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Abstract 

Economic viability of the US corn ethanol industry depends on prices, technical and 

economic efficiency of plants and on continuation of policy support. Public policy 

support is tied to the environmental efficiency of plants measured as their impact on 

emissions of greenhouse gases. This study evaluates the environmental efficiency of 

seven recently constructed ethanol plants in the North Central region of the U.S., using 

nonparametric data envelopment analysis (DEA). The minimum level of GHG emissions 

feasible with the available technology is calculated for each plant and this level is used to 

decompose environmental efficiency into its technical and allocative sources. Results 

show that, on average, plants in our sample may be able to reduce GHG emissions by a 

maximum of 6% or by 3,116 tons per quarter. Profit maximizing input and output 

allocations are also found based on observed prices. The environmentally efficient 

allocation, the profit maximizing allocation, and the observed allocation for each plant 

are combined to calculate shadow cost of reducing greenhouse gas emissions. These 

shadow costs gauge the extent to which there is a trade off or a complementarity between 

environmental targets and profits.  Results reveal that, at current activity levels, plants 

may have room for simultaneous improvement of environmental efficiency and economic 

profitability. 

 

 

 

Key words: ethanol, data envelopment analysis, life-cycle emissions, environmental 

efficiency, shadow prices 
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Introduction 

The U.S. corn ethanol industry has benefited from government support due to its 

potential to achieve a rather wide set of goals: mitigating emissions of greenhouse gases 

(GHG), achieving energy security (diversifying energy sources), improving farm incomes 

and fostering rural development among others. Continuation of policy support, however, 

is being debated due to doubts about the direct and indirect GHG effects of the industry. 

Moreover, the capacity of the industry to reduce overall GHG emissions per gallon of 

ethanol produced may also determine the opportunities opened to it in future carbon 

markets and in the National Renewable Fuel Standard program. This study provides 

information relevant to these issues by measuring the current environmental performance 

of the industry in terms of GHG emissions and the economic cost (shadow price) of GHG 

reductions.  

Input requirements and byproducts’ yield per gallon of ethanol produced are critical 

in determining environmental performance. Previous studies have addressed the issue of 

input requirements and byproducts’ yield of ethanol plants. Using engineering data 

McAloon et al. (2000) and Kwiatkowski et al. (2006) measured considerable 

improvement in plant efficiency between 2000 and 2006. Shapouri, et al. (2005) reported 

input requirements and cost data based on a USDA sponsored survey of plants for the 

year 2002. Wang et al. (2007) and Plevin et al. (2008), reported results based on 

spreadsheet models of the industry (GREET and BEACCON, respectively.) Pimentel et 

al. (2005) and Eidman (2007) reported average performances of plants although they do 

not clearly indicate the sources of their estimates. Finally Perrin et al. (2009) reported 
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results on input requirements, operating costs, and operating revenues based on a survey 

of seven dry grind plants in the Midwest during 2006 and 2007. 

With the exception of Shapouri et al. (2005) and Perrin et al. (2009) all of these 

studies reported values corresponding to the average plant rather than to individual 

plants. In addition, it is generally believed that the industry has become more efficient 

and technologically homogeneous since 2005. Since the data used in Shapouri et al. 

(2005) was collected in 2002 it may not be representative of current technologies in the 

industry. In contrast to Shapouri et al. (2005), Perrin et al. (2009) surveyed plants in 

operation during 2006 and 2007 and employed a much more restrictive sampling criteria 

(discussed below) which yielded a modern and technologically homogenous sample of 

plants. This sample is believed to be more representative of current technologies and is, 

hence, our data of choice to assess the environmental performance of plants. Based on 

this data the present study evaluates the environmental efficiency of seven recently 

constructed ethanol plants in the North Central region of the U.S. The operating profits 

that may be gained or lost by plants as a consequence of the effort to reach a given 

environmental target are also calculated and discussed. 

 

Materials and Method 

Data 

The environmental performance of a plant is evaluated on the basis of emission of 

greenhouse gases associated with its productive activity. Greenhouse gas emissions from 

plants are not directly observable, but are rather calculated based on observable inputs 

and outputs corresponding to each plant. In addition concerns regarding the 
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environmental impact of ethanol production refer to life cycle1 GHG emissions and not 

only those emissions at the processing stage. Therefore we evaluate life cycle GHG 

emissions associated with observable inputs and outputs. Our observations consist of 33 

quarterly reports of input and output quantities and prices from a sample of seven 

Midwest ethanol plants. Following the non parametric efficiency literature we refer to 

each observation as a decision making unit (DMU). Plants produce 3 outputs (ethanol, 

dry distillers grains with solubles (DDGS), and modified wet distillers grains with 

solubles (MWDGS)) using 7 inputs2 (corn, natural gas, electricity, labor, denaturant, 

chemicals, and “other processing costs”). 

 

Ethanol Plants: Characteristics 

Table 1 presents some quarterly characteristics of the seven dry grind ethanol plants 

surveyed. According to Table 1 the plants produced an average rate equivalent to 53.1 

million gallons of ethanol per year, with a range from 42.5 million gallons per year to 

88.1 million gallons per year.  The period surveyed included the third quarter of 2006 

until the fourth quarter of 2007 (six consecutive quarters).  In addition plants could be 

differentiated by how much byproduct they sold as DDGS (10% moisture) compared to 

MWDGS (55% moisture.) Variation on this variable was significant, averaging 54% of 

                                                 
1 “Life cycle” in this case includes emissions taking place at three stages of the production process: corn 
production (farmers), ethanol production (biorefinery), and feedlot (byproducts from ethanol plants are 
given a credit for replacing corn as feed in livestock production). 
2 Results of our survey contained total expenditures in labor, denaturant, chemicals, and other processing 
costs. As a result we calculated implicit quantities for these inputs dividing total expenditures by their 
corresponding price indexes. Labor and management price index associated to the Basic Chemical 
Manufacturing Industries was obtained from http://www.bls.gov/oes/current/naics4_325100.htm#b00-
0002. Denaturant, chemicals and other processing costs were calculated based on the Producer Input Price 
Index for “All other basic inorganic chemicals”, http://www.bls.gov/pPI/. 
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byproduct sold as DDGS, but ranging from one plant that sold absolutely no byproduct as 

DDGS to another plant that sold nearly all byproduct (97%) as DDGS. 

