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Abstract 

 

In this study we use data envelopment analysis to decompose the overall economic 

efficiency of a sample of ethanol plants into three subcomponents: technical efficiency, 

allocative efficiency and a new component we call marketing efficiency. The relative 

importance of these sources of efficiency is of particular interest given the recent history 

of bankruptcies, plant closings and ownership change in the industry.  

Results reveal that observed production units are very efficient from a technical point 

of view as suggested by a standard deviation of 1% in technical efficiency. However, our 

results also show that bigger plants tend to be more economically efficient than others. 

The conventional methodology would have identified this difference as coming from 

allocative sources, i.e. bigger plants were correct in anticipating better relative prices and 

built more capacity accordingly. However introduction of a new concept we call 

marketing efficiency reveals that bigger production units obtain better relative prices 

(through marketing contracts) than smaller production units rather than anticipating 

prices more accurately. This might be a potential reason underlying the recent wave of 

mergers and acquisitions in the industry. 

 

 

 

Key words: ethanol, data envelopment analysis, efficiency decomposition, marketing 

efficiency 
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Introduction 

In this study we decompose the overall economic efficiency of a sample of ethanol 

plants into three subcomponents: technical efficiency, allocative efficiency and a new 

component we call marketing efficiency. The relative importance of these sources of 

efficiency is of particular interest given the recent history of bankruptcies, plant closings 

and ownership change in the industry. Of particular interest in this study is the extent to 

which some firms achieve more efficiency than others by receiving higher prices for 

products and/or paying lower prices for inputs. 

The economic viability of the US corn ethanol industry depends upon prices, 

economic efficiency of ethanol plants, and public policy support. In the last two years 

prices have not been very favorable for the ethanol industry (low oil prices and high corn 

prices) and, in addition, public policy support is being debated due to doubts about the 

overall effect of the industry on emissions of greenhouse gases. Therefore the ability of 

plants to maximize net operating revenues (NOR) with current technology (i.e. their 

economic efficiency) is of the upmost importance for survival in the industry. In turn the 

economic efficiency and survival of individual plants may affect market structure 

(through exit and ownership changes) and hence future performance in the industry. 

To measure efficiency and understand their drivers we decompose the overall 

economic efficiency of a sample of ethanol plants into three subcomponents: technical 

efficiency, allocative efficiency and a new component we call marketing efficiency. The 

relative importance of these sources of efficiency is of particular interest given the recent 

history of bankruptcies, plant closings and ownership change in the industry. Of 
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particular interest in this study is the extent to which some firms achieve higher NOR 

than others by receiving higher prices for products and/or paying lower prices for inputs. 

The ability of some plants to achieve net operating revenues (NOR) realized by others 

may be limited by several factors. Plant configurations or financial constraints may 

prevent plants from choosing the scale and input-output combinations that maximize 

NORs. In addition, production plans are decided based on expected prices and errors in 

expectations formation may affect NORs. Finally, NORs may also be affected by the 

ability of the managers to secure favorable prices by contracting or by transacting in the 

futures market.  This study aims at answering the following questions: How efficient are 

these relatively new ethanol plants? What are the net operating revenues foregone due to 

potential inefficiencies? Can we identify the sources of such inefficiencies? Can we 

distinguish inefficiencies due to marketing methods from technical and allocative 

inefficiencies? How do plants’ marketing strategies affect their overall performance? 

The existence of technical inefficiencies (i.e. plants underperform with respect to 

defined “best practice frontier”) implies that there is room for plants to reduce the amount 

of inputs used per gallon of ethanol produced improving returns over operating costs. 

Existence of allocative inefficiencies point towards the fact that a plant can recombine 

inputs and outputs (e.g. change the dry/wet byproduct proportion which in turn may 

imply changes in natural gas/electricity proportion) along the technological frontier in 

such a way that it would increase NOR. Therefore elimination of technical and allocative 

inefficiency implies first reaching the technological frontier and then moving along this 

frontier to find the NOR maximizing combination, given prices. 
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It is usually assumed in studies of firm performance that all plants face the same 

market prices. Therefore prices are usually deemed exogenous and homogeneous across 

plants. But in reality prices are neither homogeneous nor entirely exogenous. Prices are 

not homogeneous because ethanol plants are located in different parts of the country and 

there are spatial differences in market prices for both corn and ethanol. In addition 

ethanol plants’ managers use a combination of spot markets and future contracts to 

market their ethanol and procure their corn rendering prices that are partially controlled 

by management. 

 The latter source of price differences is of particular importance. Different marketing 

arrangements result in prices’ variations across plants that are partly due to the relative 

ability of plant managers to achieve more favorable prices. Dispersion may imply that 

there are plants underperforming (facing prices that are less favorable) relative to other 

plants in the industry and hence there is opportunity for enhancement of their 

profitability. But to evaluate performance we need to distinguish between spatial and 

managerial sources of price dispersion. Plants can not be “punished” for spatial 

differences
1
 but they can be penalized for their inability to achieve (through a mix of spot 

and contracts) prices at least as favorable as spot market prices observed in their own 

region.  

