|

7/ “““\\\ A ECO" SEARCH

% // RESEARCH IN AGRICULTURAL & APPLIED ECONOMICS

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.


https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu

Predicting China’s Land-use Change and Soil Carbon
Sequestration under Alternative Climate Change Scenans

Man Li 2 JunJie Wi "

& Department of Agricultural and Resource Economics, Oregon State University, Corvallis,
OR 97331, USA.

P University Fellow, Resources for the Future, 1616 P Sreet NW, Washington, DC 20036,
USA.

Corresponding Author: Man Li, 318 Ballard Hall, Oregon Sate University, Corvallis, OR

97331, USA. E-mail: lim@onid.orst.edu

Selected Paper prepared for presentation at the Agricultural & Applied
Economics Association 2010 AAEA, CAES, & WAEA Joint Annual Mesting,
Denver, Colorado, July 25-27, 2010

Copyright 2010 by Man Li and JunJie Wu. All rights reserved. Readers may make
verbatim copies of this document for non-commercial purposes by any means,
provided that this copyright notice appears on all such copies.



Predicting China’s Land-use Change and Soil Carboisequestration

under Alternative Climate Change Scenarios

Man Li, JunJie Wu
This paper examines and predicts the effects ofatk change and climate extremes
on China’s land use conversion and soil carbon estoption under two alternative
climate change scenarios. It intends to investigiagefollowing three questions. 1)
How did climate factors affect land-use conversiorChina from 1988 to 2000 and
what was the relative importance of these fact@)sllow would the predicted future
climate change pattern affect land-use choice uraltsrnative climate change
scenarios? 3) How would the predicted future clenphattern change the spatial
distribution of soil organic carbon in China? Thedy makes two contributions to the
literature. First, it integrates climate changendlause conversion, and soil carbon
sequestration into a whole model, which facilitaeescomprehensive, systematic
analysis. Second, it employs a unique dataset,istons of high-quality Geographic
Information System (GIS) data on climate, land @l soil properties. To the best of

our knowledge, no one has used such detailed Ghitega for economic research.

Key words: Land-use change, soil carbon sequestration, climate change

Climate change has greatly altered traditional orelegical patterns in China. For
example, the annual average temperature has regeredn 0.5 and 0.8 degrees Celsius in
the past century. The warming was especially Scanit in northern region. It has also
intensified the hydrological cycle in China sindee t1950s, which boosted frequent
floods and droughts. Heavy rains became more iatenthe south while rainy seasons in
the north shrank shorter in duration. Further, esxt climate and weather records have

been broken almost every year in the recent twadkst It is predicted that by 2050, the



annual average precipitation will increase by 57tgpercent and the annual mean
temperature will rise within a range of 2.3 to 8&gree Celsius in China (The Ministry
of Science and Technology of the People's Repuabli€hina, 2007). The economic cost
of the expected climatic change and climate extsewi# be huge, considering that one-
fifth of the world's population are living in theountry that might be at risk from

widespread droughts, shrinking lake and tundregreeglesertification, and more frequent
and possibly more brutal extreme weather and cénmeatents. While scientists and
economists have done much research on the combmbof land use and land cover
changes (e.g., deforestation, reforestation, désation, and urbanization) to climate

change, there have been limited studies on thé&exddeffects.

It is of practical importance to analyze the imgaat climate change and climate
extremes on land use conversion. Those impactsanplex. For example, a warming
climate may make a cold region more attractivave in, while an increasing frequency
of local extreme weather events may impair a régi@menity. Consequently, the
expected urban land value and urban expansionrpatte changed. Rising temperature
can also affect agricultural land use. In a recgntly, Schlenker and Roberts (2006)
identify a robust nonlinear and asymmetric relaglup between temperature and crop
yields that is consistent across space, time, aopls¢ by using a unique 55-year panel
dataset of crop yields and a fine-scale daily werattataset covering the United States.
Besides, their study shows that yields of threeomajops in the United States are
predicted to decrease by 25-44% under the slowasnhing scenario and 60-79% under

the most rapid warming scenario by the end of #h@wy. In addition to urban built-up



area and agricultural land, changes in temperamdeprecipitation will affect forestland
and grassland.

The primary goal of this study is to assess andigir¢he effects of climate change
and climate extremes on land use conversion ah@ation sequestration. To this point,
we develop an econometric land use change modeh antatistical SOC density model.
The two models explicitly capture spatial autoclatien and spatial heterogeneity. We
combine two models with simulated outputs from talbernative climate change
scenarios, i.e., SRES (Special Report for Emissi®osnarios) A2 and B2 scenarios.
SRES A2 and B2 scenarios were developed by thegmternmental Panel on Climate
Change (IPCC) in 2000. We set the year of 200thasbaseline period and intend to
investigate the following three questions. 1) Houd dlimate factors affect land-use
conversion in China from 1988 to 2000 and what wesrelative importance of these
factors? 2) How would the predicted future climetb@nge pattern affect land-use choice
under alternative climate change scenarios? 3) Wowld the predicted future climate
pattern change the spatial distribution of soilamrig carbon in China?

The study area is Mainland China. We apply detaid8 dataset in the analysis,
which comprises four components: climate data, -lasel data, geographic data, and
socioeconomic data. Specially, data on SRES A2Bfhdcenarios for the time periods
2001-2100 are provided by the Chinese Academic gificAltural Sciences (CAAS),
which generated the climate change scenarios wé#pagial 50*50 km resolution using
the PRECIS Model (Providing Regional Climates fophcts Studies). Land-use data are
from a unique land cover and land use databasedaw\by the Chinese Academy of

Sciences (CAS), which was developed based on thedn8sat TM/ETM images with a



spatial resolution of 30 by 30 meters (Liu et &l02, Deng et al. 2008). The study makes
two contributions to the literature. First, it igtates climate change, land use conversion,
and soil carbon sequestration into a whole modéichv facilitates a comprehensive,
systematic analysis. Second, it employs a uniquasdf consisting of high-quality
Geographic Information System (GIS) data on climkted use, and soil properties. To
the best of our knowledge, no one has used sudilatetChinese data for economic
research.

The remainder of this paper is arranged as folldextion 2 discusses land use
change model and SOC density model and. Secti@s&ithes data. Section 4 reports the
estimation and simulation results. The final settwill generate a discussion on the
current results and future work.

The Model

In this section, we develop an econometric landalsege model and a statistical SOC
density model. The two models explicitly captureatsgd autocorrelation and spatial
heterogeneity.