Finally, Table 1 briefly characterizes plant marketing strategies.  In purchasing input 

feedstock, five of the six plants purchased corn via customer contracts.  Similarly, in 

selling ethanol, five of the six plants used third parties or agents.  Byproduct marketing 

across plants displayed a higher degree of variance.  Marketing of DDGS was split fairly 

evenly between spot markets and third parties/agents.  An even higher variability was 

observed for MWDGS, where no one marketing strategy (spot market, customer contract, 

or third party/agent) was significantly more prevalent across plants than any other. 

Table 2 displays descriptive statistics of inputs used and outputs produced by the 33 

DMUs in our sample. As mentioned before the basic observations in this study 

corresponds to a plant in a given quarter; so two quarters of the same plant are considered 

as two different observations as are two plants in the same quarter.  

 

Emissions Measurement 

A number of computer packages have been developed to facilitate these calculations 

(Wang et al. 2007; Farrell et al. 2006). We used the Biofuels Energy Systems Simulator3 

(BESS). The BESS model includes all GHG emissions from the burning of fossil fuels 

used directly in crop production, grain transportation, biorefinery energy use, and 

coproduct transport. All upstream energy costs and associated GHG emissions with 

production of fossil fuels, fertilizer inputs, and electricity used in the production life cycle 

are also included. Since these calculations involve modeling of crop production and 

                                                 
3 BESS is a software developed by a team of specialists in the Agronomy Department at the University of 
Nebraska, Lincoln (Liska, et al, 2009a, 2009b,  http://www.bess.unl.edu/ ) 
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feedlot and these display regional differences, BESS include regional scenarios and an 

average scenario for the whole Midwest region. Plants in our sample are scattered across 

the Midwest and, hence, we have used scenario 2 in BESS “US Midwest average UNL” 

which is deemed representative of the whole region. 

The BESS calculations of GHG emissions associated with a dry mill plant are 

equivalent to the following linear relationship: 

 0.00668274 0.063015823 0.0007445 0.000316916 

 0.4197522186 0.407868 

Mg c /G elect Eth

DDGS MWDGS

GHG x x x u

u u

= + + +

− −
        (1) 

Where MgGHG  represents megagrams of life cycle CO2 equivalent greenhouse gases, cx  

is bushels of corn used by the plant, DDGSu  and MWDGSu  are tons of byproduct sold as 

dried and modified wet respectively by the plant, /Gx  is the total amount of natural gas 

used by the plant measured in MMBTUs, electx  is total amount of kilowatt hours (kwh) of 

electricity used by the plant, and Ethu  is the plant’s ethanol production in gallons.  

Eq. (1) states that a bushel of corn used in an ethanol plant is associated with about 

0.0067 megagrams of GHG emitted during the production of that bushel used in the 

biorefinery. DDGS and MWDGS have a positive and a negative component. The former 

is due to additional energy used in reducing moisture.4 The latter are “credits” attributed 

to byproducts (i.e. reductions in GHG) due to the replacement of corn that would have 

been fed to livestock had the byproduct not been sold. The coefficient for ethanol 

production represents the combination of emissions associated with depreciable capital 

                                                 
4 In particular MWDGS require the use of electricity to centrifuge the wet byproduct and DDGS require the 
use of natural gas for heating and drying the wet byproduct. 
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(0.0002050 ) and freight for grain transportation (0.000111916 ), expressed on a per 

gallon basis. 

Eq. (1) includes outputs ( ), ,j j j j

Eth MWDGS DDGSu u u u= and a pollution increasing subset of 

all inputs used by ethanol plants5 denoted by ( ), ,j j j j

p c /G electx x x x= , where subindex p 

indicates pollutant. We can now re express Eq. (1) in vector notation. To do so we 

partition inputs and outputs into a column vector of pollution increasing inputs and output 

( ), , ,j j j j j

c /G elect Etha x x x u= ' and a column vector of pollution reducing byproducts 

( ),j j j

b MWDGS DDGSu u u= '.  The level of greenhouse gas emissions associated with a particular 

plant j  as a function of observable inputs and outputs can be expressed as: 

j j j

bGHG a uα β= +          (2) 

Where ( )0.006682,0.063015,0.000744,0.000316α =  is the 1x4 row vector of 

coefficients associated with pollution increasing categories ja , and 

( )0.419752, 0.407868β = − −  is the 1x2 row vector of coefficients associated with 

pollution reducing byproducts j

bu . 

 

Characterization of Potential Ethanol Technology From Individual Plant Data 

Plants are constrained by a technology transforming a vector of /  inputs 

( ) /

/xxxx +ℜ∈= ,...,, 21  into a vector of M  outputs ( ) M

Muuuu +ℜ∈= ,...,, 21 . Observed 

combinations of inputs used and outputs produced ( ),j jx u  are taken to be representative 

                                                 
5 As described before ethanol plants use 7 inputs in production. However only three of them increase life-
cycle emissions of GHGs: corn, natural gas, and electricity. 
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points from the feasible ethanol technology.  In this study we use data envelopment 

analysis (DEA) to infer the boundaries of the feasible technology set from the observed 

points, following the notation in Färe, et al.   

Observations from the technology consist of a sample of J  DMUs producing M  

outputs and using /  inputs. The production technology can be represented by a graph 

denoting the collection of all feasible input and output vectors: 

( ) ( ){ }, :/ MGR x u x L u+
+= ∈ℜ ∈  

Where ( )uL , is the input correspondence which is defined as the collection of all input 

vectors /x +ℜ∈  that yield at least output vector Mu +ℜ∈ . 