In order to calculate potential improvements in NOR this study decomposes the 

overall economic efficiency of a sample of ethanol plants into three subcomponents: 

technical efficiency, allocative efficiency and a new component we call marketing 

efficiency. We first characterize the plants surveyed, and then conduct a measurement 

                                                 
1
 Although if prices are consistently more favorable in some regions, plants could be deemed inefficient in 

their location decision. 
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and decomposition of economic efficiency of ethanol plants. We then investigate the 

potential link between the size of productive units and their economic performance. 

 

Materials and Method 

Data 

Until recently, no publicly‐available data on the economic and technical performance 

of the current generation of plants was available. Previous studies have calculated input 

requirements and byproducts’ yield per gallon of ethanol produced by plants. Using 

engineering data McAloon et al. (2000) and Kwiatkowski et al. (2006) measured 

considerable improvement in plant efficiency between 2000 and 2006. Shapouri, et al. 

(2005) reported input requirements and cost data based on a USDA sponsored survey of 

plants for the year 2002. Wang et al. (2007) and Plevin et al. (2008), reported results 

based on spreadsheet models of the industry (GREET and BEACCON, respectively.) 

Pimentel et al. (2005) and Eidman (2007) reported average performances of plants 

although they do not clearly indicate the sources of their estimates. Finally Perrin et al. 

(2009) reported results on input requirements, operating costs, and operating revenues 

based on a survey of seven dry grind plants in the Midwest during 2006 and 2007. 

With the exception of Shapouri et al. (2005) and Perrin, Fretes and Sesmero (2009) 

all of these studies reported values corresponding to the average plant rather than to 

individual plants. In addition, it is generally believed that the industry has become more 

efficient and technologically homogeneous since 2005. Since the data used in Shapouri et 

al. (2005) was collected in 2002 it may not be representative of current technologies in 

the industry. In contrast to Shapouri et al. (2005), Perrin et al. (2009) surveyed plants in 
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operation during 2006 and 2007 and employed a much more restrictive sampling criteria 

(discussed below) which yielded a modern and technologically homogenous sample of 

plants. This sample is believed to be more representative of current technologies and is, 

hence, our data of choice to assess the environmental performance of plants. Based on 33 

quarterly reports of input and output quantities and prices from a sample of seven ethanol 

plants in the Midwest we evaluate economic efficiency of each observation relative to 

others in the sample and decompose it in the three sources previously discussed.  

We refer to each quarterly observation as a decision making unit (DMU.) DMUs are 

assumed to share a technology that transforms a vector of 7 inputs (corn, natural gas, 

electricity, labor, denaturant, chemicals, and “other processing costs”) into 3 outputs 

(ethanol, dried distiller’s grains with  10% moisture content (DDGS), and modified wet 

distiller’s grains with 55% moisture content (MWDGS).)  Results of our survey 

contained total expenditures in labor, denaturant, chemicals, and other processing costs 

and, as a result, we calculated implicit quantities for these inputs dividing total 

expenditures by their corresponding price indexes. Observed combinations of inputs and 

outputs are taken to be representative points from the feasible ethanol technology.  In this 

study we use non parametric programming methods (Färe, et al) to infer the boundaries 

of the feasible technology set. We model the technology as a multiple-input multiple-

output graph and all efficiency measures are defined in reference to that graph. 

 

Ethanol Plants: Characteristics 

Table 1 presents some characteristics of the seven dry grind ethanol plants surveyed. 

According to Table 1 the plants produced an average rate equivalent to 53.1 million 
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gallons of ethanol per year, with a range from 42.5 million gallons per year to 88.1 

million gallons per year.  The period surveyed included the third quarter of 2006 until the 

fourth quarter of 2007 (six consecutive quarters).  In addition plants could be 

differentiated by how much byproduct they sold as DDGS (10% moisture) compared to 

MWDGS (55% moisture.) Variation on this variable was significant, averaging 54% of 

byproduct sold as DDGS, but ranging from one plant that sold absolutely no byproduct as 

DDGS to another plant that sold nearly all byproduct (97%) as DDGS. 

Finally, plant marketing strategies are also characterized in Table 1.  In purchasing 

input feedstock, five of the six plants purchased corn via customer contracts.  Similarly, 

in selling ethanol, five of the six plants used third parties or agents.  Byproduct marketing 

across plants displayed a higher degree of variance.  Marketing of DDGS was split fairly 

evenly between spot markets and third parties/agents.  An even higher variability was 

observed for MWDGS, where no one marketing strategy (spot market, customer contract, 

or third party/agent) was significantly more prevalent across plants than others. 