Land Use Change Model

Fully understanding China’s landownership is hdlgfu develop a theoretical
model of land-use change in the study. Unlike thretedl States and many European
countries, China has no private land. Land can Weed by the state or by village
collective, depending on different land use typer &ample, all urban land and most
forest, grassland, water area, and unused landhdeto the state; and all farmland is
collectively owned by villagers. Land use is alsavily regulated by the government.

The state retains the right to requisition farmlamdl other collectively owned land for



urban construction, industrial development, anchdpart infrastructure, by paying
subsidy to villagers based on the original usehefland. Land requisition is the single
type of land ownership transaction.

In this context, land use decision can be madevoytypes of agents — government
(county-level or above) and village collective. YHeve different concerns: government
officials concern their political and economic aslements to get more promotion
opportunities, whereas individual villagers conc#ra net returns to land. We assume
that each type of agent (risk-neutral) makes lagel decision to maximize her utility.
Based on their concerns, the utility of governmestudes the level of local GDP and
image-building projects; while the utility of villgrs comprise household income and
employment opportunity. There are six alternatisesufor each parcel of land: farmland,
grassland, forestland, water area, urban areayansed land. Lek and s be initial and
final land use, respectively. We assume that udsselopment is irreversible, i.e., urban
area will never be converted into nonurban usesréfbre k can be any of five

nonurban uses ansl can be any of all six uses.

Let Uy, denote the agent’s utility from converting lanétigr from usek to uses.
U can be decomposed into a deterministic componedtam unobserved random

componentU,, =V, +&,. We use five pixel-level geophysical and four dytlevel

socioeconomic variables to construct the deteriinemponent,, . The geophysical

! China’s land market is generally referred to asiase right market, which emerged since the ante@dastitution
legalized land-use right transaction in 1988. htains conveyance market and transfer market af-lese right, where
conveyance market is a primary land market wherestictions occur between government and land esdriansfer

market is a secondary land market where transactioour between land users.



variables ardand productivity, precipitation, temperature, the temporal variations in
precipitation andtemperature, respectively. They measure agricultural yieldeptials.
Three more pixel-level geophysical variables designo capture spatial effects are
discussed below. The socioeconomic variables artentgoGDP, population, public
agricultural investment, and highway density. County GDP and population capture
household incomehighway density measures transport costs for household and for
conveying agricultural products, and publagricultural investment contributes to
improving agricultural productivity in the long ruithe more theoretical justification of

the specification ofV,

4 1S discussed in Appendix A.

The unobserved random componept is assumed to follow the type-I extreme

value distribution. Under these assumptions, thebaiility of converting land grid

from usek to usel is:

F?I|k =Pr Uil|k >Uisk al# S)

=Pr(Vik *+ &k >Vige + &g sH l#s

1 _ .
(1) =Pr Eigk ~ Cilk <Vi|k_visk Ol #s
eViI|k

Z eVis|k
Equation (1) defines a multinomial logit regressinadel for each starting ude with a
discrete left-hand-side (LHS) variable that equale when land grid is changed into use

| and equals zero otherwise. To avoid redundantnpetexs, we set the initial useas
reference such that,, =0 by normalizing the corresponding coefficients tras.
Hence there are five probability equations in thgression for each starting ukse We

use maximum likelihood method to maximize the jgnbvbability of multiple land-use

choices based on equation (1).



Spatial autocorrelation. Spatial autocorrelation is an important econommetr
concern when applying contiguous geographic dataeffopirical analysis. The cost of
not correcting for spatial dependence is ineffiti@symptotically unbiased) estimates if
the error structure is correlated over space; avnsistent or biased estimates if land-use
choice is spatially interdependent. But in practiteis technically challenging to
distinguish between two types of spatial autocati@h. In a limited dependent variable
model true residuals are unobservable, which furdises the difficulty to test for spatial
autocorrelation. Kelejian and Prucha (2001) devedogeneralized Moran’s statistic
(asymptotically equivalent to a Lagrange Multiplgtatistic) that can used to examine the
existence of spatial error correlation. Howevetrtha literature the econometric theory of
testing for spatial interdependency of discrete Li#Sable is still in its infancy.The
potential for spatial dependence in error termgisored in this paper because the data
sets used in estimation are extremely large (wrdinge of 1499-19488 observations).

To correct for the potential endogeneity resultednf spatial autocorrelation in the
dependent variable, we experiment with a approgduding three geophysical variables
— terrain slope, elevation, and theneighborhood index — as instruments to the right hand
side (RHS) of the utility equation. We adopt anaggled structure derrain slope and
elevation instruments, which differs from the previous sasdwhich use RHS spatial lags
in the spatial analysis (Nelson et al. 2001; Nelaod Hellerstein 1997)errain slope
and elevation used in this paper can capture the informatiomfgrids adjacent to the
original location because they are generated frivma&’s digital elevation model (DEM).

DEM has taken spatial effects into account wheimasing or retrieving the values of

21t is because that the test procedure needsitnatstcoefficients and spatial autoregressive patansimultaneously.



other locations during the interpolation procedse fieighborhood index is designed as a
six-dimensional vector based on neighbors in tigiral dataset. It measures the average
of the percent land use coverage of the eight seliounding the original location. It is
of theoretical significance to include this instembin the utility equation. For example,
in the classic monocentric city model, the locatient of urban land always goes down
with the distance from central business distridBJ, ceteris paribus because the lower
rent compensates suburban commuters for their paith commuting costs. The
surrounding urban use coverage is a proxy for thnkce from CBD and hence higher
coverage tends to reduce commuting costs.

Hence the deterministic component of utility, can be written as

(2) Vi SV (X0 Y1020) = Hig %080+ YiBr + 20 v

where 4, is transition-specific constant capturing conwamsicosts.; x, is the
neighborhood index; y, is a vector of variables describing the locatioct@dracteristics
of grid i, such as soil quality, topographic features, aeather conditions; and,, is a

set of socioeconomic variables indexed by countyn respect that county is the most
disaggregated unit available for measuring socioecoc data. The absolute magnitude
of coefficient in a multinomial logit model has rexonomic interpretation. As we
discussed in the last paragraph of Section 2.1setdnitial use ik as reference and

normalize the coefficients so tha,, =0, o, =0, B, =0, andy,=0. The

normalization avoids an overidentification problenthe regression.