The frontier of the graph GR  and observed levels of inputs and outputs will serve as 

references for environmental efficiency assessment. 

 

Environmental Efficiency Measurement 

A given DMU is deemed more environmentally efficient whenever it chooses a 

feasible (subject to the graph) combination of inputs and byproducts (DDGS and 

MWDGS) that results in lower GHG emissions while maintaining its ethanol production 

level at the observed value denoted by j

Ethu . Fixing ethanol production to its observed 

level, and assuming variable returns to scale and strong disposability of inputs and 

outputs the graph can be denoted by: 

( ) ( )
33

1

, , , : , , , 1,  1,...,33j j j j j j

Eth b b Eth Eth

j

GR V S u x u u zM x z/ zu u z j
=

 
= ≤ ≥ = = = 
 

∑         (3) 
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Where z  depicts a row vector of 33 intensity variables, bM  is the 33x2 matrix of 

observed byproducts, j

bu  is the 1x2 vector of observed byproducts corresponding to the 

jth DMU, /  is the 33x7 matrix of observed inputs, , jx  is the 1x7 vector of observed 

inputs corresponding to the jth DMU, Ethu  is the 33x1 vector of observed outputs, and 

j

Ethu  is the observed ethanol production by observation j.  

We define the set of all combinations of corn, gas, electricity and byproducts that 

result in lower emissions than those actually produced by the thj  DMU as: 

( ) ( ){ }, , , :j j j j j j j j j j

g p b Eth p b x p b x p bGHG x u u x u x u x uα β α β′ ′ ′= + ≤ +     (4)   

Where xα  is a subset of the vector α  previously defined which does not include the 

coefficient for ethanol, i.e. ( )0.006682,0.063015,0.000744xα =  and the rest is as 

before.6 

From Eq. (4) we can derive an isopollution line in DDGS and corn space, i.e. 

combinations of DDGS and corn that result in the same level of emissions keeping 

everything else constant. Fig. 1 depicts this set graphically in the corn and DDGS space 

(i.e. keeping everything else in the GHG equation fixed). The set j

gGHG  consists of all 

those points above the isopollution line as indicated by the arrows with direction 

northwest. 

 

                                                 
6 We denote the coefficient associated with ethanol by γ =0.000316. Ethanol production and its associated 

coefficient are included in both sets. However, since ethanol is fixed at the observed level 
j

Ethu , the 

complete version of the inequality is 
j j j j j j

x p b Eth x p b Ethx u u x u uα β γ α β γ′ ′+ + ≤ + +  which after 

elimination is equivalent to the expression in (4). 
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Fig. 1 - Isopollution and Sets 

 

In Fig. 1 the feasible technology set is represented by a graph displaying variable 

returns to scale and strong disposability of inputs and outputs as indicated by the arrows 

moving from the frontier ( ( )DDGS cu f x= ) with direction southeast. As clearly seen in 

Fig. 1, the set j

gGHG  includes combinations outside the graph and hence not attainable 

by DMUs in the sample. The subset of observations in j

gGHG  that belong to the graph 

and are hence attainable by DMUs is depicted by the intersection of both sets delimited 

by the bold lines in Fig. 1: 

( ) ( ), , , ,j j j j j

g p b Eth EthGHG x u u GR V S u∩        (5) 

The thj  DMU could choose any alternative production plan within the area denoted 

by the bold lines to produce its ethanol production level, achieving a reduction in 

emissions while simultaneously increasing DDGS or reducing corn or both. In this study, 

the environmental technically efficient projection of a given observation to the boundary 

Isopollution DDGSu  

cx  

( ),j j

c DDGS
x u  

j

gGHG  ( )DDGS cu f x=  

( ),GR V S  
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of the technology set follows a hyperbolic path defined by equiproportional reductions in 

inputs and increases in byproducts. The value of the proportionate change necessary to 

encounter the boundary, j

gETE , is defined as the technical environmental efficiency of 

plant j: 

( ) ( ) ( ){ }1, , min : ,   , ,j j j j j j j

g p b Eth g p b Eth
ETE x u u GHG x u GR V S uλ λ λ −= ∩ ≠ ∅  (6) 

Where λ  is a scalar defining the proportionate changes and the rest is as before. We 

calculated the value of ( ), ,j j j j

g p b EthETE x u u  using MATLAB as indicated in Appendix A.  

Environmental technical efficiency defined in Eq. (6) is illustrated in Fig. 2 by the 

distance from ( ),j j

c DDGSx u  to point A which corresponds to the environmental technically 

efficient allocation in corn and DDGS space. 

 
Fig. 2 - Environmental Technical Efficiency 

 

Note however that point A does not correspond to the minimum feasible GHG level 

since it does not coincide with the point of tangency between the isopollution and the 

cx  

 jIso pollution−  
DDGSu  

( ),j j

c DDGSx u  

j

gGHG  

( )DDGS cu f x=  

( ), , j

EthGR V S u  

  •A 
  •B 

 BIso pollution−  
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graph (point B). The allocation that achieves the minimum level of GHG emissions 

subject to the graph is called the overall environmental efficient allocation.  

Technically, we define this minimum feasible level of GHG emissions as: 

( ) ( ){ }
,

min  +     . .  ( , ) , ,  
p b

j j j j

Eth x p b Eth p b Eth
x u

GHG u GHG x u u s t x u GR V S uα β γ= = + ∈  (7) 

Where ( )j j

EthGHG u  denotes minimum emissions attainable by j subject to observed 

ethanol production j

Ethu , px  is the vector of pollution increasing inputs, bu  is the vector 

of byproducts and the rest is as defined before. The empirical calculation of Eq. (7) is 

described in Appendix B. 