Table 2 displays descriptive statistics of inputs used and outputs produced by the 33 

DMUs in our sample. As mentioned before the basic observations in this study 

corresponds to a plant in a given quarter; so two quarters of the same plant are considered 

as two different observations as are two plants in the same quarter.  

 

Characterization of Technology From Individual Plant Data 

Plants are constrained by a technology transforming a vector of 2  inputs 

( ) 2

2xxxx +ℜ∈= ,...,, 21  into a vector of M  outputs ( ) M

Muuuu +ℜ∈= ,...,, 21 . Observed 

combinations of inputs used and outputs produced ( ),j jx u  are taken to be representative 
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points from the feasible ethanol technology.  In this study we use data envelopment 

analysis (DEA) to infer the boundaries of the feasible technology set from the observed 

points, following the notation in Färe, et al.   

Observations from the technology consist of a sample of J  DMUs producing M  

outputs and using 2  inputs. The production technology can be represented by a graph 

denoting the collection of all feasible input and output vectors: 

( ) ( ){ }, :2 MGR x u x L u+
+= ∈ℜ ∈  

Where ( )uL , is the input correspondence which is defined as the collection of all input 

vectors 2x +ℜ∈  that yield at least output vector Mu +ℜ∈ . 

The frontier of the graph GR  and observed levels of inputs and outputs will serve as 

references for environmental efficiency assessment. 

 

Decomposition of Economic Efficiency without Marketing Efficiency 

A given DMU is deemed economically efficient whenever it chooses a feasible 

(subject to the graph) input-output combination that maximizes NOR given prices.  In 

this section we proceed to calculate and decompose economic efficiency assuming that 

prices are exogenous and hence there is no contract management that can affect prices at 

which ethanol is sold and corn procured.  

Assuming variable returns to scale
2
 and strong disposability of inputs and outputs the 

graph can be denoted by: 

( ) ( )
33

1

, , : , , 1,  1,...,33j j j j

j

GR V S x u u zM x z2 z j
=

 
= ≤ ≥ = = 
 

∑           (1) 

                                                 
2
 In this way we minimize stronger assumptions about convexity that may result in artificially low 

efficiency indexes. 
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Where z  depicts a row vector of 33 intensity variables, M  is the 33x3 matrix of 

observed outputs, ju  is the 1x3 vector of observed outputs corresponding to the jth 

DMU, 2  is the 33x7 matrix of observed inputs, and jx  is the 1x7 vector of observed 

inputs corresponding to the jth DMU. 

We define the set of all combinations of inputs and outputs that result in higher NOR 

than that actually achieved by the thj  DMU as: 

( ) ( ){ }, , :j j j j j j j j j j j j j

g x u x u p x r u p x r uπ ′ ′ ′ ′= + ≥ +      (2)   

Where jp  is the vector of input prices paid and jr  the vector of output prices 

received by the jth DMU and the subscript g denotes greater than observed NOR. 

We define an iso-profit line in ethanol and corn space corresponding to the jth DMU 

as those combinations of ethanol and corn that result in the same level of NOR given jp  

and jr . Fig. 1 depicts this set graphically in the corn and ethanol space (i.e. keeping all 

other inputs and outputs fixed.) The set j

gπ  consists of all those points above the iso-

profit line as indicated by the arrows with direction northwest. 

In Fig. 1 the feasible technology set is represented by a graph displaying variable 

returns to scale and strong disposability of inputs and outputs as indicated by the arrows 

moving from the frontier ( ( )Eth cu f x= ) with direction southeast. As clearly seen in Fig. 

1, the set j

gπ  includes combinations outside the graph and hence not attainable by DMUs 

in the sample. The subset of observations in j

gπ  that belong to the graph and are hence 

attainable by DMUs is depicted by the intersection of both sets delimited by the bold 

lines in Fig. 1: 
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( ) ( ), ,j j j

g c Ethx u GR V Sπ ∩         (3) 

The thj  DMU could choose any alternative production plan within the area denoted 

by the bold lines achieving a feasible increase in NOR. 

 

 
Fig. 1 – Iso-profit and Sets 

 

We apply in this study a hyperbolic graph efficiency measure which means that the 

technically efficient projection of a given observation to the boundary of the technology 

set follows a hyperbolic path defined by equi-proportional reductions in inputs and 

increases in outputs. The value of the proportionate change necessary to reach the 

boundary, jTE , is defined as the technical efficiency of plant j: 

( ) ( ) ( ){ }1, / , min : , ,j j j j j j

v g c EthTE x u V S x u GR V Sλ π λ λ −= ∩ ≠ ∅    (4) 

Where λ  is a scalar defining the proportionate changes and the rest is as before. We 

calculated the value of j

vTE  using MATLAB as indicated in the Appendix A.  

Iso-profit Ethu  

cx  

( ),j j

c Eth
x u  

j

gπ  ( )Eth cu f x=  

( ),GR V S  
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Technical efficiency defined in Eq. (4) is illustrated in Fig. 2 by the distance from 

( ),j j

c Ethx u  to point A which corresponds to the technically efficient allocation in corn and 

ethanol space. 

