2bocov(Fo, Sm) – 2bobbcov(Fo, Fb) + 2bmcov(Fm, Sb) – 2bmcov(Fm, So) – 

 - 2bmcov(Fm, Sm) – 2bmbbcov(Fm, Fb) + 2bmbocov(Fm, Fo). 

 

The minimum variance hedge ratios are obtained by partially differentiating the previous 

variance with respect to bb, bm, bo and equating each to zero, and then solving for each bb, bm, bo, 

which is calculated with Cramer’s rule for simplicity. Equations for the computation of these 

optimal hedge ratios are in Appendix 1. These time-varying hedge ratios are computed by 

concurrently estimating the time-varying variances and covariance terms. 

                                                            
2 The time scripts are omitted for simplicity. 
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Econometric Methods 

The conditional mean and covariance of market prices must be defined in order to estimate the 

conditional time-varying covariance matrix. For this purpose, the conditional returns of the 

respective spot and futures prices are identified and computed (i.e. in order for the covariance 

matrix to be estimated). In line with Manfredo et al. (2000), the soybean cash and futures prices 

consider the timing between planning and production period, resulting in the following 

conditional returns: 

Rb,t | It-3 = 100*ln(Pb,t-1/Pb, t-3)  

  or  Rb,t = 100*ln(Pb,t-1/Pb, t-3) + ub,t                    (1.1) 

with information available at the planning stage, (i.e. at t-3), and P being Spot or Futures prices. 

 

Once again, by incorporating the timing between planning and production for soybean meal and 

soybean oil, respectively, the following conditional returns are obtained: 

Rm ,t | It-3 = 100*ln(Pm, t/Pm, t-3)    or 

     Rm,t = 100*ln(Pm, t /Pm, t-3) + um,t                          (1.2) 

and 

 R o,t | It-3 = 100*ln(Po, t / Po, t-3)   or 

 Ro,t = 100*ln(Po, t  / Po, t-3) + uo,t                    (1.3)  

   

The prediction errors are specified as the time-varying covariance matrix: 

 Ht = E(ߝ௧ߝ௧
ᇱ | It-3)                           (1.4) 
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Estimation of the time-varying variances and covariances of cash and futures price changes is 

made with a Regime Switching Dynamic Correlation (RSDC) model and a State Dependent 

Regime Switching Dynamic Correlation model, per Pelletier (2006) and Tejeda et al. (2009), 

respectively. 

The RSDC model considers a ܭ - multivariate time process:  

 ௧ܻ ൌ ௧ܪ
ଵ/ଶ

௧ܷ      with ௧ܷ~݅. ݅. ݀. ሺ0,  ௄ሻ               (1.5)ܫ

Where Yt  are the previous price returns from (1.1) to (1.3) 

The time varying covariance matrix ܪ௧ to be estimated is decomposed into standard deviations 

and correlations, with different correlation values switching between different regimes through a 

Markov chain. 

௧ܪ ؠ  ܵ௧Γ௧ܵ௧                          (1.6) 

where ܵ௧ is a Diagonal matrix with standard deviations: ݏ௞,௧  ݇ ൌ 1 … . .  ௧ is the߁ and ܭ

correlations matrix 

The standard deviations ݏ௞,௧  for each time series ݇ - from the diagonal matrix ܵ௧, are assumed to 

follow an ARMACH model, per Taylor (1986). In the ARMACH model, the conditional 

standard deviation follows: 

௧ݏ ൌ  ߱ ൅ ∑ ෤௜ߙ
௤
௜ୀଵ |௧ି௜ݕ| ൅ ∑ ௝ߚ

௣
௝ୀଵ ෤௜ߙ ௧ି௝     withݏ ൌ ௜ߙ ⁄෤௧ݑ|ܧ |, for stationary purposes        (1.7) 

The correlation matrix ߁௧ follows a Markov chain, with different values for different regimes, i.e. 