Overall environmental efficiency, j

gE  , is measured by the hyperbolic distance 

between a given observation j and the isopollution line corresponding to ( )j j

EthGHG u . 

The hyperbolic distance is computed through calculation of the reduction of observed 

inputs and equiproportional expansion of observed byproducts such that the isopollution 

corresponding to ( )j j

EthGHG u  is reached. This is illustrated by Fig. 3 where overall 

environmental efficiency is the distance between ( ),j j

c DDGSx u  and point C. 

The hyperbolic movement from ( ),j j

c DDGSx u  to C results from the following technical 

relationship. 

PROPOSITION. The measure of overall environmental efficiency, j

gE ,  is related to 

minimum GHG in the following manner: 

( ) 1          1, 2,...,
j j j j j

g p gGHG E x E b j Jα β
−

= + =      (8) 

See Proof in Appendix C. 
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Fig. 3 - Decomposition of Overall Environmental Efficiency 

 

We can decompose j

gE  into purely technical environmental efficiency j

gETE   

(represented graphically by the distance between ( ),j j

c DDGSx u  and A) and environmental 

allocative inefficiency jEAE  (represented graphically by the distance between A and C). 

Overall environmental efficiency can be expressed as: 

j j j

g g gE EAE ETE=          (9) 

Therefore, we can define allocative environmental inefficiency residually as:7 

j

gj

j

g

E
EAE

ETE
=          (10) 

Based on the solution to the problem described in Eq. (7) we calculate overall 

environmental efficiency by solving the implicit Eq. (8) for each observation. These 

measures of environmental efficiency and their decomposition, Eq. (10), are calculated 

                                                 
7 Environmental allocative inefficiency was illustrated in Fig. 2 by the distance between the iso-pollution 

corresponding to combination A  and iso-pollution corresponding to point D . 

   jIso pollution−  DDGSu  

cx  

( ),j j

c DDGSx u  

j

gGHG  

( )u f x=  

( ),GR V S  

   •A   • 
C 

 BIso pollution−  

  •B 
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for our sample of surveyed dry grind ethanol plants and reported in Table 3. The 

minimum feasible GHG for each DMU as defined by Eq. (7) is calculated fixing ethanol 

production at observed levels.  

 

Profits and Environmental Targets: Trade off or Complementarity? 

From Eq. (2) there is a clear relationship between GHG and the combination of inputs 

and byproducts. But there is also a relationship between combinations of inputs and 

byproducts and the level of profits. Therefore, in general, a change in GHG levels 

through reallocation of inputs and byproducts would bring about a change in profits. For 

a given level of ethanol production, the shadow price of GHG mitigation is the change in 

profits per unit change in GHG levels. The change in profits denotes the plant's maximum 

willingness to pay (WTP) for a permit to emit GHG. We define the shadow price of a ton 

of GHG as:   

1 0

1 0 1 0

j j
j

GHG j j j j

WTP
SV

GHG GHG GHG GHG

π π−
= =

− −
           (11) 

Where WTP  is willingness to pay for changing emissions from 0

jGHG  to 1

jGHG . 0

jGHG  

denotes the original level of GHG and 0

jπ  the corresponding level of profits. 1

jGHG  is 

the “targeted” level of GHG and 1

jπ  denotes profits at this targeted level. GHG level will 

be targeted at the previously defined minimum GHG (i.e. 1

jGHG =
j

GHG ), or 

alternatively at the level corresponding to maximum achievable profits by firm j, *

jπ , 

which we designate as *

jGHG . 
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Shadow Cost from Observed to Profit Maximizing Allocation 

We define the profit maximizing combination of inputs and byproducts (subject to a 

given level of ethanol production to make it comparable with the GHG minimizing 

combination) as the allocation that solves the following problem: 

( )( ) { } ( ) ( )*
,

, , , , ,  , , ,
b

j j j j j j j j j j

Eth Eth Eth Eth b b Eth
x u

r p r GR V S u Max r u r u p x  s.t. u x GR V S uπ = + − ∈      (12) 

Where j

Ethr  is the observed price of ethanol obtained by observation j, j

Ethu  is the 

observed level of ethanol production by j, bu  is the 2x1 column vector of variable outputs 

(DDGS and MWDGS), jr  represents the 1x2 vector of observed prices of variable 

outputs (byproducts)8 obtained by observation j, x  is the 1x7 vector of variable inputs 

(corn, natural gas, electricity, labor, denaturant, chemicals, and “other processing costs”), 

and jp  represents the 1x7 vector of observed prices of variable inputs paid by j. 

Quantities of labor, denaturant, chemicals and others needed to calculate GR  are 

obtained implicitly dividing total expenditures in these categories by their price indexes 

described in footnote 2. Prices for these categories in equation (12) are also those in 

footnote 2. We will denote the allocation that solves Eq. (12) with ethanol fixed at the 

observed level by { }* *( , )j jx u . The level *

jGHG  is calculated by inserting these values 

into (2). 

We define the shadow value of GHG emissions associated with moving from the 

observed allocation to the profit maximizing allocation as: 

                                                 
8 Three DMUs in our sample did not sell dried byproducts (they sold 100% MWDGS). Since we did not 
have reported DDGS prices for those three observations to calculate maximum profits we used average 
prices of DDGS obtained by other DMUs in the same quarter. 
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*

*

j j
j

GHG j j
SV

GHG GHG

π π−
=

−
             (13) 

An alternative shadow cost to Eq. (13) is that which is incurred by moving from the 

observed to the GHG minimizing combination of inputs and byproducts.  

 

Shadow Cost from Observed to GHG Minimizing Allocation 

The GHG minimizing combination is computed by solving Eq. (7) with ethanol 

production fixed at observed levels and minimum GHG denoted by 
j

GHG . Profit 

associated with this allocation (calculated by multiplying the GHG minimizing inputs and 

outputs times their respective prices) is designated as jπ .  