 
Fig. 2 - Technical Efficiency 

 

Note however that point A does not correspond to the maximum feasible NOR level 

since it does not coincide with the point of tangency between the isoprofit and the graph 

(point B.) The allocation that achieves the maximum level of NOR subject to the graph is 

called the overall economic efficient allocation.  

Technically, we define this maximum feasible level of NOR as: 

( ){ }
,

max      . .  ( , ) ,  j j j j

x u
p x r u s t x u GR V Sπ π= = + ∈     (5) 

Where jπ denotes maximum NOR attainable by j subject to the graph and observed 

prices, x  is the vector of inputs, and u  is the vector of outputs and the rest is as defined 

before. Maximum profits have been calculated using MATLAB. 

cx  

 jIso profit−  
Ethu  

( ),j j

c DDGSx u  

j

gπ  

( )Eth cu f x=  

( ),GR V S  

  •A 
  •B 

 BIso profit−  
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Overall economic efficiency under variable returns to scale, j

vE  , is measured by the 

hyperbolic distance between a given observation j and the isoprofit line corresponding to 

jπ . The hyperbolic distance is computed through calculation of the reduction of 

observed inputs and equiproportional expansion of observed byproducts such that the 

isoprofit corresponding to jπ  is reached. This is illustrated by Fig. 3 where overall 

environmental efficiency is the distance between ( ),j j

c Ethx u  and point C. 

 
Fig. 3 - Decomposition of Overall Economic Efficiency 

 

Since the movement from ( ),j j

c Ethx u  to C is a hyperbolic one, the measure of overall 

economic efficiency, j

vE ,  is related to maximum NOR in the following manner: 

( ) 1          1, 2,...,j j j j j j j

v vE p x E r u j Jπ
−

= + =      (6) 

We can decompose j

vE  into purely technical efficiency j

vTE   (represented graphically 

by the distance between ( ),j j

c DDGSx u  and A) and allocative inefficiency j

vAE  (represented 

graphically by the distance between A and C.) Overall efficiency can be expressed as: 

   jIso profit−  Ethu  

cx  

( ),j j

c Ethx u  

j

gπ  

( )u f x=  

( ),GR V S  

   •A   • 
C 

 BIso profit−  

  •B 
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j j j

v v vE AE TE=           (7) 

Therefore, we can define allocative inefficiency residually as:
3
 

j
j v

v j

v

E
AE

TE
=           (8) 

Based on the solution to the problem described in Eq. (5) we calculate overall 

economic efficiency by solving the implicit Eq. (6) for each observation. These measures 

of economic efficiency and their decomposition, Eq. (7)-(8), are calculated for our 

sample of surveyed dry grind ethanol plants and reported in Table 3. 

Table 3 shows that the economic efficiency of the average DMU is 0.89 which 

suggests that there may be room for improvement in profitability. Almost all the observed 

inefficiency comes from allocative sources as indicated by the average value but also by 

the dispersion observed in this source across DMUs. This in turn means that although 

most DMUs are operating in the technological frontier they are doing so in points that do 

not coincide with the NOR-maximizing point (such as point B in Figure 3.) In the 

following section we address the issue of potential drivers of economic efficiency. 

 

Drivers of Economic Efficiency 

Many factors could be driving the differences in economic efficiencies across units. 

To identify these factors we have conducted an analysis of variance that relates the 

calculated indexes of overall economic efficiency to four treatment variables: size (big or 

small), marketing method (third party, direct spot, or direct contract), ownership (whether 

                                                 
3
 Environmental allocative inefficiency was illustrated in Fig. 2 by the distance between the iso-pollution 

corresponding to combination A  and iso-pollution corresponding to point D . 
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or not the DMU is owned by a multi-DMU firm), and state in which the DMU is located. 

Results displayed in Table 4 show that size is the only variable that appears to have an 

effect on overall efficiency; i.e. size is a variable that seems to be explaining part of the 

variance of overall economic efficiency. 

To find the relationship between size and efficiency we partition the sample into big 

units and small units. Units are classified as big if they produce more than average 

production in the sample (13.6 million gallons) and they are classified as small otherwise. 

Results are presented in Table 5. From inspection of this table we quickly realize that 

economic efficiency seems to be positively correlated with size. However technical 

efficiency is not. 

Results in Table 5 suggest that for most economically inefficient DMUs an increase 

in the scale of operations would increase NOR. We proceed now to quantify the 

reallocation along the frontier (increase in size) that would take the average DMU to the 

NOR-maximizing point. Table 6 shows that by increasing production of ethanol by 57% 

and the quantity of corn used by 54% the average DMU may have increased NOR.
4
 The 

average scaling up of operations is rather large. 

There are two potential reasons why an increase in scale may be NOR improving. 

