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Predicting China’s Land-use Change and Soil Carbon Sequestration 

under Alternative Climate Change Scenarios 

Man Li, JunJie Wu 

This paper examines and predicts the effects of climate change and climate extremes 

on China’s land use conversion and soil carbon sequestration under two alternative 

climate change scenarios. It intends to investigate the following three questions. 1) 

How did climate factors affect land-use conversion in China from 1988 to 2000 and 

what was the relative importance of these factors? 2) How would the predicted future 

climate change pattern affect land-use choice under alternative climate change 

scenarios? 3) How would the predicted future climate pattern change the spatial 

distribution of soil organic carbon in China? The study makes two contributions to the 

literature. First, it integrates climate change, land use conversion, and soil carbon 

sequestration into a whole model, which facilitates a comprehensive, systematic 

analysis. Second, it employs a unique dataset, consisting of high-quality Geographic 

Information System (GIS) data on climate, land use, and soil properties. To the best of 

our knowledge, no one has used such detailed Chinese data for economic research. 

Key words:  Land-use change, soil carbon sequestration, climate change   

Climate change has greatly altered traditional meteorological patterns in China. For 

example, the annual average temperature has risen between 0.5 and 0.8 degrees Celsius in 

the past century. The warming was especially significant in northern region. It has also 

intensified the hydrological cycle in China since the 1950s, which boosted frequent 

floods and droughts. Heavy rains became more intense in the south while rainy seasons in 

the north shrank shorter in duration. Further, extreme climate and weather records have 

been broken almost every year in the recent two decades. It is predicted that by 2050, the 
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annual average precipitation will increase by 5 to 7 percent and the annual mean 

temperature will rise within a range of 2.3 to 3.3 degree Celsius in China (The Ministry 

of Science and Technology of the People's Republic of China, 2007). The economic cost 

of the expected climatic change and climate extremes will be huge, considering that one-

fifth of the world's population are living in the country that might be at risk from 

widespread droughts, shrinking lake and tundra, severe desertification, and more frequent 

and possibly more brutal extreme weather and climate events. While scientists and 

economists have done much research on the contribution of land use and land cover 

changes (e.g., deforestation, reforestation, desertification, and urbanization) to climate 

change, there have been limited studies on the feedback effects. 

It is of practical importance to analyze the impacts of climate change and climate 

extremes on land use conversion. Those impacts are complex. For example, a warming 

climate may make a cold region more attractive to live in, while an increasing frequency 

of local extreme weather events may impair a region’s amenity. Consequently, the 

expected urban land value and urban expansion pattern are changed. Rising temperature 

can also affect agricultural land use. In a recent study, Schlenker and Roberts (2006) 

identify a robust nonlinear and asymmetric relationship between temperature and crop 

yields that is consistent across space, time, and crops, by using a unique 55-year panel 

dataset of crop yields and a fine-scale daily weather dataset covering the United States. 

Besides, their study shows that yields of three major crops in the United States are 

predicted to decrease by 25-44% under the slowest warming scenario and 60-79% under 

the most rapid warming scenario by the end of the century. In addition to urban built-up 
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area and agricultural land, changes in temperature and precipitation will affect forestland 

and grassland. 

The primary goal of this study is to assess and predict the effects of climate change 

and climate extremes on land use conversion and soil carbon sequestration. To this point, 

we develop an econometric land use change model and a statistical SOC density model. 

The two models explicitly capture spatial autocorrelation and spatial heterogeneity. We 

combine two models with simulated outputs from two alternative climate change 

scenarios, i.e., SRES (Special Report for Emissions Scenarios) A2 and B2 scenarios. 

SRES A2 and B2 scenarios were developed by the Intergovernmental Panel on Climate 

Change (IPCC) in 2000. We set the year of 2000 as the baseline period and intend to 

investigate the following three questions. 1) How did climate factors affect land-use 

conversion in China from 1988 to 2000 and what was the relative importance of these 

factors? 2) How would the predicted future climate change pattern affect land-use choice 

under alternative climate change scenarios? 3) How would the predicted future climate 

pattern change the spatial distribution of soil organic carbon in China?  

The study area is Mainland China. We apply detailed GIS dataset in the analysis, 

which comprises four components: climate data, land-use data, geographic data, and 

socioeconomic data. Specially, data on SRES A2 and B2 scenarios for the time periods 

2001-2100 are provided by the Chinese Academic of Agricultural Sciences (CAAS), 

which generated the climate change scenarios with a spatial 50*50 km resolution using 

the PRECIS Model (Providing Regional Climates for Impacts Studies). Land-use data are 

from a unique land cover and land use database provided by the Chinese Academy of 

Sciences (CAS), which was developed based on the US Landsat TM/ETM images with a 
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spatial resolution of 30 by 30 meters (Liu et al. 2003, Deng et al. 2008). The study makes 

two contributions to the literature. First, it integrates climate change, land use conversion, 

and soil carbon sequestration into a whole model, which facilitates a comprehensive, 

systematic analysis. Second, it employs a unique dataset, consisting of high-quality 

Geographic Information System (GIS) data on climate, land use, and soil properties. To 

the best of our knowledge, no one has used such detailed Chinese data for economic 

research. 

The remainder of this paper is arranged as follows. Section 2 discusses land use 

change model and SOC density model and. Section 3 describes data. Section 4 reports the 

estimation and simulation results. The final section will generate a discussion on the 

current results and future work.  

The Model 

In this section, we develop an econometric land use change model and a statistical SOC 

density model. The two models explicitly capture spatial autocorrelation and spatial 

heterogeneity. 

Land Use Change Model 

Fully understanding China’s landownership is helpful to develop a theoretical 

model of land-use change in the study. Unlike the United States and many European 

countries, China has no private land. Land can be owned by the state or by village 

collective, depending on different land use type. For example, all urban land and most 

forest, grassland, water area, and unused land belong to the state; and all farmland is 

collectively owned by villagers. Land use is also heavily regulated by the government. 

The state retains the right to requisition farmland and other collectively owned land for 
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urban construction, industrial development, and transport infrastructure, by paying 

subsidy to villagers based on the original use of the land. Land requisition is the single 

type of land ownership transaction.1 

In this context, land use decision can be made by two types of agents – government 

(county-level or above) and village collective. They have different concerns: government 

officials concern their political and economic achievements to get more promotion 

opportunities, whereas individual villagers concern the net returns to land. We assume 

that each type of agent (risk-neutral) makes land use decision to maximize her utility. 

Based on their concerns, the utility of government includes the level of local GDP and 

image-building projects; while the utility of villagers comprise household income and 

employment opportunity. There are six alternative uses for each parcel of land: farmland, 

grassland, forestland, water area, urban area, and unused land. Let k  and s  be initial and 

final land use, respectively. We assume that urban development is irreversible, i.e., urban 

area will never be converted into nonurban uses. Therefore k  can be any of five 

nonurban uses and s  can be any of all six uses.  