Independence of irrelevant alternatives (I1A). A final econometric consideration

pertains to the IIA property of the standard multmal logit model, i.e., the relative odds



of choosingl overk are independent of the other alternatives. Somngiest appeal for
more general models (e.g., nested logit model ancednlogit model) to relax lA
assumption (Lubowski et al. 2006; Polyakov and £h3008). But this approach may
lead to misspecification or may be infeasible fdarge sample. An alternative approach
is to employ Hausman specification test to exantiAeproperty. But even in a well-
specified model, Hausman test of IIA often rejéa assumption when alternatives seem
distinct Cheng and Long (2007). In our studysitnsatisfactory to apply Hausman test
given six land-use alternatives, which requirese4&ential tests for every initial land use

(mzm). In addition, some applications to land use hdeenonstrated that I1A

assumption is not a serious problem for empiricatkn(Lewis and Plantinga; Lubowski

et al. 2006; Polyakov and Zhang 2068).

SOC Density Modd

The dynamics of SOC flow are a complex process, reth@OC storage is
determined by the balance of carbon inputs fromtgteoduction and outputs through a
decomposition process (Jobbagy and Jackson 20@@nraal. 1993; Schlesinger 1977)
and soil temperature, moisture, and texture joictiytrol the decomposition rates of
SOC in various carbon pools (Partgral. 1993). The effects of soil temperature and soil
moisture on the decomposition rates demonstratevanted-U pattern with a heavy left-
tail. But the effects of soil texture are much mooenplicated. For example, sandy soils

tend to have higher decomposition rates of actarban pool and more carbon loss due

3 Lewis and Plantinga (2007) fail to reject IIA aslirhypothesis at the 5% level using Hausman sjmatibn test.
Lubowski et al. (2006) and Polyakov and Zhang (3@0®l that standard models yield qualitatively Banresults to

general models.
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to microbial respiration, whereas an increaseary cbntent tends to decrease the fraction
of carbon flows from slow carbon pool into passteebon pool and raise the fraction of
flows from active carbon pool into passive carbaolpIn addition, studies show that
SOC density is negatively correlated with soil bdénsity (Wanget al. 2004; Wuet al.
2003; Yanggt al. 2007).

While most previous studies typically adopt dethitgte-specific biophysical and
biochemical models with field-level inputs to estite soil carbon content, we develop a
statistical model to examine the relationship betw8OC density and land use through
three types of variables — soil property, climated land use category. Equation (1) gives
a general form of the model.
®3) y=Xp+e,
where the bold type denote a vector or a malixs the dependent variable, the

logarithm of SOC densityX represents independent variables, including lasd u
dummy that is of primary interest, and soil propeahd climate variables serving as
covariates: B is coefficient ofX ; € denotes error term. To capture suspect nonlinear
effects of soil property and climate variables loa ibgarithm of SOC density, we adopt a
guadratic polynomial functional form of these coatas in the analysis.

There are six land use groups: farmland, forestlamnassland, water area, urban
area, and unused land. Soil property variable dedusoil PH, soil loam, soil sand and
clay contents, and soil bulk density. Climate Valea include mean annual precipitation

and mean annual temperature. Yahgl. (2007) find that such variables can explain 84%

* A covariate is a secondary variable that can affee relationship between the dependent variabk® @her

independent variables of primary interest.
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of the variations in SOC storage in China. A nieat@ire of statistical model is that it has
relatively flexible data requirement and can béotad for specific use. This approach
can easily be applied to a large region and hermeecomes the limitation of a detailed
site-specific process model.

When applying contiguous geographic data in theiecap study, ordinary least
squares (OLS) framework is inappropriate becausesusipect spatial variation in
parameters and spatially correlated disturbancesteesulted from unobserved “common
shocks”. We extend OSL regression of equation @3 tspatial autoregressive (SAR)
model which relaxes independent and identical ibigtion (1ID) assumption and allows
for modeling spatial error autocorrelation, andadept geographically weighted regress
(GWR) technique to capture spatial heterogeneitgaafficients (Fotheringharet al.
1998). The model is rewritten as

y=XB(u.v)+e,

(4)
e=AWeg+p,

where(u,,v;) denotes the coordinates of tifepoint in spacep(u;,v;) is a realization

of the continuous functioﬂ(u,v) at pointi, A is the autoregressive coefficieM/ is a

row-standardizednxn matrix such thatw; =0 and Z?zlwij =1 for eachi, p is

heteroscedastic noise so tafup’) = oM (u,v,)", andM (u,v;) is annxn diagonal

matrix. Hence the error variance-covariance mdtibows as
(5) E(zg)=0?(1 =AW )™M (u,v) " -w )"
In the spatial model there are two weight matrid&sand M (ui vl) respectively

used for SAR and GWR approaches. We assume a stiifyaidentical weighting

12



scheme in both matrices, where each non-zero enspecified as a Gaussian function of

geographical distance from poiftto pointi, as in

(6) w; = exp(-d?/h /Z cex-d?/h?) ., Oij=1.n , anid |
and
(7) m; (u.v)=exp(-d?/n?), Oij=1.0n

In equations (6) and (7J; measures the Euclidean distance between pant point

j andh is referred to as the bandwidth. Another diffigultith the spatial regression is

that the estimated parameters are, in part, funstaf the weighting function. As the

bandwidthh tends to infinity, the weighting functio[rexp(—d”z/hz)] tend to one for all
pairs of points so that;, =(n-1)" Oj#i andm, (u,v)=0 Oi,j. Equivalently, the

weightsw, and m;, (ui,vi) becomes uniform for every pointno matter how far it is

from locationi, and GWR becomes equivalent to SAR. Converselyh &®comes

smaller, the parameter will increasingly dependobgervations in close proximity io
Specially, the weighting functioEexp(—dijz/hz)] tends to zero when the distangdeis

approximately 2.15 times larger than the bandwidtihe problem is therefore how to
select an appropriate bandwidth or decay functioregression. In this study we choose
h on a criterion of minimum Predicted Residual Efsam of Squares (PRESS), where
the fitted value with the poirit omitted from the calibration process.

The essential idea of GWR is that for each poititere is a bump of influence
aroundi corresponding to the weighting function so thahgled observations near to

have more influence in the estimation of the patamseofi than do sampled

13



observations farther away. We perform weightedtleqsares regression for each paint

in a SAR setting and hence local rather than glpbehmeters can be estimated under the
assumption of spatial error autocorrelation. Themthtical coefficient estimates are given
by

8)  B(uw)=[X (=W M () - X TR -W ) (v y)

Data

Our study covers Mainland China. Data used in plager were provided by the Chinese
Academy of Sciences (CAS) and Chinese Academic grficAltural Sciences (CAAS)
including climate, land-use type, terrain, and seconomic data. They are measured at a
scale of 10 by 10 kilometers, except for socioeoapodata, which are measured at
county level. Appendix C provides a detailed sumnudrthe data.