One is when prices are so favorable that the average DMU finds profitable to increase 

scale as much as possible even when operating at a portion of the technology that 

displays DRS. The second reason is purely technological. The average DMU finds 

profitable to increase scale because it’s operating at a portion of the technology 

displaying increasing returns to scale. To identify which of these potential reasons is 

                                                 
4
 We only show the change required in ethanol production and corn usage as these are the most important 

revenue and cost categories. 
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operating behind the results in our sample we measure the degree of returns to scale for 

each DMU. We do so by calculating technical efficiency under variable, non-increasing 

and constant returns to scale and combining these results.  

 

Returns to Scale 

Calculation of technical efficiency can be done on the basis of a technology 

displaying constant returns to scale (CRS), decreasing returns to scale (DRS), increasing 

returns to scale (IRS), or variable returns to scale (VRS).  Technical efficiency with 

variable returns to scale has already been defined and measured. 

Technical efficiency with constant returns to scale technology is: 

( ) ( ) ( ){ }1, / , min : , / , , 1, 2, ...,j j j j j

cTE x u C S x u GR C S j Jλ λ λ −= ∈ =   (9) 

We calculated the value of ( ), / ,j j j

cTE x u C S  using MATLAB as indicated in 

Appendix B. 

Technical efficiency with non-increasing returns to scale technology is: 

( ) ( ) ( ){ }1, / , min : , / , , 1, 2, ...,j j j j j

nTE x u 2 S x u GR 2 S j Jλ λ λ −= ∈ =   (10) 

We calculated the value of ( ), / ,j j j

nTE x u 2 S  using MATLAB as indicated in 

Appendix C. 

Scale inefficiency can be defined in terms of two ratios. The ratio between technical 

efficiency with constant returns to scale as defined in (9) to technical efficiency with 

variable returns to scale as defined in (4): 

( ) ( ) ( ), , / , / , / ,j j j j j j j j j

c vS x u TE x u C S TE x u V S=     (11) 
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The second ratio is that between technical efficiency with constant returns (4) and 

technical efficiency with non-increasing returns to scale (10): 

( ) ( ) ( ), , / , / , / ,j j j j j j j j j

c nS x u TE x u C S TE x u 2 S=     (12) 

As developed by Färe et al. if ratio (11) is higher than one and if, in addition, ratio 

(12) is lower than (equal to) one, the observation shows decreasing (increasing) returns to 

scale. The measures defined in (9) and (10) are calculated with the FMINCON routine in 

MATLAB. The results for all 33 observations are reported in Table 7. This table shows 

that the overwhelming majority of DMUs (and hence the average DMU) are operating in 

portions of the technology which are very close to displaying CRS; i.e. the average scale 

efficiency is very close to 1. A total of 22 DMUs display CRS, 6 exhibit IRS, and 5 

display DRS.  

These results suggest that the main reason for the positive correlation between 

economic efficiency and size may be that prices were very favorable for most DMUs 

making an increase in scale desirable. But although prices were favorable for most of 

these plants big differentials on prices paid and received across DMUs are also observed 

and so we focus our attention now on the analysis of price behavior and their potential 

drivers. 

 

Decomposition of Economic Efficiency with Marketing Efficiency 

In the efficiency literature, DEA measures of allocative efficiency determine how 

DMUs could readjust inputs and outputs to increase profit or revenue or decrease cost 

given prices. However these measures assume all DMUs face the same prices and in our 

sample, plants reported substantially different prices. This is due to the fact that plants 
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use different marketing arrangements (including spot markets, contracts, and marketers as 

described in Table 1) to procure their inputs and sell their outputs. Therefore we 

introduce in this section a new concept capturing the ability of plant managers to obtain 

prices at least as favorable as spot market prices. 

Provided we have price observations for different plants located in different states and 

across time, differences among prices paid and received by DMUs can be due to spatial 

patterns, managerial efficiency and inflation. The part due to inflation has been controlled 

for by adjusting all prices to a base quarter (3
rd
 quarter of 2006) using the Producer Price 

Index (PPI) as calculated by the Bureau of Labor Statistics. The managerial and spatial 

parts however, are more difficult to deal with.  