Let |is kU  denote the agent’s utility from converting land grid i  from use k  to use s. 

|is kU  can be decomposed into a deterministic component and an unobserved random 

component: | | |is k is k is kU V ε= + . We use five pixel-level geophysical and four county-level 

socioeconomic variables to construct the deterministic component |is kV . The geophysical 

                                                           
1 China’s land market is generally referred to as land-use right market, which emerged since the amended Constitution 

legalized land-use right transaction in 1988. It contains conveyance market and transfer market of land-use right, where 

conveyance market is a primary land market where transactions occur between government and land users and transfer 

market is a secondary land market where transactions occur between land users.  
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variables are land productivity, precipitation, temperature, the temporal variations in 

precipitation and temperature, respectively. They measure agricultural yield potentials. 

Three more pixel-level geophysical variables designed to capture spatial effects are 

discussed below. The socioeconomic variables are county GDP, population, public 

agricultural investment, and highway density. County GDP and population capture 

household income, highway density measures transport costs for household and for 

conveying agricultural products, and public agricultural investment contributes to 

improving agricultural productivity in the long run. The more theoretical justification of 

the specification of  |is kV  is discussed in Appendix A.  

The unobserved random component |is kε  is assumed to follow the type-I extreme 

value distribution. Under these assumptions, the probability of converting land grid i  

from use k  to use l  is: 

(1)  
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Equation (1) defines a multinomial logit regression model for each starting use k , with a 

discrete left-hand-side (LHS) variable that equals one when land grid is changed into use 

l  and equals zero otherwise. To avoid redundant parameters, we set the initial use k  as 

reference such that | 0ik kV =  by normalizing the corresponding coefficients to zero’s. 

Hence there are five probability equations in the regression for each starting use k . We 

use maximum likelihood method to maximize the joint probability of multiple land-use 

choices based on equation (1). 
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Spatial autocorrelation. Spatial autocorrelation is an important econometric 

concern when applying contiguous geographic data for empirical analysis. The cost of 

not correcting for spatial dependence is inefficient (asymptotically unbiased) estimates if 

the error structure is correlated over space; or inconsistent or biased estimates if land-use 

choice is spatially interdependent. But in practice it is technically challenging to 

distinguish between two types of spatial autocorrelation. In a limited dependent variable 

model true residuals are unobservable, which further raises the difficulty to test for spatial 

autocorrelation. Kelejian and Prucha (2001) develop a generalized Moran’s I statistic 

(asymptotically equivalent to a Lagrange Multiplier statistic) that can used to examine the 

existence of spatial error correlation. However, in the literature the econometric theory of 

testing for spatial interdependency of discrete LHS variable is still in its infancy.2 The 

potential for spatial dependence in error term is ignored in this paper because the data 

sets used in estimation are extremely large (with a range of 1499-19488 observations).  

To correct for the potential endogeneity resulted from spatial autocorrelation in the 

dependent variable, we experiment with a approach by adding three geophysical variables 

– terrain slope, elevation, and the neighborhood index – as instruments to the right hand 

side (RHS) of the utility equation. We adopt an unlagged structure of terrain slope and 

elevation instruments, which differs from the previous studies which use RHS spatial lags 

in the spatial analysis (Nelson et al. 2001; Nelson and Hellerstein 1997). Terrain slope 

and elevation used in this paper can capture the information from grids adjacent to the 

original location because they are generated from China’s digital elevation model (DEM). 

DEM has taken spatial effects into account when estimating or retrieving the values of 

                                                           
2 It is because that the test procedure needs to estimate coefficients and spatial autoregressive parameter simultaneously. 
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other locations during the interpolation process. The neighborhood index is designed as a 

six-dimensional vector based on neighbors in the original dataset. It measures the average 

of the percent land use coverage of the eight cells surrounding the original location. It is 

of theoretical significance to include this instrument in the utility equation. For example, 

in the classic monocentric city model, the location rent of urban land always goes down 

with the distance from central business district (CBD), ceteris paribus because the lower 

rent compensates suburban commuters for their pain and commuting costs. The 

surrounding urban use coverage is a proxy for the distance from CBD and hence higher 

coverage tends to reduce commuting costs. 

Hence the deterministic component of utility |is kV  can be written as   

(2)  ( )| | | | |, ,il k il i m l k il l k i l k m l kV V x xµ α ′= = + + +y z y β z γ , 

where lkµ  is transition-specific constant capturing conversion costs.; ilx  is the 

neighborhood index; iy  is a vector of variables describing the locational characteristics 

of grid i, such as soil quality, topographic features, and weather conditions; and mz  is a 

set of socioeconomic variables indexed by county m  in respect that county is the most 

disaggregated unit available for measuring socioeconomic data. The absolute magnitude 

of coefficient in a multinomial logit model has no economic interpretation. As we 

discussed in the last paragraph of Section 2.1, we set initial use in k  as reference and 

normalize the coefficients so that | 0k kµ = , | 0k kα = , |k k =β 0 , and |k k =γ 0 . The 

normalization avoids an overidentification problem in the regression.  

Independence of irrelevant alternatives (IIA). A final econometric consideration 

pertains to the IIA property of the standard multinomial logit model, i.e., the relative odds 
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of choosing l over k are independent of the other alternatives. Some studies appeal for 

more general models (e.g., nested logit model and mixed logit model) to relax IIA 

assumption (Lubowski et al. 2006; Polyakov and Zhang 2008). But this approach may 

lead to misspecification or may be infeasible for a large sample. An alternative approach 

is to employ Hausman specification test to examine IIA property. But even in a well-

specified model, Hausman test of IIA often reject the assumption when alternatives seem 

distinct  Cheng and Long (2007). In our study, it is unsatisfactory to apply Hausman test 

given six land-use alternatives, which requires 15 essential tests for every initial land use 

( ( )
6!

2! 6 2 !
15× − = ). In addition, some applications to land use have demonstrated that IIA 

assumption is not a serious problem for empirical work (Lewis and Plantinga; Lubowski 

et al. 2006; Polyakov and Zhang 2008).3  

SOC Density Model  

The dynamics of SOC flow are a complex process, where SOC storage is 

determined by the balance of carbon inputs from plant production and outputs through a 

decomposition process (Jobbágy and Jackson 2000; Parton et al. 1993; Schlesinger 1977) 

and soil temperature, moisture, and texture jointly control the decomposition rates of 

SOC in various carbon pools (Parton et al. 1993). The effects of soil temperature and soil 

moisture on the decomposition rates demonstrate an inverted-U pattern with a heavy left-

tail. But the effects of soil texture are much more complicated. For example, sandy soils 

tend to have higher decomposition rates of active carbon pool and more carbon loss due 

                                                           
3 Lewis and Plantinga (2007) fail to reject IIA as null hypothesis at the 5% level using Hausman specification test. 

Lubowski et al. (2006) and Polyakov and Zhang (2008) find that standard models yield qualitatively similar results to 

general models. 
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to microbial respiration, whereas an increase in clay content tends to decrease the fraction 

of carbon flows from slow carbon pool into passive carbon pool and raise the fraction of 

flows from active carbon pool into passive carbon pool. In addition, studies show that 

SOC density is negatively correlated with soil bulk density (Wang et al. 2004; Wu et al. 