for particular ݐ periods it may be in one regime with a certain set of correlation values, and for 

other ݐ periods it may be in another regime, with a different set of correlation values. The time-

varying correlation matrix Γ௧ is defined as: 

Γ௧ =  ∑ ૚ሼᇞ೟ୀ௡ሽ
ே
௡ୀଵ Γ௡               (1.8) 

where Δ௧ is an unobserved Markov chain process independent of ௧ܷ, taking N possible regimes 

or values (Δ௧ ൌ 1,2, … ܰሻ. And 1 is an indicator function. In this study two different regimes are 

considered.  
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The parsimonious or restricted model that will be estimated for the time-varying correlation 

matrix Γ௧ is similar to Pelletier (2006) and Tejeda (2009). That is: 

Γ௧ ൌ ΓߣሺΔ௧ሻ ൅ ௄൫1ܫ െ  ሺΔ௧ሻ൯        (1.9)ߣ

where Γ is a fixed ܭݔܭ correlation matrix – for every state or regime considered. ܫ௄ is a ܭݔܭ 

identity matrix. And ߣሺΔ௧ሻ ߳ ሾ0,1ሿ (for assurance of eliminating possibilities of non-PSD 

correlation matrix)  is a univariate random process governed by the unobserved Markov chain 

process Δ௧ that takes ܰ possible values ሺΔ௧ ൌ 1,2 … ܰሻ, and is independent of ௧ܷ. Hence, the 

correlation matrix at time ݐ (i.e. Γ௧) is a weighted average of two extreme states or regimes – 

uncorrelated returns by ߣሺΔ௧ሻ ൌ 0, or totally correlated returns at ߣሺΔ௧ሻ ൌ 1. Changes among 

correlations of different regimes are strictly proportional to ߣሺΔ௧ሻ, allowing for regimes of higher 

or lower correlations with the diagonals (own-correlations) being left at one. 

The ‘probability law’ governing the Markov chain process Δ௧  is defined by its state dependent 

transition probability matrix Π௧ with elements of row ݅ and column ݆ : ߨ௧
௜,௝ , which is a function 

of a weakly exogenous variable xt-1     

Such that: 

௧ߨ 
௜,௜ ൌ ܲሺ∆௧ൌ ݅ | ∆௧ିଵൌ ;௧ିଵݔ , ݅ ௜ሻ = ୣ୶୮ሺ௫೟షభߚ

ᇲ ఉ೔ሻ
ଵାୣ୶୮ሺ௫೟షభ

ᇲ ఉ೔ሻ
  ;     and 

௧ߨ
௜,௝ ൌ ܲሺ∆௧ൌ ݆ | ∆௧ିଵൌ ;௧ିଵݔ , ݅ ௜ሻ =    1ߚ െ  ୣ୶୮ሺ௫೟షభ

ᇲ ఉ೔ሻ
ଵାୣ୶୮ሺ௫೟షభ

ᇲ ఉ೔ሻ
 

 

For the specific case of two regimes: 

 i.e. ∆௧ൌ ௧ൌ∆ ࢘࢕ 1 2    

 with    

ܲሺ∆௧ൌ 1 | ∆௧ିଵൌ ;௧ିଵݔ , 2 ଶሻ = ௘௫௣ሺ௫೟షభߚ
ᇲ ఉమሻ

ଵା௘௫௣ሺ௫೟షభ
ᇲ ఉమሻ

 ;   and 

ܲሺ∆௧ൌ 2 | ∆௧ିଵൌ ;௧ିଵݔ , 2 ଶሻ =  1ߚ െ ௘௫௣ሺ௫೟షభ
ᇲ ఉమሻ

ଵା௘௫௣ሺ௫೟షభ
ᇲ ఉమሻ

      (1.10) 
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Probabilities for both regimes when being previously in regime 2 (i.e. ∆௧ିଵൌ 2) are analogous. 

The transition probability matrix Π௧ is in Appendix 2. For the case of constant transition 

probabilities, the weakly exogenous variable xt-1  is equal to zero. 