Since we have one plant per state we have a perfect correlation between space and 

manager and hence distinguishing between managerial and spatial sources of price 

differentials requires quarterly data on prices at the State level. State level data on corn 

prices is publicly available from USDA NASS Agricultural Prices. Ethanol prices, on the 

other hand, are not publicly available. As a result we construct a proxy for quarterly 

ethanol spot market prices based on gasoline prices. More specifically the spot market 

price of ethanol faced by observation j (located in State k at time t) is approximated with 

the following relationship: 

( ),

, ,( ) ( ) 1j M gas gas

eth k t k tr r rα β θ α θ= + + −       (13) 

Where ,j M

ethr  denotes market price of ethanol faced by the jth DMU, ,

gas

k tr  is rack price 

of gasoline in State k at time t, θ  is the proportion of ethanol sold as E10, ( )1 θ−  is the 

proportion sold as E85, α  is the ratio between energy content in ethanol and energy 

content in gasoline, β  is the subsidy to blenders per gallon of ethanol incorporated into 
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the blend. In particular, in our analysis, α =0.66  and β =0.51. Rack prices of gasoline in 

different States at different points in time are publicly available from the Energy 

Information Administration.
5
 

We denote market prices (as opposed to prices reported by plants) faced by the jth 

DMU as ( ),j j

M Mr x . Output market prices faced by the jth DMU, j

Mr , consist of ethanol 

market price j

ethr  and prices directly reported by plants in all other revenue categories 

(byproducts). Input market prices j

Mx consist of corn market prices from NASS and prices 

directly reported by plants in all other cost categories. 

Using these prices we are now ready to define our novel concept of marketing 

efficiency. Overall economic efficiency, j

vE  , does not change. We introduce, however, 

marketing efficiency as an additional component to this measure. Marketing efficiency 

denotes the increase in revenue and equi-proportional reduction in cost resulting from the 

ability of the managers to secure prices more favorable than those corresponding to spot 

prices. This is illustrated by the distance between ( ),j j

c Ethx u  and D in figure 4. 

The marketing efficiency of the thj  DMU is defined as the hyperbolic distance 

between profit with observed prices and profit with spot market prices: 

( )( ) ( )1

                         1, 2,...,j j j j j j j

M r u ME p x ME j Jπ
−

= − =    (14) 

Where j

Mπ  is the profit DMU j would have obtained had it faced market prices (i.e. 

j j j j j

M M Mr u p xπ = − ), jME  is marketing efficiency of the jth DMU, ( )j jr u  are revenues 

                                                 
5
 Available on line at http://tonto.eia.doe.gov/dnav/pet/pet_pri_allmg_c_sia_epm0_cpgal_m.htm. 
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actually obtained by the jth DMU, and ( )j jp x  are costs actually incurred by the jth 

DMU. 

Although we have illustrated the case in which profits with market prices are higher 

than observed profits the reverse may well happen so jME  will not be bounded between 

zero and one. In fact if observed profits jπ  are higher (lower) than j

Mπ  then jME >(<) 1. 

 
Fig. 4 - Decomposition of Overall Economic Efficiency 

 

We can decompose j

vE  into purely technical efficiency j

vTE   (represented graphically 

by the distance between ( ),j j

c DDGSx u  and A), allocative inefficiency j

vAE  (represented 

graphically by the distance between A and C), and jME . Overall efficiency can be 

expressed as: 

j j j j

v v vE AE TE ME=          (15) 

jIso profit−  
Ethu  

cx  

( ),j j

c Ethx u  

j

gπ  

( )u f x=  

( ),GR V S  

   •A   • 
C 

 BIso profit−  

  •B 
D • 

   MIso profit−  
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Therefore, we can define allocative inefficiency residually as:
6
 

j
j v

v j j

v

E
AE

TE ME
=          (16) 

Based on values of j

Mπ  we calculate marketing efficiency by solving the implicit Eq. 

(14) for each observation. The FZERO procedure in MATLAB was used in calculations. 

Technical and overall economic efficiency are the same as before. Allocative efficiency 

is calculated residually as indicated by Eq. (16). Measures of marketing efficiency and 

allocative efficiency (along with original values of overall economic efficiency and 

technical efficiency) are displayed in Table 8.  

 

The average of marketing efficiency indexes is 1.03. This reveals that, in average, 

plants obtained more favorable relative prices than those observed in spot markets by 

managing contracts to sell ethanol and buy corn. On the other hand a significant 

dispersion is observed across DMUs as denoted by a standard deviation of 0.10 and a big 

difference between minimum (0.80) and maximum (1.23) values. In fact the two main 

sources of dispersion in plant performance are the allocative and marketing components. 

 

Marketing Efficiency and Size 

There are three main results obtained so far that we would like to sum up. First, 

results suggest that bigger plants tend to be more economically efficient. Second the two 

main sources of differences in economic efficiency appear to be allocative and marketing 

                                                 
6
 Environmental allocative inefficiency was illustrated in Fig. 2 by the distance between the iso-pollution 

corresponding to combination A  and iso-pollution corresponding to point D . 
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efficiency and NOT technical efficiency. Therefore while size seems to be positively 

influencing overall economic efficiency, it is not clear if this influence is materialized 

through allocative forces (plants expected high market prices that were later realized) or 

marketing forces (plants, through marketing channels, obtained prices that were more 

favorable that market prices rationalizing a big size). To tackle this question we partition 

our sample into big and small units and compare average values for all three types of 

efficiencies. Results are condensed in Table 9. 