2003; Yang et al. 2007).  

While most previous studies typically adopt detailed site-specific biophysical and 

biochemical models with field-level inputs to estimate soil carbon content, we develop a 

statistical model to examine the relationship between SOC density and land use through 

three types of variables – soil property, climate, and land use category. Equation (1) gives 

a general form of the model.  

(3)  y = Xβ+ε , 

where the bold type denote a vector or a matrix, y  is the dependent variable, the 

logarithm of SOC density; X  represents independent variables, including land use 

dummy that is of primary interest, and soil property and climate variables serving as 

covariates;4 β  is coefficient of X ; ε  denotes error term. To capture suspect nonlinear 

effects of soil property and climate variables on the logarithm of SOC density, we adopt a 

quadratic polynomial functional form of these covariates in the analysis. 

There are six land use groups: farmland, forestland, grassland, water area, urban 

area, and unused land. Soil property variable includes soil PH, soil loam, soil sand and 

clay contents, and soil bulk density. Climate variables include mean annual precipitation 

and mean annual temperature. Yang et al. (2007) find that such variables can explain 84% 

                                                           
4 A covariate is a secondary variable that can affect the relationship between the dependent variable and other 

independent variables of primary interest. 
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of the variations in SOC storage in China. A nice feature of statistical model is that it has 

relatively flexible data requirement and can be tailored for specific use. This approach 

can easily be applied to a large region and hence overcomes the limitation of a detailed 

site-specific process model. 

When applying contiguous geographic data in the empirical study, ordinary least 

squares (OLS) framework is inappropriate because of suspect spatial variation in 

parameters and spatially correlated disturbance terms resulted from unobserved “common 

shocks”. We extend OSL regression of equation (3) to a spatial autoregressive (SAR) 

model which relaxes independent and identical distribution (IID) assumption and allows 

for modeling spatial error autocorrelation, and we adopt geographically weighted regress 

(GWR) technique to capture spatial heterogeneity in coefficients (Fotheringham et al. 

1998). The model is rewritten as 

(4)  
( ) , ,

,

i iu v

λ

y = Xβ +ε

ε = Wε +µ
 

where ( ),i iu v  denotes the coordinates of the thi  point in space, ( ),i iu vβ  is a realization 

of the continuous function ( ),u vβ  at point i , λ  is the autoregressive coefficient, W  is a 

row-standardized n n×  matrix such that 0iiw =  and 
1

1
n

ijj
w

=
=∑  for each i , µ  is 

heteroscedastic noise so that ( ) ( ) 12 ,i iE u vσ −′ =µµ M , and ( ),i iu vM  is an n n×  diagonal 

matrix. Hence the error variance-covariance matrix follows as  

(5)  ( ) ( ) ( ) ( )1 1 12 ,i iE u vσ λ λ− − −′ ′= − −εε I W M I W . 

In the spatial model there are two weight matrices, W  and  ( ),i iu vM , respectively 

used for SAR and GWR approaches. We assume a substantially identical weighting 
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scheme in both matrices, where each non-zero entry is specified as a Gaussian function of 

geographical distance from point j  to point i , as in 

(6)  ( ) ( )2 2 2 2

1
exp exp ,      , 1, , ,  and 

n

ij ij ijj
w d h d h i j n i j

=
= − − ∀ = ≠∑ …  

and  

(7)  ( ) ( )2 2, exp ,       , 1, ,jj i i ijm u v d h i j n= − ∀ = … . 

In equations (6) and (7), ijd  measures the Euclidean distance between point i  and point 

j  and h  is referred to as the bandwidth. Another difficulty with the spatial regression is 

that the estimated parameters are, in part, functions of the weighting function. As the 

bandwidth h  tends to infinity, the weighting function ( )2 2exp ijd h −   tend to one for all 

pairs of points so that ( ) 1
1   ijw n j i

−= − ∀ ≠  and ( ), 0   ,jj i im u v i j= ∀ . Equivalently, the 

weights ijw  and  ( ),jj i im u v  becomes uniform for every point j  no matter how far it is 

from location i , and GWR becomes equivalent to SAR. Conversely, as h  becomes 

smaller, the parameter will increasingly depend on observations in close proximity to i . 

Specially, the weighting function ( )2 2exp ijd h −   tends to zero when the distance ijd  is 

approximately 2.15 times larger than the bandwidth h . The problem is therefore how to 

select an appropriate bandwidth or decay function in regression. In this study we choose 

h  on a criterion of minimum Predicted Residual Error Sum of Squares (PRESS), where 

the fitted value with the point i  omitted from the calibration process. 

The essential idea of GWR is that for each point i  there is a bump of influence 

around i  corresponding to the weighting function so that sampled observations near to i  

have more influence in the estimation of the parameters of i  than do sampled 
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observations farther away. We perform weighted least squares regression for each point i  

in a SAR setting and hence local rather than global parameters can be estimated under the 

assumption of spatial error autocorrelation. The theoretical coefficient estimates are given 

by 

(8) ( ) ( ) ( )( ) ( ) ( )( )1ˆ , , ,i i i i i iu v u v u vλ λ λ λ−′ ′ ′ ′=  − −  − − β X I W M I W X X I W M I W y . 

Data 

Our study covers Mainland China. Data used in this paper were provided by the Chinese 

Academy of Sciences (CAS) and Chinese Academic of Agricultural Sciences (CAAS) 

including climate, land-use type, terrain, and socioeconomic data. They are measured at a 

scale of 10 by 10 kilometers, except for socioeconomic data, which are measured at 

county level. Appendix C provides a detailed summary of the data. 

Climate panel data including mean annual precipitation and mean annual 

temperature are collected from two sources, where historical observations from 1991 to 

2000 are generated from a geographical information system (GIS) database housed in 

CAS and the simulated climate data for the time periods 2001-2100 are provided by 

Climate Change Lab, Institute of Environment and Sustainable Development in 

Agriculture, CAAS. We calculate the standard deviations of mean annual precipitation 

and mean annual temperature along time as a measurement of temporal variations in 

climate. Historical data were initially collected from over 400 weather stations and 

organized by the Meteorological Observation Bureau of China. CAS interpolated the 

point climate data into surface data with the method of thin plate smoothing spline 

Hartkamp et al. (1999) to get more disaggregated information for each pixel. Future 

climate data were simulated with a spatial 50 by 50 kilometers resolution under two 



15 

 

scenarios – SRES (Special Report for Emissions Scenarios) A2 and B2 scenarios, which 

were developed by the Intergovernmental Panel on Climate Change (IPCC) in 2000. 