We define the shadow value of GHG related to a change from the observed to the 

GHG minimizing point as: 

j j
j

GHG j j
SV

GHG GHG

π π−
=

−
             (14) 

Finally we consider the shadow value of GHG related to a change from the GHG 

minimizing to the profit maximizing point.  

 

Shadow Cost from GHG Minimizing to Profit Maximizing Allocation 

Such a change is illustrated in Fig. 4 in the corn and DDGS space. In Fig. 4 the GHG 

minimizing combination is represented by point B (the isopollution line is denoted by 

j
GHG ). If relative prices are those corresponding to the slope of *

jπ   then profit 

maximization is achieved at point A and this requires a decrease in corn and DDGS with 
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respect to the GHG minimizing point. Profits at A are denoted by *

jπ  and profits at B are 

*

j jπ π< . Emissions at B are denoted by 
j

GHG  and emissions at A are *

jjGHG GHG> .  

 

 
Fig. 4 - Shadow Cost from GHG Minimizing to Profit Maximizing Allocation 

 

The shadow value associated with a change from the GHG minimizing combination 

to the profit maximizing one is defined by: 

*

*

j j
j

GHG jj
SV

GHG GHG

π π−
=

−
             (15) 

 

Results and Discussion 

Environmental Performance of Ethanol Plants 

Fixing ethanol production at observed levels, measures of environmental efficiency 

and their decomposition are calculated for our sample of surveyed dry grind ethanol 

plants and reported in Table 3. Results reveal that DMUs are very efficient from a 

DDGSu  

  • 
A 

 
j

GHG  

  •B 

 *

jπ  
jπ  

 *

jGHG  

cornx  
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technical point of view and that most environmental inefficiency comes from allocative 

sources. Therefore DMUs seem to have room for GHG reductions mainly by changing 

input and output combinations subject to the graph. In particular, the average DMU may 

be able to reduce emissions by 6% which amounts to 3,116 tons of CO2 equivalent 

GHGs per quarter (or 0.46 pounds per gallon of ethanol produced).  It is of interest to 

know what reallocations of inputs and may actually achieve this improvement and we 

will go back to this point in detail later. 

 

Profits and Environmental Targets 

Shadow costs associated with moving from observed to profit maximizing allocations 

are reported in Table 4. Given the rather large variability across observations both the 

median and the average are reported as measures of central tendency. Table 4 displays 

some observations that are unusually high and others unusually low. These 

disproportionate deviations from the average are due to changes in inputs that affect 

profits but do not affect emissions. These inputs are labor, denaturant, chemicals, and 

other processing costs. We classify as “outlier” any observation whose value exceeds the 

average by more than 3 times the standard deviation. 

An important conclusion we can extract from Table 4 is the fact that almost all DMUs 

reduce GHG emissions by moving from observed to maximum profits. This suggests that, 

under our convexity assumptions, most DMUs (including the average DMU) may be able 

to increase profits and reduce GHG simultaneously which would in turn imply that these 

DMUs face no trade off between economic and environmental goals at current 

combinations of inputs and byproducts. The fact that DMUs can rearrange inputs and 
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byproducts in such a way that they can both increase profits and reduce emissions 

prompts the following questions:  

1. What inputs are reduced or increased and which byproduct is reduced or increased in 

such a rearrangement? 

2. Why are plants not exploiting these reallocations that achieve greater profits? 

The answer to the first question for the average plant is provided in Table 5. The 

average DMU would achieve greater profits and lower GHG simultaneously mainly by 

reducing the use of corn, natural gas, and electricity per gallon of ethanol produced, 

reducing the production of MWDGS, and increasing production of DDGS. A part of 

these reductions is achieved through elimination of inefficiencies that would take the 

DMUs to the technological frontier but for the most part they are achieved through 

rearrangements along the surface described by the boundary of the graph defined in Eq. 

(3) 

The answer to the second question is not as straightforward. As noted in the 

discussion of the first question our DMUs may be able to increase profits and reduce 

GHG mainly by reducing corn, natural gas, and electricity per gallon of ethanol produced 

and per ton of DDGS produced.9 The apparent engineering (in)ability to maximize 

ethanol and DDGS yields when compared to other DMUs in the sample seems to drive 

the difference between observed production plans and profit maximizing plans for many 

DMUs. A note of caution is in place here. These results are based on the assumption that 

all DMUs are constrained by the same technological frontier. Under the assumption of 

homogeneous technology any difference in performance is attributed to efficiency 

                                                 
9 Reductions in MWDGS may come as a surprise. However given relative prices it appears as if this was a 
convenient reallocation for many DMUs. 
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differences rather than to technological differences. However technological 

heterogeneities may be present and prevent some DMUs from achieving the performance 

of others in the sample.  

Shadow costs associated with moving from observed to GHG minimizing allocations, 

Eq. (14), for each DMU, average, and median are reported in Table 6.  Nine DMUs lose 

profits while reducing GHGs, thus facing positive shadow values of GHGs, meaning a 

cost.  Seventeen DMUs increase profits while reallocating to the minimum GHG level. 

The fact that the average willingness to pay for a change in allocation ( j j

Eπ π− ) is 

positive while average change in GHG is negative, results in negative average shadow 

values. Table 6 indicates that the average DMU may be able to increase profits while 

reducing GHG which again seems to suggest complementarity between goals. In 

particular the average DMU may be able to increase profits by about $39 per ton of GHG 

reduced.  The seventeen firms with negative shadow prices would presumably be willing 

to sell permits at any small price, since there is no profit lost from reducing their own 

GHGs. 