 

Estimation: 

From equations (1.5) and (1.6), the log-likelihood can be written as: 

ܮ ൌ  െ
1
2 ෍ሾ݃݋݈ܭሺ2ߨሻ ൅  log ሺ|ܪ௧

்

௧ୀଵ

|ሻ ൅ ௧ܻ
ᇱܪ௧

ିଵ
௧ܻሿ 

   ൌ  െ ଵ
ଶ

∑ ሾ݃݋݈ܭሺ2ߨሻ ൅  log ሺ|ܵ௧Γ௧ܵ௧
்
௧ୀଵ |ሻ ൅ ௧ܻ

ᇱܵ௧
ିଵΓ௧

ିଵܵ௧
ିଵ

௧ܻሿ 

ܮ ൌ  െ ଵ
ଶ

∑ ሾ݃݋݈ܭሺ2ߨሻ ൅  2log ሺ|ܵ௧
்
௧ୀଵ |ሻ ൅ logሺ|Γ௧|ሻ ൅ ෩ܷ௧

ᇱΓ௧
ିଵ ෩ܷ௧ሿ                (2.1.) 

where  ෩ܷ௧ ൌ  ܵ௧
ିଵ

௧ܻ  and ෩ܷ௧ ൌ ሾݑ෤ଵ,௧ … … … … .   ෤௄,௧ሿᇱ is a zero mean process with covarianceݑ

matrix Γ௧; also |ܪ௧| ൌ det ሺܪ௧ሻ. 

 

Estimation of the model parameters is made in two steps, with the assurance that the 

variance/covariance matrix is PSD (positive semi-definite). First the standard deviations are 

obtained, and then the correlations are calculated. This involves calculating the filtered 

probabilities for the complete data log-likelihood conditional on data observed, and then 

obtaining back the smoothed probabilities. The second part is the maximization step, which 

considers the use of these smoothed probabilities in our expected complete-data log likelihood 

function and maximizes directly with respect to the parameters. The parsimonious model enables 

calculation of dynamic correlations in the context of time-varying transition probabilities without 

the need for expectation maximization as does the full model; since the parsimonious model 

requires less number of parameters to be estimated. In other words, through maximum likelihood 

and using a correlation targeting method described in detail per Pelletier (2006) and Tejeda et al. 

(2009), we are able to estimate dynamic correlations between regimes when considering state 

dependent transition probabilities. 



 

11 
 

The data consists of weekly spot and futures prices for soybeans, soybean meal and soybean oil. 

The futures data considers the price of each Wednesday of the week, and if missing, then the 

value for that week’s Tuesday or Thursday is taken into account. The cash soybean prices are 

quotes from the Central Illinois elevator and the Soybean meal and soybean oil prices are quotes 

from Decatur, Illinois. The futures quotes are for the closing prices at the Chicago Board of 

Trade (CBOT). Data spans from the second week of January in 2001 until the first week of 

October 2008, consisting of 408 observations. The out of sample data consists of weekly prices 

from the second week of October 2008 till the last week of April 2009, being 27 observations. 

The stock and use data is obtained from the monthly World Agricultural Supply and Demand 

Estimates (WASDE) reports from the USDA. A cubic spline is applied to this data in order to 

transform it into weekly data. 

 

Results 

Tables 1 and 2 below present estimated correlation values among the cash and future prices of 

soybean, soybean meal and soybean oil for the two regimes considered. Estimation was made 

with the model considering (i.) constant transition probabilities between regimes, and (ii.) with 

the stock to use ratio of soybeans in the state dependent transition probability, as per (1.8).  

Table 1.  