CAAS used Providing Regional Climates for Impacts Studies (PRECIS) Model to 

generate them. PRECIS is a portable regional climate model HadAM3P developed at the 

UK Met Office, Hadley Center, and was nested in HadCM3 (abbreviation for Hadley 

Center Climate Coupled Model, version 3) general circulation model.  

Land-use data are generated from a unique land cover and land use database, which 

was developed based on the US Landsat TM/ETM images with a spatial resolution of 30 

by 30 meters (Deng et al. 2008a; Liu et al. 2003). The data are available for three years – 

the late 1980s, the mid-1990s, and the late 1990s, denoted as 1988, 1995, and 2000, 

respectively. CAS made visual interpretation and digitization of TM images to generate 

thematic maps of land cover, and sorted the data with a hierarchical classification system 

of 25 land cover classes. Further, CAS grouped 25 classes of land cover into 6 aggregated 

classes of land use, i.e., farmland, forestland, grassland, water area, urban area5, and 

unused land. Deng et al. (2006) provides a detailed explanation of the six land-use types. 

Table 1a and 1b show land transition matrices of six land-use classes for the time 

intervals of 1988-1995 and 1995-2000. Land-use exchanges mainly occur between 

farmland, forestland, and grassland, as well as between grassland and unused land. Urban 

area expansion is not as significant as anticipated if viewed from a national perspective.   

[Table 1a and 1b are about here] 

                                                           
5 Urban area consists of urban core and other built-up area such as roads, mines, and development zones that are not 

contiguous with the urban core.  
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Data on geophysical variables are generated from a geographical information 

system (GIS) database, including cross-sectional data of land productivity, terrain slope, 

and elevation. Land productivity is a pixel-specific (5-kilometer-grid) variable, originally 

estimated by a research team from Institute of Geographical Sciences and Natural 

Resources Research, CAS by using standalone software of Estimation System for the 

Agricultural Productivity Deng et al. (2006). Terrain slope and elevation are generated 

from China’s digital elevation model as part of the basic CAS database.  

Socioeconomic variables, such as county GDP and population are gathered from 

several versions of statistical yearbooks and population yearbooks for China’s counties 

and cities for three years (1989, 1996, and 2000). Data on public agricultural investment 

are collected from province and county level statistical yearbooks for four years (1994, 

1995, 1999, and 2000). The investment sources from fiscal budget of the state and local 

government and is mainly used for developing agriculture infrastructure like seeds, 

fertilizers, and irrigation. Data on highway density are available for one year. Based on a 

digital map of transportation networks in the mid-1990s, highway density are calculated 

as the total length of all highways in a county divided by land area of that county. Data in 

value terms are measured at the 2000 real yuan. All of these variables are county-level 

data. 

Results of Estimation and Simulation 

Land Use Change Model 

We estimate the multinomial logit models with a dataset composed of observations at a 

10-km-land-grid scale. There are two transition periods of 1988-1995 and 1995-2000 for 

the analysis. During each period there are five initial land uses (farmland, forestland, 
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grassland, water area, and unused land) and six final uses (farmland, forestland, grassland, 

water area, urban area, and unused land). So we estimate ten separate models in total. 

These models perform well, where pseudo R2 values (McFadden's likelihood ratio index) 

range between 0.546 and 0.825. We will generate a discussion on the coefficient 

estimates of climate variables in the models of land-use change on farmland, forestland, 

and grassland for two transition periods, leaving the remaining estimation results in the 

Appendix. 

Table 2a and 2b report estimation results for the model of land conversion on 

farmland from 1988 to 1995 and from 1995 to 2000, respectively. Estimates and standard 

errors of parameters in equation (2) are presented in columns by land-use choice. 

Specially, positive estimate of a parameter implies that the factor contributes to 

converting farmland to the corresponding alternative use and vice versa. As is shown the 

odds of farmland conversion can be affected by climate. For example, a patch of high-

rainfall farmland is more likely to be afforested; conversely, a patch of low-rainfall and 

low-temperature farmland is less likely to be abandoned, i.e., converted to unused land. 

In contrast to the mean values of rainfall and temperature, the standard deviations of 

mean annual precipitation and mean annual temperature along time are unstable during 

two periods. Table 3a and 3b report estimation results for the model of land conversion 

on forestland from 1988 to 1995 and from 1995 to 2000, respectively. In general, the sign, 

magnitude, and statistical significance of estimates are consistent in two transition 

periods. Specifically, low rainfall and high temperature tend to increase the probability of 

deforestation. As for the temporal variation of precipitation and temperature, we find that 

large variation in rainfall lowers the odds of converting forestland to farm use; we also 
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find that large variation in temperature tends to increase the propensity of deforestation in 

the transition period of 1995-2000. The estimation results also provide evidence for the 

effects of climate variables on land-use change on grassland, as is presented in Table 4a 

and 4b. For example, a patch of high-rainfall grassland is less likely to be changed to the 

unused. 

 [Table 2a and 2b are about here] 

[Table 3a and 3b are about here] 

[Table 4a and 4b are about here] 

Although the results in Table 2a-4b demonstrate the significance of explanatory 

variables in land-use change decisions, these results say little about the relative 

importance of these influences. Due to the nonlinear, multinomial form of the model, the 

importance of the various factors can be discerned only through a series of simulations. 

Hence we use the empirical multinomial logit models to investigate the effect of climate 

change on land use conversion. To be specific, we estimate changes in national land 

hectares for each major use between 1988 and 2000 under five alternative scenarios, 

including one factual and four counterfactuals described in Table 5a. By using the actual 

historical values of all variables, the factual simulation provides a benchmark to measure 

land use changes under alternative counterfactual scenarios. Every counterfactual 

simulation holds a particular variable at a hypothetical level and keeps the remaining 

variables at their historically observed values. Simulations are run at a grid level of 10 km 

by 10 km (equivalent to 10,000 hectares). 

[Table 5a is about here] 
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Change in the total area for each use between 1988 and 2000 is estimated in the following 

five steps: 1) using the coefficient estimates of five standard econometric models for 

1988-1995 to predict the probabilities of land-use choice of every individual gird in 1995, 

given the historical use in 1988;6 2) using the estimates from five standard models of 

transition period 1995-2000 to estimate probabilities of land-use choice of each grid cell 

in 2000, respectively conditional on each of six uses in 1995; 3) multiplying the 

probabilities predicted in the first step by the conditional probabilities predicted in the 

second step, and hence obtaining the joint probabilities of land-use choice in 2000 for 

every individual land cell; 4) summing the land-use choice probabilities by land-use type 

across individuals and multiplying the summations by 10,000 hectares; 5) calculating the 

difference between aggregate hectare of each use estimated in the fourth step and the 

historical land-use hectare in 1988. The procedure is applied to each of five alternative 

scenarios. 