Climate panel data including mean annyakcipitation and mean annual
temperature are collected from two sources, where historidcaensvations from 1991 to
2000 are generated from a geographical informasigstem (GIS) database housed in
CAS and the simulated climate data for the timdoosr 2001-2100 are provided by
Climate Change Lab, Institute of Environment andst&wnable Development in
Agriculture, CAAS. We calculate the standard degra of mean annudgdrecipitation
and mean annudemperature along time as a measurement of temporal variations
climate. Historical data were initially collectedoin over 400 weather stations and
organized by the Meteorological Observation BurealChina. CAS interpolated the
point climate data into surface data with the metlod thin plate smoothing spline
Hartkamp et al. (1999) to get more disaggregatéornmation for each pixel. Future

climate data were simulated with a spatial 50 bykBOmeters resolution under two
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scenarios — SRES (Special Report for Emissions&we) A2 and B2 scenarios, which
were developed by the Intergovernmental Panel omai¢ Change (IPCC) in 2000.
CAAS used Providing Regional Climates for Impactsidi®es (PRECIS) Model to
generate them. PRECIS is a portable regional cimaidel HadAM3P developed at the
UK Met Office, Hadley Center, and was nested in Elsi@ (abbreviation foHadley
Center Climate Coupled Model, version 3) general circulation model.

Land-use data are generated from a unique land eovkland use database, which
was developed based on the US Landsat TM/ETM imaffesa spatial resolution of 30
by 30 meters (Deng et al. 2008a; Liu et al. 2008 data are available for three years —
the late 1980s, the mid-1990s, and the late 198@soted as 1988, 1995, and 2000,
respectively. CAS made visual interpretation amgltidation of TM images to generate
thematic maps of land cover, and sorted the dataavhierarchical classification system
of 25 land cover classes. Further, CAS grouped&ses of land cover into 6 aggregated
classes of land use, i.e., farmland, forestlandssiand, water area, urban &reand
unused land. Deng et al. (2006) provides a detaigdianation of the six land-use types.
Table 1a and 1b show land transition matrices wfland-use classes for the time
intervals of 1988-1995 and 1995-2000. Land-use axgbs mainly occur between
farmland, forestland, and grassland, as well asd®t grassland and unused land. Urban
area expansion is not as significant as anticipé&tadwed from a national perspective.

[Table 1a and 1b are about here]

5 Urban area consists of urban core and other bpiltrea such as roads, mines, and development #uatesre not

contiguous with the urban core.
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Data on geophysical variables are generated frogeagraphical information
system (GIS) database, including cross-sectional aidand productivity, terrain slope,
andelevation. Land productivity is a pixel-specific (5-kilometgrid) variable, originally
estimated by a research team from Institute of Gmwdcal Sciences and Natural
Resources Research, CAS by using standalone seftefaEstimation System for the
Agricultural Productivity Deng et al. (2006). Terraslope and elevation are generated
from China’s digital elevation model as part of tiasic CAS database.

Socioeconomic variables, such @snty GDP andpopulation are gathered from
several versions of statistical yearbooks and i yearbooks for China’s counties
and cities for three years (1989, 1996, and 20D&)a on publiagricultural investment
are collected from province and county level staté yearbooks for four years (1994,
1995, 1999, and 2000). The investment sources fiseal budget of the state and local
government and is mainly used for developing adjuce infrastructure like seeds,
fertilizers, and irrigation. Data dmghway density are available for one year. Based on a
digital map of transportation networks in the m@B@s,highway density are calculated
as the total length of all highways in a countyididd by land area of that county. Data in
value terms are measured at the 2000 real yuarofAlese variables are county-level

data.

Results of Estimation and Simulation

Land Use Change Model
We estimate the multinomial logit models with aadatt composed of observations at a
10km-land-grid scale. There are two transition perioti4988-1995 and 1995-2000 for

the analysis. During each period there are fivéiainland uses (farmland, forestland,

16



grassland, water area, and unused land) and sikuses (farmland, forestland, grassland,
water area, urban area, and unused land). So Wweaéstten separate models in total.
These models perform well, where pse®wvalues (McFadden's likelihood ratio index)
range between 0.546 and 0.825. We will generatesauskion on the coefficient
estimates of climate variables in the models ofliase change on farmland, forestland,
and grassland for two transition periods, leavimg temaining estimation results in the

Appendix.

Table 2a and 2b report estimation results for theeh of land conversion on
farmland from 1988 to 1995 and from 1995 to 20@8pectively. Estimates and standard
errors of parameters in equation (2) are presemedolumns by land-use choice.
Specially, positive estimate of a parameter implteat the factor contributes to
converting farmland to the corresponding alterreatige and vice versa. As is shown the
odds of farmland conversion can be affected by atémFor example, a patch of high-
rainfall farmland is more likely to be afforesteminversely, a patch of low-rainfall and
low-temperature farmland is less likely to be alwaretl, i.e., converted to unused land.
In contrast to the mean values of rainfall and terajure, the standard deviations of
mean annual precipitation and mean annual temperatang time are unstable during
two periods. Table 3a and 3b report estimationltg®dar the model of land conversion
on forestland from 1988 to 1995 and from 1995 t00espectively. In general, the sign,
magnitude, and statistical significance of estimat@e consistent in two transition
periods. Specifically, low rainfall and high temateire tend to increase the probability of
deforestation. As for the temporal variation ofgypéation and temperature, we find that

large variation in rainfall lowers the odds of cering forestland to farm use; we also

17



find that large variation in temperature tendsieéase the propensity of deforestation in
the transition period of 1995-2000. The estimatiesults also provide evidence for the
effects of climate variables on land-use changgrassland, as is presented in Table 4a
and 4b. For example, a patch of high-rainfall Jeas$ is less likely to be changed to the

unused.

[Table 2a and 2b are about here]
[Table 3a and 3b are about here]
[Table 4a and 4b are about here]

Although the results in Table 2a-4b demonstratesigeificance of explanatory
variables in land-use change decisions, these tsesaly little about the relative
importance of these influences. Due to the nonfin@altinomial form of the model, the
importance of the various factors can be discenmdy through a series of simulations.
Hence we use the empirical multinomial logit modelsnvestigate the effect of climate
change on land use conversion. To be specific, stienate changes in national land
hectares for each major use between 1988 and 2006€r dive alternative scenarios,
including one factual and four counterfactuals dbsd in Table 5a. By using the actual
historical values of all variables, the factual siation provides a benchmark to measure
land use changes under alternative counterfactoahasios. Every counterfactual
simulation holds a particular variable at a hyptta¢ level and keeps the remaining
variables at their historically observed valuesaBations are run at a grid level of ki
by 10km (equivalent to 10,000 hectares).