Since there seems to be a great deal of variability in shadow prices of GHG across 

DMUs we have plotted a histogram that shows the approximate distribution of these 

values in Fig. 5. The histogram does not take into account those observations deemed as 

outliers. The presence of outliers is mainly due, as discussed above, to changes in inputs 

affecting profits but not GHG, i.e. labor, denaturant, chemicals, and other processing 

costs. We have superimposed to the histogram a normal density function that smoothes 

out the distribution. Despite the variability across DMUs, the highest frequency of 

shadow values (i.e. most of the “mass” of the distribution) appears to be located around 
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zero. This means that plants are approximately efficient in the sense that they are 

operating at levels for which the marginal value of GHG is around zero which is, in turn, 

the current GHG price that DMUs face.  
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Figure 5: Histogram of Shadow Values (observed to GHG-minimizing) 

 

According to Table 7 the average DMU achieves minimization of GHG through 

substantial reductions in DDGS and MWDGS which in turn allows it to significantly 

reduce natural gas and electricity.  Finally reductions in corn per gallon of ethanol are 

also involved in this GHG minimization. Such reallocations not only achieve reductions 

in GHG but also increase profits (negative shadow value) 

Shadow costs associated with moving from GHG minimizing to profit maximizing 

allocations, Eq. (15), for each DMU, average and median are reported in Table 8. All 
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DMUs increase both profits and GHGs in moving from low GHG solution to high profit 

solution. The average DMU would forfeit $1,726 in profit for each ton of GHG reduced, 

a very high cost of regulation if that firm were required to reduce GHGs. If DMUs are 

forced to reduce GHG emissions below profit maximizing levels, these shadow values 

indicate that they would be willing to purchase permits if the market value is in the 

vicinity of $20 to $30 per ton, rather than reduce one ton of GHG emissions. The 

histogram (with superimposed normal density) corresponding to Table 8 is plotted in Fig. 

6.  This histogram as the one in Fig. 5 does not take into account those observations 

classified as outliers. 
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Fig. 6 – Histogram of Shadow Values (GHG Minimizing to Profit Maximizing)  

 

The reallocation of inputs and byproducts that would take the average DMU from the 

GHG minimizing to the profit maximizing combination is displayed in Table 9. The 

average DMU achieves increases in profits mainly through substantial increases in 
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DDGS which in turn entails increases in natural gas and electricity, and reductions in 

MWDGS. Another very important component of profit increases is reductions of corn per 

gallon of ethanol produced.  

Results for the average DMU in Tables 4, 6, and 8 can be combined to recover the 

shape of the relationship between GHG and profits. Plotting the three averages in the 

GHG and Profit space yields Fig. 7. We denote the observed combination of the average 

by ( ),j jGHG π , the profit maximizing combination by ( )* *,
j jGHG π , and the GHG 

minimizing combination by ( ),
j jGHG π . There seems to be room for simultaneous 

improvement of environmental and economic performance, as previously indicated in 

discussions of Tables 4 and 6. However, if the average firm were able to adjust inputs and 

byproducts to the profit maximizing combination, it would face an intense trade off 

described just above. 

 
Fig. 7 - Profits and GHG  
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Conclusions 

The purpose of this study was to contribute to the ongoing debate regarding the merits 

and potential of the ethanol industry in the US by investigating the current environmental 

performance at the individual plant level, the potential for improvement in this 

performance and its effects on the industry’s overall emissions of greenhouse gases.  

Several important conclusions can be drawn from this study. First, our results suggest 

that decision making units (DMUs) may have some room for improving environmental 

performance. However since plants are technically very efficient, most of this 

improvement has to come from changes in combinations of inputs and byproducts along 

the frontier (reduction in environmental allocative inefficiencies). By eliminating 

allocative inefficiencies the average DMU could apparently decrease emissions by 6%, 

which amounts to about 3,116 tons of CO2 equivalent GHG. 

Negative shadow values of GHG from observed to profit maximizing combinations 

reveal that at current operating levels DMUs may be able to increase profits and reduce 

GHG simultaneously. This result points towards the existence of a synergy between 

environmental and economic goals rather than a trade off. Therefore plants may increase 

their economic viability and, in addition, help their case for public support. However if 

DMUs were forced to reduce GHG beyond that point our results suggest that they may 

face significant profit losses. In this case the average DMU in this sample would be 

willing to pay up to $1,726 for a permit to emit ton of GHG, rather than suffer the profit 

reduction revealed by the shadow price of reducing carbon from profit maximizing to 

GHG minimizing levels. 
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The measurement of corn ethanol plants environmental performance, their potential 

for improvement, and profit/emissions trade offs conducted in this study should inform 

the debate on whether there is a place for corn ethanol as a “clean” substitute for 

gasoline.  
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Table 1.  Characteristics of the seven surveyed plants 

States 
Represented 

Iowa, Michigan, Minnesota, Missouri, Nebraska, S. Dakota, Wisconsin 

Smallest 42.5 

Average 53.1 

 
Annual 

Production 
Rate (m. gal/y) Largest 88.1 

03_2006 5 

04_2006 6 

01_2007 7 

02_2007 7 

03_2007 7 

 
Number of 
Survey 

Responses by 
Quarters 

04_2007 2 

Smallest 0 

Average 54 

Percent of 
Byproduct Sold 
as Dry DGS Largest 97 

 Corn Ethanol DDGS MWDGS 

Spot 0 0 3 1 

Customer Contract 5 1 0 1 

 
Primary 
Market 
Technique 

Third Party/Agent 0 5 2 2 

 

Table 2.  Descriptive Statistics: Inputs and Outputs 

  
Corn  
(million 
bushels) 

Natural Gas 
(thousand 
MMBTUs) 

Electricity 
(million kwh) 

Ethanol 
(million 
gallons) 

DDGS 
(thousand 
tons) 

MWDGS 
(thousand 
tons) 

Average 4.8 361 7,8 13.7 21.3 14.5 

Std Dev 0.9 61 1.5 2.8 10 15.4 

Min 3.6 297 6.7 10.6 0 199 

Max 8 569 13.3 22,9 34.2 56.2 
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Table 3. Environmental Efficiency Decomposition 