The simulation model performs moderately well in regenerating the direction and 

relative magnitudes of land-use changes from 1988 to 2000. The factually-simulated land 

area in 2000 are within a range of 0.03-5.72% of actual totals for each use, exclusive of 

the situations of unaltered use, in which the factual estimates tend to underestimate the 

land-use area of the actual value. Table 5b reports the simulation results, where change in 

hectare is the total land area change for each use between 1988 and 2000, and percent 

change is the net hectare change under each counterfactual scenario relative to the hectare 

change under factual scenario. In addition, positive (negative) values indicate that the 

factor contributes to increasing (decreasing) the land hectare for that use. 

                                                           
6 For any land grid starting in urban uses, the probabilities of converting to other uses equal zero provided the 
assumption of irreversible urbanization. 
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 [Table 5b is about here] 

Simulation results show that climate factors have a large impact on the land-use 

change on farmland, forestland, grassland, and unused land during 1988-2000. To be 

specific, changes in mean annual precipitation and temporal variations around the mean 

annual precipitation respectively decreased the area of farmland by 32.4% and 233.4%, 

and increased forestland acreage by 70.5% and 737.9%. Conversely, changes in mean 

annual temperature and temporal variations around the mean annual temperature 

increased farmland area by 20.4% and 62.1%, and decreased forestland area by 62.4% 

and 1861%, respectively. Based on this result two points deserve attention. First, changes 

in precipitation and temperature play opposite roles in driving conversion of farmland 

and forestland. Second, farmland and forestland conversions are more sensitive to 

changes in precipitation so that the role of rainfall change outperforms the role of 

temperature change. In contrast, climate factors affect conversion of grassland and 

unused land via a different pattern. Specially, changes in mean annual precipitation and 

temperature decreased grassland acreage by 32.4% and 233.4%, and increased the area of 

unused land by 28% and 131.8%, respectively; whereas temporal variations around the 

mean annual precipitation and mean annual temperature respectively increased grassland 

area by 39.4% and 476.3%, and decreased unused land area by 389% and 344.1%. 

Additionally, Table 5b provides strong evidence that the impacts of climate variation 

around the mean value are much greater than the impacts of climate change in the mean 

value on land-use change. 

SOC Density Model  
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We calibrate the bandwidth h  at 75 km using the minimum PRESS criterion. The 

essential idea is that for each point i  there is a “bump of influence” around i  with a 

radius of 161.25 km (161.25 75 2.15km km= × ); whereas the influence of points beyond 

the circle on i  is negligible. To avoid collinearity caused by land-use dummy, we remove 

the intercept in the regression, i.e., we set the expected mean value of the pooled sample 

as a reference. Therefore, the absolute magnitude of coefficient of land-use dummy 

variable has no economic interpretation. It measures the difference in the expected mean 

of SOC density for each separate land-use category relative to the reference.  

[Figure 1 is about here] 

Like the land-use change model, the SOC density model also performs well. Figure 

1 demonstrates the histogram of the pooled R2 with a mean value of 0.633 and a standard 

deviation of 0.164. The results provide credible evidence for the existence of spatial 

autocorrelation. We conduct a likelihood ratio test for each model (i.e., each observation). 

The P-value’s are reported to greatly less than 0.001 and the spatial autoregressive 

parameter, lambda, are uniformly estimated to be 0.999 for all observations. 

[Figure 2 is about here] 

There is convincing evidence that the SOC density is statistically significantly 

associated with land-use dummy variable. As is presented in Figure 2, the pooled P-value 

of this variable is generally within a range of 0-0.1. In particular, it has a mean of 0.032, 

which is definitely within a 95% confidence interval. It is also instructive to look at the 

distribution of coefficient estimates of land-use dummy variable, which is plotted in 

Figure 3 and 4. The estimates greatly vary around the means though the means are close 

to zero. By summarizing the statistics of these estimates, we find that forestland 
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parameter has the highest mean estimates of 0.0068. It is followed by grassland with the 

mean value equal to 0.0030. In contrast, the mean estimates of the remaining four types 

of land uses are reported to be negative and the lowest value is -0.0092 as the mean 

estimates of unused land.  

[Figure 3 is about here] 

[Figure 4 is about here] 

Discussions 

To investigate the effect of future climate change on land conversion and SOC carbon 

content, we first design a baseline scenario of 2001-2050 based on data in 2000. Under 

the baseline, we allow GDP growing at a declining rate of less 0.5% for each five-year 

interval. Data on population growth rate are from U.S. Bureau of the Census, 

International Data Base. Specially, under the baseline scenario population in China will 

begin to decrease since 2027. We also assume public agricultural investment growing at 

an annually constant rate of 3.65%, which is the average growth rate of the investment 

from 1994 to 2000. Figure 5 gives a description of annual growth rate of GDP and 

population in the baseline scenario.  

[Figure 5 is about here] 

Under the baseline, we predict the land area for each use at a national scale, which 

is reported in Figure 6. It shows that farmland, forestland, and grassland will decrease, 

while unused land, water, and urban area will increase. By combining the land-use 

change model with SOC density model, we also estimate future SOC content the baseline 

scenario as is presented in Figure 7. It is obvious that SOC content will decline because 

the area of forestland and grassland are predicted to be reduced.  
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[Figure 6 is about here] 

[Figure 7 is about here] 

The following work is to generate simulations of land-use change and SOC content 

under future climate scenarios. We are working on it at present and will finish it by the 

end of May. 
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Table 1a. Land-use Transitions from 1988 to 1995 
Initial land-use Final land-use   

Farm Forest Grass Water Urban Unused Total 
Farm Freq 11131  2952  1947  386  178  212  16806  

Prob 0.662  0.176  0.116  0.023  0.011  0.013  1  
Forest Freq 2787  15976  2997  161  36  272  22229  

Prob 0.125  0.719  0.135  0.007  0.002  0.012  1  
Grass Freq 1931  2974  21333  336  16  3518  30108  

Prob 0.064  0.099  0.709  0.011  0.001  0.117  1  
Water Freq 415  179  400  1353  28  298  2673  

Prob 0.155  0.067  0.150  0.506  0.010  0.111  1  
Urban Freq 106  29  16  10  160  9  330  

Prob 0.321  0.088  0.048  0.030  0.485  0.027  1  
Unused Freq 246  312  3142  329  11  16026  20066  

Prob 0.012  0.016  0.157  0.016  0.001  0.799  1  
Total   16616  22422  29835  2575  429  20335  92212  

 