Regime 1 
Soybean 
Cash 

Soybean 
Meal Cash 

Soybean Oil 
Cash   

Soybean 
Futures 

Soybean Meal 
Futures 

Soybean Oil 
Futures 

Soybean Cash 1.0000 
‐ 

Soybean Meal Cash 0.7273 1.0000 
0.0314 ‐ 

Soybean Oil Cash 0.5858 0.4575 1.0000 
0.0324 0.0431 ‐ 

Soybean Futures 0.9911 0.7130 0.5864 1.0000 
0.0023 0.0330 0.0329 ‐ 

Soybean Meal Futures 0.7449 0.9865 0.4810 0.7366 1.0000 
0.0301 0.0034 0.0417 0.0309 ‐ 

Soybean Oil Futures 0.5982 0.4636 0.9948 0.5992 0.4906 1.0000 
0.0332 0.0439 0.0013 0.0338 0.0419 ‐ 
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The correlation values obtained by each model for both regimes do not have a significant 

difference between them (i.e. these estimated correlation values are nearly the same for each 

model, differing a bit on their standard errors). Hence only the correlation values for each regime 

are presented. 

Table 2.  

Regime 2 
Soybean 
Cash 

Soybean 
Meal Cash 

Soybean Oil 
Cash   

Soybean 
Futures 

Soybean Meal 
Futures 

Soybean Oil 
Futures 

Soybean Cash 1.0000 
‐ 

Soybean Meal Cash 0.6874 1.0000 
0.0303 - 

Soybean Oil Cash 0.5537 0.4325 1.0000 
0.0310 0.0409 - 

Soybean Futures 0.9367 0.6739 0.5542 1.0000 
0.0086 0.0318 0.0315 - 

Soybean Meal Futures 0.7041 0.9324 0.4547 0.6962 1.0000 
0.0291 0.0088 0.0396 0.0299 - 

Soybean Oil Futures 0.5654 0.4382 0.9402 0.5664 0.4637 1.0000 
0.0317 0.0417 0.0084 0.0324 0.0398 ‐ 

 

The chart in figure 1 below shows the correlation between the two regimes for Soybean Cash and 

Soybean futures.  

Figure 1. 
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Regarding the different correlation regimes, it may be noted that each specific commodity has 

two distinct dynamic correlation regimes between their cash and futures prices. That is, 

soybeans, soybean cash and soybean meal each have two different correlation levels among their 

own cash and futures prices. These different correlation levels are quite similar for the three 

commodities, ranging from almost one at 0.99 to about 0.94. The correlation values for cash and 

futures prices between the three different commodities range from 0.745 for regime 1 and 0.704 

for regime 2 considering soybean cash and soybean meal futures to 0.458 for regime 1 and 0.432 

for regime 2  considering cash among soybean meal and soybean oil. Yet the difference in the 

magnitude of these values appears small when compared to the magnitude of their standard 

errors.  

 

The ARMACH model results for each price are in table 3 below. 

Table 3. 

Soybean Soybean Meal Soybean Oil 

Cash Futures Cash Futures Cash Futures 

ω - omega 0.8197* 0.9763+ 1.6248* 1.3673+ 4.2507* 4.5348* 
0.3762 0.5012 0.7736 0.7240 1.0303 0.9748 

α~ - alpha tilda 0.1828* 0.1688* 0.1677* 0.1274* 0.2649* 0.2702* 
0.0323 0.0364 0.0389 0.0286 0.0403 0.0451 

β   - beta 0.7012* 0.6804* 0.6563* 0.7128* 0.0608 0.0048 
0.0993 0.1292 0.1251 0.1196 0.1974 0.1835 

*Significance at 5% level or less     +Significance at 10% level or less 

 

In general, the ARMACH parameters are significant for all price series, except those of soybean 

oil. For this latter case, the conditional volatility is only significantly dependent upon the 

previous observation or innovation, and not upon the previous volatility. 

The average hedge ratios are computed considering each regime and compared to a simpler 

hedge ratio which only considers the time-varying covariance between spot and futures returns3, 

                                                            
3 Consistent with traditional optimal hedge ratios, ܾ௜,௧ିଷ ൌ ஼௢௩ሺௌ೔,ி೔ሻ

௏௔௥ ሺி೔ሻ
 per Manfredo et al. (2000) 
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without taking into account the existing relationship between the different soybean products. 