Big DMUs achieved higher average marketing efficiency (1.042) than small ones 

(1.006) while displaying about the same allocative and technical efficiency. This suggests 

that a possible source of differential performance across big and small units is their 

ability to market products and procure inputs using tools such as contracting and future 

markets. These differences would be manifested as allocative inefficiency if one were not 

to separately identify the concept of marketing efficiency introduced in this study. This 

might be a potential reason underlying the recent wave of mergers and acquisitions in the 

industry. 

 

Conclusions 

This study exploits data from a survey of ethanol plants and tries to pinpoint the main 

drivers of plants’ economic efficiency which is of particular relevance for their survival 

and resulting industry performance. To do so we have decomposed the overall economic 

efficiency plants into three subcomponents: technical efficiency, allocative efficiency and 

a new component we call marketing efficiency. Introduction of this concept resulted in 
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insights that may help understanding the recent history of bankruptcies, plant closings 

and ownership change in the industry.  

Results reveal that DMUs are very efficient from a technical point of view as 

suggested by a standard deviation of 1% in technical efficiency. However, our results 

also show dispersion across plants’ overall economic efficiency. The size of decision 

making units seems to be positively correlated with economic efficiency. By calculating 

returns to scale displayed by each DMU we have concluded that the positive correlation 

between size and economic efficiency is not due to technological reasons; i.e. increasing 

returns to scale. 

Introduction of a new concept we call marketing efficiency revealed that bigger plants 

tend to secure more favorable relative prices (relative to spot market prices) than smaller 

units. In particular we find that big DMUs achieved higher average marketing efficiency 

(1.042) than small ones (1.006) while displaying about the same allocative efficiency. 

This suggests that a possible source of differential performance across big and small units 

is their ability to market products and procure inputs using tools such as contracting and 

future markets. These differences would be manifested as allocative inefficiency if one 

were not to separately identify the concept of marketing efficiency introduced in this 

study. This might be a potential reason underlying the recent wave of mergers and 

acquisitions in the industry. 
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Table 1.  Characteristics of the seven surveyed plants 

States 

Represented 
Iowa, Michigan, Minnesota, Missouri, Nebraska, S. Dakota, Wisconsin 

Smallest 42.5 

Average 53.1 

 

Annual 

Production 

Rate (m. gal/y) Largest 88.1 

03_2006 5 

04_2006 6 

01_2007 7 

02_2007 7 

03_2007 7 

 

Number of 

Survey 

Responses by 

Quarters 

04_2007 2 

Smallest 0 

Average 54 

Percent of 

Byproduct Sold 

as Dry DGS Largest 97 

 Corn Ethanol DDGS MWDGS 

Spot 0 0 3 1 

Customer Contract 5 1 0 1 

 

Primary 

Market 

Technique 
Third Party/Agent 0 5 2 2 

 

 

 

Table 2.  Descriptive Statistics: Inputs and Outputs 

  

Corn  

(million 

bushels) 

Natural Gas 

(thousand 

MMBTUs) 

Electricity 

(million kwh) 

Ethanol 

(million 

gallons) 

DDGS 

(thousand 

tons) 

MWDGS 

(thousand 

tons) 

Average 4.8 361 7,8 13.7 21.3 14.5 

Std Dev 0.9 61 1.5 2.8 10 15.4 

Min 3.6 297 6.7 10.6 0 199 

Max 8 569 13.3 22,9 34.2 56.2 
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Table 3.  Decomposition of Economic Efficiency 

 Category 

 

DMU 

Overall Graph 

Efficiency 

Technical 

Efficiency 

Allocative Graph 

Efficiency 

Maximum Increase 

in Profits  

(cents per gallon) 

1 0.82 0.977 0.84 59 

2 0.84 1 0.84 67 

3 0.79 0.985 0.80 91 

4 0.72 1 0.72 120 

5 0.80 1 0.80 82 

6 0.85 0.979 0.87 61 

7 0.95 1 0.95 21 

8 0.82 1 0.82 63 

9 0.83 1 0.83 68 

10 0.80 0.997 0.80 80 

11 0.86 1 0.86 53 

12 0.94 1 0.94 23 

13 0.96 1 0.96 17 

14 0.95 1 0.95 21 

15 0.91 1 0.91 32 

16 0.92 1 0.92 27 

17 0.90 1 0.90 37 

18 0.88 1 0.88 44 

19 0.88 1 0.88 51 

20 0.996 1 0.996 1 

21 0.93 1 0.93 28 

22 0.92 1 0.92 32 

23 0.93 1 0.93 23 

24 0.89 1 0.89 47 

25 0.91 1 0.91 35 

26 1 1 1 0 

27 0.96 1 0.96 8 

28 0.95 1 0.95 18 

29 0.92 1 0.92 25 

30 0.94 1 0.94 19 

31 0.912 0.99 0.92 31 

32 0.80 1 0.80 92 

33 0.94 1 0.94 24 

Average 0.891 0.998 0.893 42.52 

Std Dev 0.07 0.01 0.07 28.54 

Min 0.72 0.98 0.72 0 

Max 1 1 1 119.79 

% of Eff Points 6.1 84.8 27.3   
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Table 4.  Drivers of Economic Efficiency 

 Prob>F
1
 

Size (Big/Small) 0.0553 

Marketing Technique 

(Contract/Spot/Third Party) 
NaN 

Ownership 

(Single Plant/Multiple Plant) 
NaN 

Location (State) 0.3786 
1 
This column displays the p-values of the hypothesis that the corresponding variable has 

no effect on overall economic efficiency. Therefore the closest this value to zero the 

stronger the effect of the treatment variable on efficiency. 