Table 1b. Land-use Transitions from 1995 to 2000 
Initial land-use Final land-use   

Farm Forest Grass Water Urban Unused Total 
Farm Freq 12531  2122  1478  253  100  152  16636  

Prob 0.753  0.128  0.089  0.015  0.006  0.009  1  
Forest Freq 2344  17422  2281  145  24  253  22469  

Prob 0.104  0.775  0.102  0.006  0.001  0.011  1  
Grass Freq 1720  2261  22937  302  11  2630  29861  

Prob 0.058  0.076  0.768  0.010  0.000  0.088  1  
Water Freq 235  97  248  1736  12  268  2596  

Prob 0.091  0.037  0.096  0.669  0.005  0.103  1  
Urban Freq 85  15  9  20  305  4  438  

Prob 0.194  0.034  0.021  0.046  0.696  0.009  1  
Unused Freq 188  204  3025  270  7  16665  20359  

Prob 0.009  0.010  0.149  0.013  0.000  0.819  1  
Total   17103  22121  29978  2726  459  19972  92359  
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Table 2a. Coefficient Estimates for the Standard Multinomial Logit Model of Land-use Change on Farmland, 1988-1995 
Indep. Variable Forestland   Grassland   Water area   Urban area   Unused land 

Estimate Std Err   Estimate Std Err   Estimate Std Err   Estimate Std Err   Estimate Std Err 
Intercept -2.4944*** (0.2027)   -2.4109*** (0.2505)   -4.0919*** (0.4224)   -6.1098*** (0.7112)   -0.9629 (0.7185) 
Land productivity -0.0570*** (0.0122)   -0.0959*** (0.0144)   -0.0577*** (0.0207)   -0.0457* (0.0270)   -0.1269*** (0.0320) 
County GDP 0.0479*** (0.0167)   0.0623*** (0.0202)   0.0706** (0.0293)   0.0944*** (0.0332)   -0.0004 (0.0905) 
Population -0.3910*** (0.1031)   -0.6637*** (0.1354)   -0.2232* (0.1271)   -0.1864 (0.1854)   -0.2542 (0.2555) 
Agricultural investment -0.1021 (0.1508)   -0.0822 (0.1196)   -0.5175 (0.4002)   -0.7971** (0.3207)   -1.0209 (1.2504) 
Highway density -0.1156*** (0.0296)   -0.1249*** (0.0464)   0.0040 (0.1078)   0.0429 (0.0534)   0.0370 (0.1292) 
Terrain slope 0.0541*** (0.0104)   0.0799*** (0.0108)   0.0169 (0.0338)   -0.1900 (0.1186)   -0.0129 (0.0818) 
Elevation 0.0950* (0.0576)   0.1758*** (0.0574)   -0.2773 (0.1733)   0.3259 (0.2554)   -0.7721*** (0.2108) 
Precipitation 0.9175*** (0.1924)   -0.0651 (0.2312)   -0.7200* (0.4004)   0.4239 (0.5523)   -3.0655*** (0.8473) 
Temperature -0.0065 (0.0099)   0.0142 (0.0105)   0.0889*** (0.0244)   0.1137** (0.0452)   -0.0753*** (0.0223) 
Std Err of precipitation -2.4573*** (0.6117)   -0.6045 (0.9496)   0.0051 (1.1433)   -0.2298 (1.7038)   -0.3552 (4.8060) 
Std Err of temperature -0.9903*** (0.3680)   -0.2820 (0.4576)   -0.5643 (0.8490)   -2.6193** (1.1561)   -0.7981 (1.3608) 
Neighborhood index 0.0511*** (0.0012)   0.0519*** (0.0015)   0.0869*** (0.0032)   0.1032*** (0.0048)   0.0530*** (0.0032) 

Number of observations 15012 
McFadden's LRI 0.6436 
Note: *, **, and *** indicate statistical significance at 10, 5, and 1% levels, respectively. 

 

Table 2b. Coefficient Estimates for the Standard Multinomial Logit Model of Land -use Change on Farmland, 1995-2000 
Indep. Variable Forestland   Grassland   Water area   Urban area   Unused land 

Estimate Std Err   Estimate Std Err   Estimate Std Err   Estimate Std Err   Estimate Std Err 
Intercept -3.8590*** (0.2606)   -3.2968*** (0.2424)   -4.9410*** (0.6075)   -7.2280*** (0.9423)   -0.4472 (0.8303) 
Land productivity -0.1027*** (0.0136)   -0.1318*** (0.0157)   -0.0510** (0.0233)   -0.0463 (0.0368)   -0.1482*** (0.0411) 
County GDP 0.0026 (0.0081)   -0.0045 (0.0146)   0.0315* (0.0166)   0.0114 (0.0226)   0.0429** (0.0208) 
Population 0.0379 (0.0947)   -0.3445*** (0.1274)   -0.2059 (0.2344)   0.0661 (0.2134)   -0.7696 (0.5879) 
Agricultural investment -0.1981* (0.1019)   -0.0524 (0.1141)   -0.2718 (0.2381)   -0.1176 (0.2517)   0.1167 (0.3628) 
Highway density -0.1610*** (0.0504)   -0.1808*** (0.0635)   -0.1645 (0.1513)   -0.0802 (0.1757)   -0.1332 (0.1735) 
Terrain slope 0.0726*** (0.0091)   0.0498*** (0.0110)   -0.2091*** (0.0585)   -0.0871 (0.1163)   -0.2446* (0.1289) 
Elevation 0.0780 (0.0591)   0.4166*** (0.0643)   -0.0817 (0.1958)   0.4502* (0.2462)   -0.3200 (0.2467) 
Precipitation 0.6961*** (0.1513)   -0.3161* (0.1863)   0.8743** (0.3844)   0.5525 (0.5124)   -4.3673*** (1.0255) 
Temperature -0.0020 (0.0101)   0.0221* (0.0116)   0.0040 (0.0290)   0.0392 (0.0422)   -0.1388*** (0.0324) 
Std Err of precipitation 0.3500 (0.5999)   0.3058 (0.9794)   -0.6821 (1.7468)   -1.5711 (2.9525)   1.3712 (3.3825) 
Std Err of temperature 1.0990*** (0.3650)   1.0649*** (0.2832)   1.2361 (0.8399)   1.1539 (1.1732)   -0.6066 (1.1337) 
Neighborhood index 0.0419*** (0.0013)   0.0383*** (0.0015)   0.0567*** (0.0037)   0.0980*** (0.0064)   0.0438*** (0.0040) 

Number of observations 14794 
McFadden's LRI 0.6662 
Note: *, **, and *** indicate statistical significance at 10, 5, and 1% levels, respectively. 
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Table 3a. Coefficient Estimates for the Standard Multinomial Logit Model of Land-use Change on Forestland, 1988-1995 
Indep. Variable Farmland   Grassland   Water area   Urban area   Unused land 