DMU 
Technical 

Environmental 
Efficiency 

Allocative 
Environmental 
Efficiency 

Overall 
Environmental 
Efficiency 

Reduction 
of GHG 
(tons)[a] 

Reduction 
of GHG 
(%)[b] 

1 0.977 1 0.961 3,268 6 

2 1 0.931 0.931 6,227 11 

3 0.985 0.970 0.956 3,617 7 

4 1 0.951 0.951 3,801 7 

5 1 1 0.993 567 1 

6 0.979 1 0.973 2,331 4 

7 1 0.948 0.948 4,697 9 

8 1 0.947 0.947 4,704 8 

9 1 1 1 0 0 

10 1 0.959 0.956 3,539 7 

11 1 0.989 0.989 950 2 

12 1 1 1 0 0 

13 1 0.940 0.940 8,007 9 

14 1 0.949 0.949 4,625 9 

15 1 0.944 0.944 4,804 9 

16 1 0.974 0.974 2,015 4 

17 1 0.985 0.985 1,098 2 

18 1 0.938 0.938 5,178 10 

19 1 0.987 0.987 1,133 2 

20 1 1 1 0 0 

21 1 0.947 0.947 4,611 9 

22 1 0.967 0.967 2,736 5 

23 1 0.974 0.974 2,023 4 

24 1 0.985 0.985 1,199 2 

25 1 0.970 0.970 2,614 5 

26 1 1 1 0 0 

27 1 0.917 0.917 7,941 14 

28 1 0.956 0.956 3,708 7 

29 1 0.961 0.961 3,068 6 

30 1 0.964 0.964 2,831 6 

31 0.993 0.980 0.973 2,239 4 

32 1 0.992 0.992 684 1 

33 1 0.914 0.914 8,662 14 

Average 0.998 0.967 0.965 3,116 6 
[a] This is calculated by taking the difference between observed and minimum GHG emissions. 
[b] Reduction in GHG emissions from previous column as a percentage of observed emissions. 
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Table 4. Shadow Values of GHG: observed to profit maximizing combination 

DMU 
WTP for change in 

allocation, *

j jπ π− ($)  

Change in GHG emissions, 

*

j jGHG GHG−  (tons) 
Shadow Value of 
GHG ($/ton) 

1 948,565 -2,618 -362 

2 1,483,022 -5,648 -263 

3 2,094,972 -2,728 -768 

4 1,223,985 -3,105 -394 

5 619,562 120 5,147 - outlier 

6 1,263,224 -1,920 -658 

7 1,515,535 -4,100 -370 

8 2,398,535 -4,405 -545 

9 3,199 0 INFINITE 

10 850,101 -2,636 -322 

11 719,229 -264 -2,726 

12 1,382 0 INFINITE 

13 2,175,472 -7,709 -282 

14 1,597,466 -4,026 -397 

15 1,751,089 -4,339 -404 

16 825,632 -1,027 -804 

17 1,692 0 INFINITE 

18 1,540,254 -4,555 -338 

19 1,230,951 -488 -2,521 

20 258,318 295 877 

21 1,797,859 -3,726 -483 

22 1,975,711 -2,035 -971 

23 781,594 -344 -2,269 

24 1,041,712 -332 -3,141 

25 2,192,398 -1,990 -1,101 

26 9,613 0 INFINITE 

27 2,301,210 -7,495 -307 

28 1,252,438 -3,075 -407 

29 1,439,841 -2,291 -629 

30 1,106,262 -1,801 -614 

31 727,808 -1,367 -532 

32 1,396,934 271 5,154 - outlier 

33 1,865,307 -8,663 -215 

Mean 1,420,685 -3,052 -466 

Median 1,439,841 -2,636 -546 

 

Table 5. Reallocation from observed to profit maximizing combination 

Category 
Measure 

Corn Natural Gas Electricity Dry Wet 

Average Change (%) -5.88 -3.83 -0.41 26.03 -10.23 
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Table 6. Shadow Values of GHG: observed to GHG minimizing combination 

DMU 
WTP for change in 

allocation, j j

Eπ π−  ($) 

Change in GHG emissions, 
j j

EGHG GHG−  (tons) 
Shadow Value of  
GHG ($/ton) 

1 659,193 -3,268 -202 

2 443,897 -6,227 -71 

3 134,209 -3,617 -37 

4 -343,266 -3,801 90 

5 286,956 -567 -506 

6 -526,747 -2,331 226 

7 294,875 -4,697 -63 

8 610,737 -4,704 -130 

9 -18,561 0 INFINITE 

10 -886,553 -3,539 250 

11 260,637 -950 -274 

12 -817,158 0 INFINITE 

13 1,728,919 -8,007 -216 

14 432,472 -4,625 -94 

15 -221,003 -4,804 46 

16 -788,455 -2,015 391 

17 -842,611 -1,098 767 

18 1,041,500 -5,178 -201 

19 326,317 -1,133 -288 

20 -542,483 0 INFINITE 

21 -417,870 -4,611 91 

22 1,343,752 -2,736 -491 

23 -373,408 -2,023 185 

24 -839,949 -1,199 700 

25 1,600,339 -2,614 -612 

26 -263,194 0 INFINITE 

27 307,697 -7,941 -39 

28 176,556 -3,708 -48 

29 164,586 -3,068 -54 

30 -327,399 -2,831 116 

31 -649,530 -2,239 290 

32 -611,531 -684 894 

33 1,046,320 -8,662 -121 

Mean 138,988 -3,548 -39 

Median 176,556 -3,268 -54 

 

Table 7. Reallocation from observed to GHG minimizing combination 

Category 
Measure Corn Natural Gas Electricity Dry Wet 

Average Change (%) -3.05 -6.83 -1.35 -33.63 -4.11 
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Table 8. Shadow Values: GHG minimizing to profit maximizing combination 

DMU 
WTP for change in 

allocation, *

j j

Eπ π−  ($) 