[Table 5a is about here]
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Change in the total area for each use between &382000 is estimated in the following
five steps: 1) using the coefficient estimates igé fstandard econometric models for
1988-1995 to predict the probabilities of land-akeice of every individual gird in 1995,
given the historical use in 198®) using the estimates from five standard modéls o
transition period 1995-2000 to estimate probab8itof land-use choice of each grid cell
in 2000, respectively conditional on each of siesisn 1995; 3) multiplying the
probabilities predicted in the first step by thendibional probabilities predicted in the
second step, and hence obtaining the joint proliabilof land-use choice in 2000 for
every individual land cell; 4) summing the land-ub®ice probabilities by land-use type
across individuals and multiplying the summatiogslB,000 hectares; 5) calculating the
difference between aggregate hectare of each useaé=d in the fourth step and the
historical land-use hectare in 1988. The procedu@plied to each of five alternative
scenarios.

The simulation model performs moderately well igeeerating the direction and
relative magnitudes of land-use changes from 1868800. The factually-simulated land
area in 2000 are within a range of 0.03-5.72% tdiadotals for each use, exclusive of
the situations of unaltered use, in which the falcestimates tend to underestimate the
land-use area of the actual value. Table 5b reploetsimulation results, where change in
hectare is the total land area change for eachheseeen 1988 and 2000, and percent
change is the net hectare change under each cfaoted scenario relative to the hectare
change under factual scenario. In addition, pasifiwegative) values indicate that the

factor contributes to increasing (decreasing) &mel Ihectare for that use.

6 For any land grid starting in urban uses, the abilties of converting to other uses equal zeroviured the
assumption of irreversible urbanization.
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[Table 5b is about here]

Simulation results show that climate factors haarge impact on the land-use
change on farmland, forestland, grassland, andeghiend during 1988-2000. To be
specific, changes in mean annual precipitation tangporal variations around the mean
annual precipitation respectively decreased tha afdarmland by 32.4% and 233.4%,
and increased forestland acreage by 70.5% and %3T@nversely, changes in mean
annual temperature and temporal variations aroum® rhean annual temperature
increased farmland area by 20.4% and 62.1%, anckawsed forestland area by 62.4%
and 1861%, respectively. Based on this result taiotp deserve attention. First, changes
in precipitation and temperature play opposite gale driving conversion of farmland
and forestland. Second, farmland and forestlandversions are more sensitive to
changes in precipitation so that the role of rdinthange outperforms the role of
temperature change. In contrast, climate factofectfconversion of grassland and
unused land via a different pattern. Specially,ngjes in mean annual precipitation and
temperature decreased grassland acreage by 32ad1283%%, and increased the area of
unused land by 28% and 131.8%, respectively; wisetemporal variations around the
mean annual precipitation and mean annual temperadspectively increased grassland
area by 39.4% and 476.3%, and decreased unusedataadby 389% and 344.1%.
Additionally, Table 5b provides strong evidencetttiee impacts of climate variation
around the mean value are much greater than thacispf climate change in the mean

value on land-use change.

SOC Density Modd

20



We calibrate the bandwidth at 75km using the minimum PRESS criterion. The
essential idea is that for each pointhere is a “bump of influence” aroundwith a
radius of 161.2%m (161.2%m= 7&kmx 2.1); whereas the influence of points beyond
the circle oni is negligible. To avoid collinearity caused bydamse dummy, we remove
the intercept in the regression, i.e., we set #peeted mean value of the pooled sample
as a reference. Therefore, the absolute magnitddeoefficient of land-use dummy
variable has no economic interpretation. It measthe difference in the expected mean
of SOC density for each separate land-use cateagtatyve to the reference.

[Figure 1 is about here]

Like the land-use change model, the SOC densityetraido performs well. Figure
1 demonstrates the histogram of the podtéaith a mean value of 0.633 and a standard
deviation of 0.164. The results provide credibledemce for the existence of spatial
autocorrelation. We conduct a likelihood ratio testeach model (i.e., each observation).
The P-value’s are reported to greatly less tha®l10.8nd the spatial autoregressive
parameter, lambda, are uniformly estimated to B8®for all observations.

[Figure 2 is about here]

There is convincing evidence that the SOC dengttatistically significantly
associated with land-use dummy variable. As isgresl in Figure 2, the pooled P-value
of this variable is generally within a range of @-0n particular, it has a mean of 0.032,
which is definitely within a 95% confidence intekvH is also instructive to look at the
distribution of coefficient estimates of land-usemimy variable, which is plotted in
Figure 3 and 4. The estimates greatly vary aroteditieans though the means are close

to zero. By summarizing the statistics of thesanedes, we find that forestland
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parameter has the highest mean estimates of 0.006&ollowed by grassland with the
mean value equal to 0.0030. In contrast, the meamates of the remaining four types
of land uses are reported to be negative and theslovalue is -0.0092 as the mean
estimates of unused land.

[Figure 3 is about here]

[Figure 4 is about here]
Discussions
To investigate the effect of future climate chamgeland conversion and SOC carbon
content, we first design a baseline scenario ofLlZZ60 based on data in 2000. Under
the baseline, we allow GDP growing at a decliniatg rof less 0.5% for each five-year
interval. Data on population growth rate are fromSUBureau of the Census,
International Data Base. Specially, under the l@sedcenario population in China will
begin to decrease since 2027. We also assume p@agslrultural investment growing at
an annually constant rate of 3.65%, which is therage growth rate of the investment
from 1994 to 2000. Figure 5 gives a descriptionanhual growth rate of GDP and
population in the baseline scenario.