These settings are compared to the case of naive hedging, which is equivalent to the hedge ratio 

being equal to 1 (i.e. agents take equal but opposite positions in the futures contracts to the 

corresponding cash position). Results are presented in table 4 below. 

 

Table 4. 

Average Hedge Ratio RSDC Model - In Sample Average Hedge Ratio RSDC Model - Out of Sample 
Soybean Soybean Meal Soybean Oil Soybean Soybean Meal Soybean Oil 

Regime 1 0.9456 1.0432    0.9296 Regime 1 1.0436     1.0589   0.9527 
Regime 2 0.5944 0.9088    0.8618 Regime 2 0.7802     0.8946   0.8513 

 
 

Average Hedge Ratio Simple Hedge - In Sample Average Hedge Ratio Simple Hedge - Out of Sample 
Soybean Soybean Meal Soybean Oil Soybean Soybean Meal Soybean Oil 

Regime 1 0.8977 1.0318    0.9504 Regime 1 1.0288     1.0619   0.9726 
Regime 2 0.8485 0.9745    0.9128 Regime 2 0.9724     1.0037   0.9193 

 

As may be noted, the difference in average hedge ratios between the two regimes is larger when 

the model takes into account the different dynamic relationships between soybean, soybean meal 

and soybean oil than for the case of a simple hedge consisting of a single product.  

The following tables 5 and 6 contain the hedging effectiveness4 provided by the two methods 

estimated (i.e. two regimes from the RSDC model and from the univariate cash futures cov/var 

quotient), along with the naïve hedging method (i.e. hedge ratio equal to 1) being compared to 

the case of the soybean complex not being hedged. Table 5 contains the average, variance and 

the hedging effectiveness for hedge ratios from the in sample data, and Table 6 contains the same 

statistics for the out of sample data. In both cases, there is an improved hedging effectiveness by 

using the regime switching model of dynamic correlations. 

 

                                                            
4 Percentage reduction in the variance of the hedged margin with respect to the unhedged margin, equal to  
 1 െ ௏௔௥ሺ௛௘ௗ௚௘ௗሻ

௏௔௥ሺ௨௡௛௘ௗ௚௘ௗሻ
, per Manfredo et al. (2000). 
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Table 5.  Hedging Effectiveness - In Sample 

Model Mean  Variance 
Percent 

Reduction 
Unhedged 1.2665 0.1541 

Naive 1.2477 0.0641 58.4024 
Simple Regime 1 1.2433 0.0762 50.5129 

Regime 2 1.2436 0.0731 52.5328 
Combined 1.2426 0.0675 56.2110 

RSDC  Regime 1 1.2469 0.0712 53.7724 
Regime 2 1.2396 0.1092 29.1071 

Combined 1.2293 0.0596 61.3272 
 

Table 6.           

Hedging Effectiveness - Out of Sample 

Model Mean  Variance 
Percent 

Reduction 
Unhedged 1.3459 0.1859 

Naive 1.2688 0.0125 93.27 
Simple Regime 1 1.2700 0.0182 90.24 

Regime 2 1.2742 0.0156 91.63 
Combined 1.2729 0.0154 91.73 

RSDC  Regime 1 1.2686 0.0172 90.74 
Regime 2 1.2876 0.0234 87.42 

Combined 1.2826 0.0112 94.00 
 

Results show that there is an improvement in using the model with Time Varying Correlations 

within a Regime Switching context when compared to the simple hedging model and the naïve 

hedging method. Improvement of over 3 percentage points are obtained in comparison of this 

former model to the naive model for in sample data, yet only a bit more than half a percentage 

point for out of sample data. Perhaps more data may be required in this latter case to obtain an 

improved variance reduction of the hedge ratio. 
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Discussions & Conclusions 