Change in GHG emissions, 

*

j j

EGHG GHG−  (tons) 
Shadow Value of 
GHG ($/ton) 

1 289,372 650 445 

2 1,039,125 579 1,794 

3 1,960,763 889 2,206 

4 1,567,251 695 2,254 

5 332,607 688 484 

6 1,789,971 411 4,355 

7 1,220,660 597 2,044 

8 1,787,797 300 5,964 

9 21,760 0 INFINITE 

10 1,736,654 903 1,923 

11 458,592 687 668 

12 818,540 0 INFINITE 

13 446,554 298 1,500 

14 1,164,994 599 1,945 

15 1,972,092 465 4,240 

16 1,614,087 988 1,633 

17 844,302 1,098 769 

18 498,754 622 801 

19 904,634 645 1,403 

20 800,801 321 2,493 

21 2,215,729 886 2,501 

22 631,958 701 901 

23 1,155,002 1,679 688 

24 1,881,661 868 2,168 

25 592,059 623 950 

26 272,807 0 INFINITE 

27 1,993,513 446 4,474 

28 1,075,882 632 1,701 

29 1,275,255 777 1,641 

30 1,433,661 1,030 1,392 

31 1,377,339 872 1,580 

32 2,008,466 955 2,104 

33 818,987 0 INFINITE 

Mean 1,243,777 721 1,726 

Median 1,220,660 687 1,778 

 

Table 9. Reallocation from GHG minimizing to profit-maximizing point 

Category 
Measure 

Corn Natural Gas Electricity Dry Wet 

Average Change (%) -2.75 2.82 0.94 12.45 -97.65 
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Appendix A 

The measure in (6) can be mathematically implemented through the following 

nonlinear programming problem: 

(A.1)   
,

1

                 

. . ,  ,  ,  1

z

j j j j

b b Eth Eth

j

Min

s t u M z u zM x /z z

λ
λ

λ λ− ≤ = ≥ =∑
    

Where j

bu  is the vector of dried and wet byproducts, bM  is the 2xJ matrix of observed 

levels of byproducts, z  is the Jx1 vector of intensity variables used to weight 

observations and construct the piecewise linear boundary of the graph, jx  is the column 

vector composed by observed values of all inputs used by observation j, /  is the 7xJ 

matrix of observed values of inputs for all observations, and j

Ethu  is the observed level of 

ethanol production of the thj  DMU. 

After multiplying the constraints times λ  it is easily seen that this is equivalent to the 

following problem: 

(A.2) 
,

2

       

. . ,  ,  ,   ,  ,  

z

j j j j

b b Eth Eth

j

Min

s t u M z x /z z u M z z zλ λ λ λ

′Γ
Γ

′′ ′ ′ ′≤ Γ ≥ = = Γ = =∑
  

Following  Färe et al. problem (1) is reformulated into problem (2) because the only 

nonlinear constraint is an equality constraint (i.e. 2λ=Γ ) and is, hence, easier to 

program. In particular, these sub vector hyperbolic measures of technical efficiency are 

calculated through a nonlinear program implemented with the FMINCON procedure in 

MATLAB.  
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Appendix B 

The following program describes the problem: 

(B.1)  

, ,
0.00668274 0.063015823 0.0007445 

                              0.4197522186 0.407868                  

 . . ,   z,  ,    

DDGS MWDGS

c /G elect
x u u

DDGS MWDGS

j

DDGS DDGS MWDGS MWDGS Eth Eth

Min GHG x x x

u u

s t u M z u M u M z x /

= + +

− −

≤ ≤ = ≥ ,    1j

j

z z =∑
 

Where DDGSu  is the vector of dried byproducts, DDGSM  is the 2xJ matrix of observed 

levels of DDGS, z  is JX1 vector of intensity variables, MWDGSu  is the vector of modified 

wet byproducts, MWDGSM  is the 2xJ matrix of observed levels of MWDGS , x  is the 

vector of all inputs, and /  is the 7xJ matrix of observed levels of inputs. This program 

was calculated using the LINPROG routine in MATLAB. 

Based on this quantity, we calculate overall environmental efficiency by solving for 

j

gE  implicitly through Eq. (8) for each observation. 

 

Appendix C 

Proof:  

Let us denote the vector of coefficients of Eq. (1) by ( ),xα β , where xα  is the vector of 

coefficients for corn, natural gas, and electricity, and β  is the vector of coefficients for 

both byproducts. In addition, let us define an arbitrary output and input vector by ( ),p bx u  

where ( ), ,p c /G electx x x x=  and ( ),b MWDGS DDGSu u u=  and denote the thj DMU’s observed 

output and input vector by ( ),j j

p bx u . 
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Let ( ) ( )( )1, ,j j j j j

p b g g p b gx u GHG E x u E GR
−

∈ ∩ , then ( ),p bx u GR∈  and since j

gE  is a 

minimum: 

( ) ( ) ( ) ( )
( ) ( )

0.00668274 0.063015823 0.0007445

0.407868 / 0.4197522186 /

j j j j j j

x p b g c g /G g elect

j j j j

MWDGS g DDGS g

x u E x E x E x

u E u E

α β+ = + +

− −
 

Let us denote observations j’s minimum feasible GHG level by 
j

GHG . There are three 

cases to consider:  

1. Assume ( ) j

x p bx u GHGα β+ < , then ( ),p bx u GR∉  

2. Asume ( ){ }jx p bx u GHGα β+ > , then 

( ) ( ){ } ( ) ( ) ( ){ }, : , :
j

x x x p bv w v w GHG v w v w x uα β α β α β+ ≤ ⊆ + ≤ +  and since the 

hyperplanes defining the two sets are parallel, j

gE  can not be a minimum. 

Cases 1 and 2 leave the following case: 

3. ( ) j

x p bx u GHGα β+ = . Therefore ( )1 jj j j j

g x p g bE x E u GHGα β−+ = . 

 