[Figure 5 is about here]

Under the baseline, we predict the land area foh e@e at a national scale, which
is reported in Figure 6. It shows that farmlandeftland, and grassland will decrease,
while unused land, water, and urban area will iasee By combining the land-use
change model with SOC density model, we also estifiiure SOC content the baseline
scenario as is presented in Figure 7. It is obvibas SOC content will decline because

the area of forestland and grassland are prediotbd reduced.
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[Figure 6 is about here]
[Figure 7 is about here]
The following work is to generate simulations afdause change and SOC content
under future climate scenarios. We are workingtaat present and will finish it by the

end of May.
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Table la. Land-use Transitions from 1988 to 1995

Initial land-use

Final land-use

Farm Forest Grass Water Urban Unused Total

Farm Freq 11131 2952 1947 386 178 212 16806

Prob 0.662 0.176 0.116 0.023 0.011 0.013 1

Forest Freq 2787 15976 2997 161 36 272 22229

Prob 0.125 0.719 0.135 0.007 0.002 0.012 1

Grass Freq 1931 2974 21333 336 16 3518 30108

Prob 0.064 0.099 0.709 0.011 0.001 0.117 1

Water Freq 415 179 400 1353 28 298 2673

Prob 0.155 0.067 0.150 0.506 0.010 0.111 1

Urban Freq 106 29 16 10 160 9 330

Prob 0.321 0.088 0.048 0.030 0.485 0.027 1

Unused  Freq 246 312 3142 329 11 16026 20066

Prob 0.012 0.016 0.157 0.016 0.001 0.799 1

Total 16616 22422 29835 2575 429 20335 92212
Table 1b. Land-use Transitions from 1995 to 2000
Initial land-use Final land-use

Farm Forest Grass Water Urban Unused Total

Farm Freq 12531 2122 1478 253 100 152 16636

Prob 0.753 0.128 0.089 0.015 0.006 0.009 1

Forest Freq 2344 17422 2281 145 24 253 22469

Prob 0.104 0.775 0.102 0.006 0.001 0.011 1

Grass Freq 1720 2261 22937 302 11 2630 29861

Prob 0.058 0.076 0.768 0.010 0.000 0.088 1

Water Freq 235 97 248 1736 12 268 2596

Prob 0.091 0.037 0.096 0.669 0.005 0.103 1

Urban Freq 85 15 9 20 305 4 438

Prob 0.194 0.034 0.021 0.046 0.696 0.009 1

Unused  Freq 188 204 3025 270 7 16665 20359

Prob 0.009 0.010 0.149 0.013 0.000 0.819 1

Total 17103 22121 29978 2726 459 19972 92359
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Table 2a. Coefficient Estimates for the Standard Mliinomial Logit Model of Land-use Change on Farmlard, 1988-1995

Indep. Variable Forestlan Grasslan Water are Urban are Unused lan
Estimat Std Er Estimat Std Er Estimat: Std Er Estimat¢ Std Er Estimat: Std Er
Intercept -2.4944**  (0.2027) -2.4109**  (0.2505) -4.0919**  (0.4224) -6.1098**  (0.7112) -0.9629 (0.7185)
Land productivity -0.0570**  (0.0122) -0.0959***  (0.0144) -0.0577**  (0.0207) -0.0457* (0.0270) -0.1269**  (0.0320)
County GDP 0.0479**  (0.0167) 0.0623**  (0.0202) 0.0706** (0.0293) 0.0944**  (0.0332) -0.0004 (0.0905)
Population -0.3910**  (0.1031) -0.6637**  (0.1354) -0.2232* (0.1271) -0.1864 (0.1854) -0.2542 (0.2555)
Agricultural investment -0.1021 (0.1508) -0.0822 (0.1196) -0.5175 (0.4002) -0.7971* (0.3207) -1.0209 (1.2504)
Highway density -0.1156***  (0.0296) -0.1249**  (0.0464) 0.0040 (0.1078) 0.0429 (0.0534) 0.0370 (0.1292)
Terrain slope 0.0541**  (0.0104) 0.0799***  (0.0108) 0.0169 (0.0338) -0.1900 (0.1186) -0.0129 (0.0818)
Elevation 0.0950* (0.0576) 0.1758***  (0.0574) -0.2773 (0.1733) 0.3259 (0.2554) -0.7721**  (0.2108)
Precipitation 0.9175**  (0.1924) -0.0651 (0.2312) -0.7200* (0.4004) 0.4239 (0.5523) -3.0655***  (0.8473)
Temperature -0.0065 (0.0099) 0.0142 (0.0105) 0.0889***  (0.0244) 0.1137* (0.0452) -0.0753**  (0.0223)
Std Err of precipitation -2.4573**  (0.6117) -0.6045 (0.9496) 0.0051 (1.1433) -0.2298 (1.7038) -0.3552 (4.8060)
Std Err of temperature  -0.9903***  (0.3680) -0.2820 (0.4576) -0.5643 (0.8490) -2.6193** (1.1561) -0.7981 (1.3608)
Neighborhood index 0.0511***  (0.0012) 0.0519***  (0.0015) 0.0869***  (0.0032) 0.1032***  (0.0048) 0.0530***  (0.0032)
Number of observation: 15012
McFadden's LF 0.643¢
Note: *, ** and *** indicate statistical signifigace at 10, 5, and 1% levels, respectively.
Table 2b. Coefficient Estimates for the Standard Mitinomial Logit Model of Land -use Change on Farmland, 19¢-200(
Indep. Variable Forestlan Grasslan Water are Urban are Unused lan
Estimate Std Err Estimate Std Err Estimate Std Err Estimate Std Err Estimate Std Err
Intercept -3.8590***  (0.2606) -3.2968**  (0.2424) -4.9410**  (0.6075) -7.2280***  (0.9423) -0.4472 (0.8303)
Land productivity -0.1027**  (0.0136) -0.1318**  (0.0157) -0.0510**  (0.0233) -0.0463 (0.0368) -0.1482**  (0.0411)
County GDP 0.0026 (0.0081) -0.0045 (0.0146) 0.0315* (0.0166) 0.0114 (0.0226) 0.0429** (0.0208)
Population 0.0379 (0.0947) -0.3445**  (0.1274) -0.2059 (0.2344) 0.0661 (0.2134) -0.7696 (0.5879)
Agricultural investment -0.1981* (0.1019) -0.0524 (0.1141) -0.2718 (0.2381) -0.1176 (0.2517) 0.1167 (0.3628)
Highway density -0.1610***  (0.0504) -0.1808***  (0.0635) -0.1645 (0.1513) -0.0802 (0.1757) -0.1332 (0.1735)
Terrain slope 0.0726**  (0.0091) 0.0498**  (0.0110) -0.2091***  (0.0585) -0.0871 (0.1163) -0.2446* (0.1289)
Elevation 0.0780 (0.0591) 0.4166***  (0.0643) -0.0817 (0.1958) 0.4502* (0.2462) -0.3200 (0.2467)
Precipitation 0.6961**  (0.1513) -0.3161* (0.1863) 0.8743* (0.3844) 0.5525 (0.5124) -4.3673**  (1.0255)
Temperature -0.0020 (0.0101) 0.0221* (0.0116) 0.0040 (0.0290) 0.0392 (0.0422) -0.1388***  (0.0324)
Std Err of precipitation 0.3500 (0.5999) 0.3058 (0.9794) -0.6821 (1.7468) -1.5711 (2.9525) 1.3712 (3.3825)
Std Err of temperature  1.0990***  (0.3650) 1.0649**  (0.2832) 1.2361 (0.8399) 1.1539 (1.1732) -0.6066 (1.1337)
Neighborhood index 0.0419**  (0.0013) 0.0383**  (0.0015) 0.0567**  (0.0037) 0.0980**  (0.0064) 0.0438**  (0.0040)
Number of observatiol 1479«
McFadden's LF 0.666:

Note: *, **, and *** indicate statistical significace at 10, 5, and 1% levels, respectively.
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Table 3a. Coefficient Estimates for the Standard Mliinomial Logit Model of Land-use Change on Forestnd, 1988-1995

Indep. Variable Farmlan Grasslan Water are Urban are Unused lan
Estimat Std Er Estimat Std Er Estimat: Std Er Estimat¢ Std Er Estimat: Std Er
Intercept -2.7835**  (0.1834) -3.0779**  (0.1945) -4.6856***  (0.7387) -4.4508**  (1.6021) -3.8801**  (0.8209)
Land productivity -0.0065 (0.0130) 0.0566***  (0.0170) 0.0691 (0.0430) -0.1788 (0.1189) 0.0345 (0.0934)
County GDP 0.0027 (0.0147) 0.0182 (0.0225) -0.1406 (0.0966) 0.0157 (0.0574) 0.0414 (0.0781)
Population -0.0550 (0.0930) -0.0021 (0.1321) 0.8228** (0.4039) 0.2045 (0.4704) 0.2703 (0.6201)
Agricultural investment 0.0491 (0.0886) -0.1197 (0.1150) 0.2975 (0.6051) 1.1349* (0.6332) 0.3852 (0.4356)
Highway density 0.1676**  (0.0498) 0.1716**  (0.0567) 0.1136 (0.2419) -0.3792 (0.8857) 0.3911* (0.1587)
Terrain slope -0.0243**  (0.0072) -0.0095 (0.0062) -0.2402**  (0.0435) -0.2248* (0.1173) -0.0552* (0.0322)
Elevation -0.1688***  (0.0500) 0.1285***  (0.0322) -0.5179**  (0.1666) -2.8689**  (0.6227) 0.1158 (0.1030)
Precipitation -0.4353**  (0.1574) -1.0997**  (0.1715) -0.7107 (0.6314) -1.0955 (1.3883) -2.3025***  (0.8236)
Temperature 0.0507**  (0.0084) 0.0301***  (0.0068) 0.0771* (0.0323) 0.0790 (0.0784) -0.1096***  (0.0279)
Std Err of precipitation -1.6625**  (0.4919) 1.3443** (0.6553) -0.6897 (1.9371) -1.0067 (4.6230) -0.4653 (4.4423)
Std Err of temperature -0.1248 (0.3061) 0.5206 (0.3607) -0.3588 (1.3495) -0.4862 (3.2093) 0.3350 (1.5463)
Neighborhood index 0.0576***  (0.0013) 0.0583***  (0.0012) 0.1132**  (0.0056) 0.1507**  (0.0138) 0.0793**  (0.0040)
Number of observation: 19345
McFadden's LF 0.676¢
Note: *, ** and *** indicate statistical signifigace at 10, 5, and 1% levels, respectively.
Table 3b. Coefficient Estimates for the Standard Mitinomial Logit Model of Land -use Change on Forestland, 19-200(
Indep. Variable Farmlan Grasslan Water are Urban are Unused lan
Estimate Std Err Estimate Std Err Estimate Std Err Estimate Std Err Estimate Std Err
Intercept -3.1282**  (0.2178) -2.8665**  (0.1752) -4.8250**  (0.7760) -6.0391 (4.1793) -3.9343**  (0.7437)
Land productivity 0.0990***  (0.0117) 0.0545**  (0.0171) 0.0116 (0.0441) 0.0249 (0.1358) 0.1021 (0.0832)
County GDP -0.0041 (0.0067) 0.0150 (0.0092) -0.0010 (0.0491) -0.0115 (0.0348) -0.1897 (0.2619)
Population -0.0752 (0.0822) -0.1991* (0.1049) 0.2150 (0.4086) -0.4762 (1.3089) 0.6480 (0.9809)
Agricultural investment 0.1755** (0.0827) 0.1137 (0.0966) 0.2246 (1.0142) 0.3394 (4.7189) -2.1817*  (1.1069)
Highway density 0.0393 (0.0459) 0.0786 (0.0605) 0.0395 (0.2035) -0.2168 (0.5256) -0.8677* (0.4527)
Terrain slope -0.0391**  (0.0077) -0.0175**  (0.0063) -0.1895***  (0.0505) -0.1908 (0.1509) -0.1638***  (0.0411)
Elevation -0.2066***  (0.0483) 0.1420***  (0.0328) -1.2181**  (0.1924) -0.4573 (0.6115) 0.3046* (0.1579)
Precipitation -0.4585***  (0.1338) -1.1202**  (0.1378) -0.6447 (0.5126) -1.6371 (1.8932) -4.4378**  (0.7968)
Temperature 0.0480**  (0.0085) 0.0391**  (0.0069) 0.0831**  (0.0300) 0.1561 (0.1177) 0.0179 (0.0293)
Std Err of precipitation -1.1567** (0.5049) 0.0428 (0.6458) -2.6334 (1.9783) -0.9844 (6.5859) 0.1497 (3.0380)
Std Err of temperature  1.0541**  (0.3198) 0.7215**  (0.2633) 1.3924 (1.1542) -0.4434 (4.5842) 2.6569** (1.1504)
Neighborhood index 0.0411**  (0.0012) 0.0387**  (0.0012) 0.0813**  (0.0064) 0.1319**  (0.0160) 0.0536***  (0.0050)
Number of observatiol 1948¢
McFadden's LF 0.677:

Note: *, **, and *** indicate statistical significace at 10, 5, and 1% levels, respectively.