Estimate Std Err   Estimate Std Err   Estimate Std Err   Estimate Std Err   Estimate Std Err 
Intercept -2.7835*** (0.1834)   -3.0779*** (0.1945)   -4.6856*** (0.7387)   -4.4508*** (1.6021)   -3.8801*** (0.8209) 
Land productivity -0.0065 (0.0130)   0.0566*** (0.0170)   0.0691 (0.0430)   -0.1788 (0.1189)   0.0345 (0.0934) 
County GDP 0.0027 (0.0147)   0.0182 (0.0225)   -0.1406 (0.0966)   0.0157 (0.0574)   0.0414 (0.0781) 
Population -0.0550 (0.0930)   -0.0021 (0.1321)   0.8228** (0.4039)   0.2045 (0.4704)   0.2703 (0.6201) 
Agricultural investment 0.0491 (0.0886)   -0.1197 (0.1150)   0.2975 (0.6051)   1.1349* (0.6332)   0.3852 (0.4356) 
Highway density 0.1676*** (0.0498)   0.1716*** (0.0567)   0.1136 (0.2419)   -0.3792 (0.8857)   0.3911** (0.1587) 
Terrain slope -0.0243*** (0.0072)   -0.0095 (0.0062)   -0.2402*** (0.0435)   -0.2248* (0.1173)   -0.0552* (0.0322) 
Elevation -0.1688*** (0.0500)   0.1285*** (0.0322)   -0.5179*** (0.1666)   -2.8689*** (0.6227)   0.1158 (0.1030) 
Precipitation -0.4353*** (0.1574)   -1.0997*** (0.1715)   -0.7107 (0.6314)   -1.0955 (1.3883)   -2.3025*** (0.8236) 
Temperature 0.0507*** (0.0084)   0.0301*** (0.0068)   0.0771** (0.0323)   0.0790 (0.0784)   -0.1096*** (0.0279) 
Std Err of precipitation -1.6625*** (0.4919)   1.3443** (0.6553)   -0.6897 (1.9371)   -1.0067 (4.6230)   -0.4653 (4.4423) 
Std Err of temperature -0.1248 (0.3061)   0.5206 (0.3607)   -0.3588 (1.3495)   -0.4862 (3.2093)   0.3350 (1.5463) 
Neighborhood index 0.0576*** (0.0013)   0.0583*** (0.0012)   0.1132*** (0.0056)   0.1507*** (0.0138)   0.0793*** (0.0040) 

Number of observations 19345 
McFadden's LRI 0.6769 
Note: *, **, and *** indicate statistical significance at 10, 5, and 1% levels, respectively. 

 

Table 3b. Coefficient Estimates for the Standard Multinomial Logit Model of Land -use Change on Forestland, 1995-2000 
Indep. Variable Farmland   Grassland   Water area   Urban area   Unused land 

Estimate Std Err   Estimate Std Err   Estimate Std Err   Estimate Std Err   Estimate Std Err 
Intercept -3.1282*** (0.2178)   -2.8665*** (0.1752)   -4.8250*** (0.7760)   -6.0391 (4.1793)   -3.9343*** (0.7437) 
Land productivity 0.0990*** (0.0117)   0.0545*** (0.0171)   0.0116 (0.0441)   0.0249 (0.1358)   0.1021 (0.0832) 
County GDP -0.0041 (0.0067)   0.0150 (0.0092)   -0.0010 (0.0491)   -0.0115 (0.0348)   -0.1897 (0.2619) 
Population -0.0752 (0.0822)   -0.1991* (0.1049)   0.2150 (0.4086)   -0.4762 (1.3089)   0.6480 (0.9809) 
Agricultural investment 0.1755** (0.0827)   0.1137 (0.0966)   0.2246 (1.0142)   0.3394 (4.7189)   -2.1817** (1.1069) 
Highway density 0.0393 (0.0459)   0.0786 (0.0605)   0.0395 (0.2035)   -0.2168 (0.5256)   -0.8677* (0.4527) 
Terrain slope -0.0391*** (0.0077)   -0.0175*** (0.0063)   -0.1895*** (0.0505)   -0.1908 (0.1509)   -0.1638*** (0.0411) 
Elevation -0.2066*** (0.0483)   0.1420*** (0.0328)   -1.2181*** (0.1924)   -0.4573 (0.6115)   0.3046* (0.1579) 
Precipitation -0.4585*** (0.1338)   -1.1202*** (0.1378)   -0.6447 (0.5126)   -1.6371 (1.8932)   -4.4378*** (0.7968) 
Temperature 0.0480*** (0.0085)   0.0391*** (0.0069)   0.0831*** (0.0300)   0.1561 (0.1177)   0.0179 (0.0293) 
Std Err of precipitation -1.1567** (0.5049)   0.0428 (0.6458)   -2.6334 (1.9783)   -0.9844 (6.5859)   0.1497 (3.0380) 
Std Err of temperature 1.0541*** (0.3198)   0.7215*** (0.2633)   1.3924 (1.1542)   -0.4434 (4.5842)   2.6569** (1.1504) 
Neighborhood index 0.0411*** (0.0012)   0.0387*** (0.0012)   0.0813*** (0.0064)   0.1319*** (0.0160)   0.0536*** (0.0050) 

Number of observations 19488 
McFadden's LRI 0.6771 
Note: *, **, and *** indicate statistical significance at 10, 5, and 1% levels, respectively. 
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Table 4a. Coefficient Estimates for the Standard Multinomial Logit Model of Land-use Change on Grassland, 1988-1995 
Indep. Variable Farmland   Forestland   Water area   Urban area   Unused land 