We determined time-varying hedge ratios in a multiproduct setting using a multivariate state 

dependent model of regime switching dynamic correlations. The setting consisted of a soybean 

process, such that soybeans are purchased as input and production of soybean meal and soybean 

oil are sold as output.  The model enabled to depict the time-varying correlations for multiple 

series of cash and future prices in two different regimes (i.e. the conditional correlation is not 

constant in this multivariate model). This provided an improved characterization of the 

multiproduct dynamic hedging process as it captures the evolution of the cash/futures correlation 

matrix when the model switches from a regime of low correlation to one of higher correlation or 

vice-versa. The model switches regimes according to a Markov chain process and does not have 

a dimensionality problem for larger numbers of series, as does the more conventional BEKK 

model. 

Results show that there is an improvement in using the model with Time Varying Correlations 

within a Regime Switching context when compared to the simple hedging model and the naïve 

hedging method. In addition, the introduction of use to stock ratios of soybeans in the state 

dependent probabilities provided a mild improvement over the dynamic process of constant 

transition probabilities, yet the correlations estimated between regimes arrived at very similar 

results between the two methods.  Perhaps estimation with other relevant variables such as 

soybeans meal and soybeans oil use to stock ratio may show more improvement. However, 

results indicate that the model applied, which may include state dependent related factors, 

provides a reasonable estimator of time varying correlations for the computation of multiproduct 

optimal dynamic hedge ratios with better outcome than the naive hedge. 
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Appendix 1 

bb,t-3 =  

 Cov(FbSm)Cov(FmFo)Cov(FmFo) – Cov(FbSb)Cov(FmFo)Cov(FmFo) + Cov(FbSo)Cov(FmFo)Cov(FmFo) + 
Cov(FbSb)Var(Fo)Var(Fm) – Cov(FbSo)Var(Fo)Var(Fm) – Cov(SmFb)Var(Fo)Var(Fm) + 
Cov(FoFb)Cov(FoSo)Var(Fm) + Cov(FoFb)Cov(FoSm)Var(Fm) + Cov(FoFb)Cov(FmFo)Cov(FmSb) – 
Cov(FoFb)Cov(FmFo)Cov(FmSo) – Cov(FoFb)Cov(FmFo)Cov(FmSm) – Cov(FmFb)Cov(FmFo)Cov(FoSo) + 
Cov(FmFb)Cov(FmFo)Cov(FoSb) + Cov(FmFb)Cov(FmSm)Var(Fo) + Cov(FmFb)Cov(FmSo)Var(Fo) – 
Cov(FmFb)Cov(FmSb)Var(Fo) – Cov(FmFb)Cov(FmFo)Cov(FoSm) – Cov(FoFb)Cov(FoSb)Var(Fm) 

     |D| 

 

bm,t-3 =  

Cov(FmFb)Cov(FbFo)Cov(FoSo) – Cov(FmFb)Cov(FoFb)Cov(FoSb) + Cov(FmFb)Cov(FbSb)Var(Fo) – 
Cov(FmFb)Cov(SoFb)Var(Fo) – Cov(FbFm)Cov(SmFb)Var(Fo) + Cov(FmFb)Cov(FoFb)Cov(FoSm) – 
Cov(FoFm)Cov(FoSo)Var(Fb) + Cov(FoFm)Cov(FoSb)Var(Fb) + Cov(FmSm)Var(Fb)Var(Fo) + 
Cov(FmSo)Var(Fb)Var(Fo) – Cov(FbSb)Cov(FbFo)Cov(FmFo) – Cov(FmSb)Var(Fb)Var(Fo)  + 
Cov(FbSo)Cov(FbFo)Cov(FmFo) + Cov(SmFb)Cov(FoFb)Cov(FmFo) – Cov(FmFo)Cov(FoSm)Var(Fb)  +  
Cov(FoFb)Cov(FoFb)Cov(SbFm) – Cov(FoFb)Cov(FbFo)Cov(FmSo) – Cov(FoFb)Cov(FoFb)Cov(SmFm) 