Table 4a. Coefficient Estimates for the Standard Mliinomial Logit Model of Land-use Change on Grasslad, 1988-1995

Indep. Variable Farmlan Forestlan Water are Urban are Unused lan
Estimat Std Er Estimat Std Er Estimat: Std Er Estimat¢ Std Er Estimat: Std Er
Intercept -2.5272**  (0.2438) -3.2139**  (0.2120) -4.5855**  (0.4887) -8.1604**  (2.9041) -2.4478**  (0.2899)
Land productivity 0.0782**  (0.0171) 0.1272**  (0.0197) 0.1898**  (0.0508) 0.3214* (0.1786) -0.1199*  (0.0549)
County GDP 0.0527** (0.0250) -0.0053 (0.0366) 0.1095* (0.0574) 0.0575 (0.6718) 0.1456**  (0.0426)
Population 0.4507**  (0.1550) 0.8189***  (0.1669) 0.0486 (0.5327) -0.8714 (3.6464) -0.5820 (0.4588)
Agricultural investment -0.1943 (0.1893) 0.3088** (0.1298) 0.4021 (0.4338) -0.1310 (4.6872) -1.1709**  (0.3279)
Highway density 0.1609**  (0.0428) 0.0957 (0.0642) 0.1711 (0.1471) -0.4573 (0.7783) 0.0610 (0.0844)
Terrain slope 0.0140 (0.0095) 0.0380***  (0.0069) -0.0609***  (0.0228) -0.0157 (0.1109) -0.0324***  (0.0083)
Elevation -0.4717**  (0.0510) -0.1437**  (0.0335) -0.1110 (0.0848) 0.5892 (0.7513) 0.0267 (0.0481)
Precipitation 0.5282** (0.2319) 0.7794**  (0.2024) 0.5972 (0.6803) -0.9467 (3.8030) -1.1148**  (0.4158)
Temperature -0.0039 (0.0105) -0.0163** (0.0080) -0.0669**  (0.0221) 0.2157 (0.2476) -0.0166 (0.0112)
Std Err of precipitation 0.5156 (1.0097) -1.3059 (0.8522) 1.2753 (2.7736) -0.2273 (20.728) 1.5814 (2.4712)
Std Err of temperature  -1.0408** (0.4464) -0.8175** (0.4057) -0.6959 (0.9127) -3.7185 (8.2997) -1.3545**  (0.4911)
Neighborhood index 0.0556***  (0.0015) 0.0583***  (0.0013) 0.0997**  (0.0038) 0.1662***  (0.0339) 0.0559***  (0.0013)
Number of observation: 17893
McFadden's LF 0.661:
Note: *, ** and *** indicate statistical signifigace at 10, 5, and 1% levels, respectively.
Table 4b. Coefficient Estimates for the Standard Mitinomial Logit Model of Land -use Change on Grassland, 19-200(
Indep. Variable Farmlan Forestlan: Water are Urban are Unused lan
Estimate Std Err Estimate Std Err Estimate Std Err Estimate Std Err Estimate Std Err
Intercept -3.1325**  (0.2143) -3.4663**  (0.1859) -5.7489**  (0.7341) -5.0566 (9.2609) -3.8559***  (0.2912)
Land productivity 0.1507**  (0.0147) 0.0755***  (0.0183) 0.2003**  (0.0652) 0.1022 (0.7749) -0.0911*  (0.0425)
County GDP -0.0741**  (0.0170) -0.0139 (0.0153) 0.0166 (0.0731) -0.1279 (0.7389) 0.1583**  (0.0175)
Population 0.6967**  (0.1522) 0.7112**  (0.1441) 0.3270 (0.8176) -0.7448 (10.550) -1.8065***  (0.3724)
Agricultural investment 0.2416** (0.1163) -0.1530 (0.1156) 0.0391 (0.8088) -0.3704 (31.015) -1.4602**  (0.2927)
Highway density 0.2093**  (0.0612) 0.1865**  (0.0625) 0.1130 (0.1575) 0.6222 (0.5172) -0.7420***  (0.0853)
Terrain slope 0.0051 (0.0099) 0.0459**  (0.0063) -0.0908***  (0.0240) -0.1523 (0.6673) -0.0359***  (0.0080)
Elevation -0.3827***  (0.0568) -0.1004***  (0.0341) 0.2322 (0.1546) -2.2314 (8.8000) 0.3706***  (0.0561)
Precipitation -0.0689 (0.1657) 0.0342 (0.1496) -0.1111 (0.8861) 0.0435 (13.290) -2.4384**  (0.3838)
Temperature 0.0363***  (0.0094) -0.0001 (0.0073) -0.0044 (0.0313) 0.0735 (0.6435) 0.1005**  (0.0121)
Std Err of precipitation -0.3487 (0.9213) 3.1369***  (0.7336) 0.5856 (4.7753) 0.1013 (65.121) 0.1737 (1.93550
Std Err of temperature  0.1826 (0.2723) -0.0810 (0.2547) 0.5449 (0.7414) -1.6131 (12.739) 1.9762*=*  (0.3033)
Neighborhood index 0.0435**  (0.0015) 0.0398**  (0.0012) 0.0819**  (0.0047) 0.0927 (0.1070) 0.0287**  (0.0012)
Number of observatiol 1811¢
McFadden's LF 0.6157

Note: *, **, and *** indicate statistical significace at 10, 5, and 1% levels, respectively.



Table 5a. Description of Simulation Scenarios

Scenario

Description

Factual

No change in mean precipitation
No change in mean temperature

All variables at actual values
Fix the mean annugkecipitation at the average values of 1991-95
Fix the mean annuémperature at the average values of 1991-95
No variation around mean precipitatiol Restrict the coefficients of the standard deviatiofprecipitation to be zero
No variation around mean temperaturc Restrict the coefficients of the standard deviatioftemperature to be zero

Table 5b. Simulated Changes in Land Supplies of SMajor Uses, 1988-2000a

No change in No change in No variation No variation
Change in major land use Factual mean mean around mean around mean
precipitation temperature precipitation temperature
Farmlan (1,000 ha.) 12745 1687.4 1017.4 4249.3 482.6
% 0.0% -32.4% 20.2% -233.4% 62.1%
Forestlan (1,000 ha.) -649.9 -1108.1 -244.3 -5445.6 11445.0
% 0.0% 70.5% -62.4% 737.9% -1861.0%
Grasslan (1,000 ha.) -2320.2 -2100.3 -1706.2 -3233.9 -13371.1
% 0.0% -9.5% -26.5% 39.4% 476.3%
Water are (1,000 ha.) -217.1 -226.9 -152.0 -67.4 -4377.0
% 0.0% 4.5% -30.0% -68.9% 1915.7%
Urban are (1,000 ha.) 2526.7 2533.4 2508.0 2723.8 4321.8
% 0.0% -0.3% 0.7% -7.8% -71.0%
Unusedlan (1,000 ha.) -613.8 -785.5 -1422.9 1773.9 1498.6
% 0.0% 28.0% 131.8% -389.0% -344.1%

#Change in hectare is the total land area changesftit use between 1988 and 2000. Percent chatigerist hectare chan

under each counterfactual scenario relative tdhvéatare change under factual scenario. Positivga(ive) values indicate that the

factor contributes to increasing (decreasing) dmel lhectare for that use.
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