Estimate Std Err   Estimate Std Err   Estimate Std Err   Estimate Std Err   Estimate Std Err 
Intercept -2.5272*** (0.2438)   -3.2139*** (0.2120)   -4.5855*** (0.4887)   -8.1604*** (2.9041)   -2.4478*** (0.2899) 
Land productivity 0.0782*** (0.0171)   0.1272*** (0.0197)   0.1898*** (0.0508)   0.3214* (0.1786)   -0.1199** (0.0549) 
County GDP 0.0527** (0.0250)   -0.0053 (0.0366)   0.1095* (0.0574)   0.0575 (0.6718)   0.1456*** (0.0426) 
Population 0.4507*** (0.1550)   0.8189*** (0.1669)   0.0486 (0.5327)   -0.8714 (3.6464)   -0.5820 (0.4588) 
Agricultural investment -0.1943 (0.1893)   0.3088** (0.1298)   0.4021 (0.4338)   -0.1310 (4.6872)   -1.1709*** (0.3279) 
Highway density 0.1609*** (0.0428)   0.0957 (0.0642)   0.1711 (0.1471)   -0.4573 (0.7783)   0.0610 (0.0844) 
Terrain slope 0.0140 (0.0095)   0.0380*** (0.0069)   -0.0609*** (0.0228)   -0.0157 (0.1109)   -0.0324*** (0.0083) 
Elevation -0.4717*** (0.0510)   -0.1437*** (0.0335)   -0.1110 (0.0848)   0.5892 (0.7513)   0.0267 (0.0481) 
Precipitation 0.5282** (0.2319)   0.7794*** (0.2024)   0.5972 (0.6803)   -0.9467 (3.8030)   -1.1148*** (0.4158) 
Temperature -0.0039 (0.0105)   -0.0163** (0.0080)   -0.0669*** (0.0221)   0.2157 (0.2476)   -0.0166 (0.0112) 
Std Err of precipitation 0.5156 (1.0097)   -1.3059 (0.8522)   1.2753 (2.7736)   -0.2273 (20.728)   1.5814 (2.4712) 
Std Err of temperature -1.0408** (0.4464)   -0.8175** (0.4057)   -0.6959 (0.9127)   -3.7185 (8.2997)   -1.3545*** (0.4911) 
Neighborhood index 0.0556*** (0.0015)   0.0583*** (0.0013)   0.0997*** (0.0038)   0.1662*** (0.0339)   0.0559*** (0.0013) 

Number of observations 17893 
McFadden's LRI 0.6611 
Note: *, **, and *** indicate statistical significance at 10, 5, and 1% levels, respectively. 

 

Table 4b. Coefficient Estimates for the Standard Multinomial Logit Model of Land -use Change on Grassland, 1995-2000 
Indep. Variable Farmland   Forestland   Water area   Urban area   Unused land 

Estimate Std Err   Estimate Std Err   Estimate Std Err   Estimate Std Err   Estimate Std Err 
Intercept -3.1325*** (0.2143)   -3.4663*** (0.1859)   -5.7489*** (0.7341)   -5.0566 (9.2609)   -3.8559*** (0.2912) 
Land productivity 0.1507*** (0.0147)   0.0755*** (0.0183)   0.2003*** (0.0652)   0.1022 (0.7749)   -0.0911** (0.0425) 
County GDP -0.0741*** (0.0170)   -0.0139 (0.0153)   0.0166 (0.0731)   -0.1279 (0.7389)   0.1583*** (0.0175) 
Population 0.6967*** (0.1522)   0.7112*** (0.1441)   0.3270 (0.8176)   -0.7448 (10.550)   -1.8065*** (0.3724) 
Agricultural investment 0.2416** (0.1163)   -0.1530 (0.1156)   0.0391 (0.8088)   -0.3704 (31.015)   -1.4602*** (0.2927) 
Highway density 0.2093*** (0.0612)   0.1865*** (0.0625)   0.1130 (0.1575)   0.6222 (0.5172)   -0.7420*** (0.0853) 
Terrain slope 0.0051 (0.0099)   0.0459*** (0.0063)   -0.0908*** (0.0240)   -0.1523 (0.6673)   -0.0359*** (0.0080) 
Elevation -0.3827*** (0.0568)   -0.1004*** (0.0341)   0.2322 (0.1546)   -2.2314 (8.8000)   0.3706*** (0.0561) 
Precipitation -0.0689 (0.1657)   0.0342 (0.1496)   -0.1111 (0.8861)   0.0435 (13.290)   -2.4384*** (0.3838) 
Temperature 0.0363*** (0.0094)   -0.0001 (0.0073)   -0.0044 (0.0313)   0.0735 (0.6435)   0.1005*** (0.0121) 
Std Err of precipitation -0.3487 (0.9213)   3.1369*** (0.7336)   0.5856 (4.7753)   0.1013 (65.121)   0.1737 (1.93550 
Std Err of temperature 0.1826 (0.2723)   -0.0810 (0.2547)   0.5449 (0.7414)   -1.6131 (12.739)   1.9762*** (0.3033) 
Neighborhood index 0.0435*** (0.0015)   0.0398*** (0.0012)   0.0819*** (0.0047)   0.0927 (0.1070)   0.0287*** (0.0012) 

Number of observations 18116 
McFadden's LRI 0.6157 
Note: *, **, and *** indicate statistical significance at 10, 5, and 1% levels, respectively. 
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Table 5a. Description of Simulation Scenarios 
Scenario Description 

Factual All variables at actual values 
No change in mean precipitation Fix the mean annual precipitation at the average values of 1991-95 
No change in mean temperature Fix the mean annual temperature at the average values of 1991-95 
No variation around mean precipitation Restrict the coefficients of the standard deviations of precipitation to be zero 
No variation around mean temperature Restrict the coefficients of the standard deviations of temperature to be zero 

 
Table 5b. Simulated Changes in Land Supplies of Six Major Uses, 1988-2000a 

Change in major land use Factual 
No change in 
mean 
precipitation 

No change in 
mean 
temperature 

No variation 
around mean 
precipitation 

No variation 
around mean 
temperature 

Farmland (1,000 ha.) 1274.5 1687.4 1017.4 4249.3 482.6 
% 0.0% -32.4% 20.2% -233.4% 62.1% 

Forestland (1,000 ha.) -649.9 -1108.1 -244.3 -5445.6 11445.0 
% 0.0% 70.5% -62.4% 737.9% -1861.0% 

Grassland (1,000 ha.) -2320.2 -2100.3 -1706.2 -3233.9 -13371.1 
% 0.0% -9.5% -26.5% 39.4% 476.3% 

Water area (1,000 ha.) -217.1 -226.9 -152.0 -67.4 -4377.0 
% 0.0% 4.5% -30.0% -68.9% 1915.7% 

Urban area (1,000 ha.) 2526.7 2533.4 2508.0 2723.8 4321.8 
% 0.0% -0.3% 0.7% -7.8% -71.0% 

Unused land (1,000 ha.) -613.8 -785.5 -1422.9 1773.9 1498.6 

% 0.0% 28.0% 131.8% -389.0% -344.1% 
a Change in hectare is the total land area change for each use between 1988 and 2000. Percent change is the net hectare change 
under each counterfactual scenario relative to the hectare change under factual scenario. Positive (negative) values indicate that the 
factor contributes to increasing (decreasing) the land hectare for that use. 
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Figure 1. Histogram of the pooled R-square for SOC density model. 

 

 
Figure 2. Histogram of the pooled P-value of land-use dummy variable in SOC density model. 
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Figure 3. Boxplots of coefficient estimates of land-use dummy variable in SOC density model. 

 

 
Figure 4. Histogram panel of coefficient estimates of land-use dummy variable in SOC density model. 
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Figure 5. Annual growth rate of GDP and population in the baseline scenario. 

 

 

Figure 6. The area of land by use in the baseline scenario. 
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Figure 7. The amount of soil organic carbon in the baseline scenario. 