     |D| 

 

bo,t-3 =  

 –Cov(FoSb)Var(Fb)Var(Fm) – Cov(FmFb)Cov(FbFo)Cov(FmSb) + Cov(FoSo)Var(Fb)Var(Fm) + 
Cov(FoSb)Cov(FmFb)Cov(FbFm) + Cov(FbFm)Cov(FbFo)Cov(SoFm) – Cov(FoFm)Cov(FmFb)Cov(SbFb) + 
Cov(FmFb)Cov(FoFb)Cov(SmFm) – Cov(FoFb)Cov(FbSm)Var(Fm) – Cov(FoFb)Cov(FbSo)Var(Fm) + 
Cov(FoFb)Cov(FbSb)Var(Fm) + Cov(FmFb)Cov(FmFo)Cov(FbSm) + Cov(FmFb)Cov(FmFo)Cov(FbSo) – 
Cov(FmFb)Cov(FmFb)Cov(FoSo) + Cov(FmFo)Cov(FmSb)Var(Fb) – Cov(FmFo)Cov(FmSo)Var(Fb) – 
Cov(FmFo)Cov(FmSm)Var(Fb) + Cov(SmFo)Var(Fb)Var(Fm) – Cov(FoSm)Cov(FmFb)Cov(FbFm) 

     |D| 

 

|D| =  

Var(Fo)Var(Fb)Var(Fm) – Var(Fo) Cov(FmFb) Cov(FmFb)  – Cov(FbFo)Cov(FbFo)Var(Fm) – 
Cov(FoFm)Cov(FmFo)Var(Fb) + Cov(FmFb)Cov(FoFb)Cov(FoFm) + Cov(FmFb)Cov(FoFb)Cov(FoFm) 
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Appendix 2 

 

The transition probability matrix Π௧:        

 

 

   State 1  Time t  State 2 

௧ߨ  
ଵଵ                                               ߨ௧

ଵଶ  =  (1 - ߨ௧
ଵଵሻ 

State 1      Pሺ∆௧ൌ 1 | ∆௧ିଵൌ ;௧ିଵݔ ,1 ଵሻ Pሺ∆௧ൌߛ 2 | ∆௧ିଵൌ ;௧ିଵݔ ,1  ଵሻߛ

  =   ୣ୶୮ሺ௫೟షభ
ᇲ ఊభሻ

ଵାୣ୶୮ሺ௫೟షభ
ᇲ ఊభሻ

                                 =  1 -   ୣ୶୮ሺ௫೟షభ
ᇲ ఊభሻ

ଵାୣ୶୮ሺ௫೟షభ
ᇲ ఊభሻ

 

Time t-1  

௧ߨ  
ଶଵ  =  (1 - ߨ௧

ଶଶሻ                          ߨ௧
ଶଶ 

State 2       Pሺ∆௧ൌ 1| ∆௧ିଵൌ ;௧ିଵݔ ,2 ଶሻ   Pሺ∆௧ൌߛ 2 | ∆௧ିଵൌ ;௧ିଵݔ ,2  ଶሻߛ

  =  1 -   ୣ୶୮ሺ௫೟షభ
ᇲ ఊమሻ

ଵାୣ୶୮ሺ௫೟షభ
ᇲ ఊమሻ

                  =     ୣ୶୮ሺ௫೟షభ
ᇲ ఊమሻ

ଵାୣ୶୮ሺ௫೟షభ
ᇲ ఊమሻ

 

 

where ݔ௧ିଵ ൌ ሺ1, ௜5ߛ  &   ሺ௠ିଵሻ,௧ିଵሻԢݔ ,..… ,ଵ,௧ିଵݔ ൌ ሺߛ௜ଵ, ,௜ଶߛ … … … ,   ;௜ሺ௠ିଵሻሻߛ

 

 

 

 

                                                            
5 Here we use ߛ௜same as is if it was ߚ௜ of previous probability equations. 