 

 

 

 

Table 5.  Average Input-Output Reallocation (�OR maximization) 

 

 

 

 

 

 

Table 6. Profit Efficiency of DMUs Grouped by Size 

Economic Efficiency Technical Efficiency DMU Size 

Statistic BIG SMALL BIG SMALL 

Average 0.92 0.86 0.99 0.99 

Efficient Points (%) 11 6 76.5 76.5 

 

 

 

 

 

 

 

 

 

  Ethanol Corn 

% Change in Category 57 54 
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Table 7. Returns to Scale of DMUs 

DMU 

Technical  

Efficiency  

VRS 

Technical  

Efficiency  

NIRS 

Technical  

Efficiency 

CRS 

Scale  

Efficiency 

VRS/CRS 

Category 

1 0.968 0.959 0.959 0.991 IRS 

2 1 1 1 1 CRS 

3 0.9858 0.9858 0.9857 0.999 DRS 

4 1 1 0.999 0.999 DRS 

5 1 1 1 1 CRS 

6 0.984 0.977 0.977 0.993 IRS 

7 1 1 1 1 CRS 

8 1 1 1 1 CRS 

9 1 1 1 1 CRS 

10 0.996 0.996 0.996 0.999 IRS 

11 1 1 1 1 CRS 

12 1 1 1 1 CRS 

13 1 1 1 1 CRS 

14 1 1 1 1 CRS 

15 0.999 0.999 0.989 0.989 DRS 

16 1 1 1 1 CRS 

17 1 1 1 1 CRS 

18 1 1 1 1 CRS 

19 1 1 1 1 CRS 

20 1 1 1 1 CRS 

21 1 1 1 1 CRS 

22 0.997 0.996 0.996 0.999 IRS 

23 1 1 1 1 CRS 

24 1 1 1 1 CRS 

25 1 1 1 1 CRS 

26 1 1 1 1 CRS 

27 1 1 1 1 CRS 

28 0.999 0.999 0.999 1 CRS 

29 0.9999 0.9997 0.9997 0.999 IRS 

30 1 1 1 1 CRS 

31 0.994 0.985 0.985 0.990 IRS 

32 1 1 1 1 CRS 

33 1 1 0.987 0.987 DRS 

Average 0.998 0.997 0.996 0.998   
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Table 8. Returns to Scale of DMUs 

DMU 

Overall  

Economic 

Efficiency 

Technical  

Efficiency 

Allocative Eff.  

w/o Marketing  

Efficiency 

Allocative Eff.  

With Marketing  

Efficiency 

Marketing 

Efficiency 

1 0.82 0.968 0.85 0.91 0.93 

2 0.84 1 0.84 0.80 1.06 

3 0.79 0.986 0.80 0.77 1.05 

4 0.72 1 0.72 0.65 1.11 

5 0.80 1 0.80 0.76 1.05 

6 0.85 0.984 0.86 0.73 1.17 

7 0.95 1 0.95 0.90 1.05 

8 0.82 1 0.82 0.67 1.23 

9 0.83 1 0.83 0.80 1.04 

10 0.80 0.996 0.80 0.66 1.21 

11 0.86 1 0.86 0.77 1.11 

12 0.94 1 0.94 0.81 1.15 

13 0.96 1 0.96 0.85 1.13 

14 0.95 1 0.95 0.89 1.07 

15 0.91 0.999 0.91 0.82 1.12 

16 0.92 1 0.92 0.92 1.01 

17 0.90 1 0.90 0.85 1.06 

18 0.88 1 0.88 0.79 1.11 

19 0.88 1 0.88 0.86 1.02 

20 0.996 1 0.996 1.02 0.98 

21 0.93 1 0.93 0.98 0.95 

22 0.92 0.997 0.92 0.95 0.96 

23 0.93 1 0.93 1.16 0.80 

25 0.89 1 0.89 0.91 0.98 

26 0.91 1 0.91 0.96 0.95 

27 1 1 1 1.10 0.91 

28 0.96 1 0.96 1.03 0.93 

29 0.95 1 0.95 1.01 0.94 

30 0.92 0.999 0.92 1.03 0.90 

31 0.94 1 0.94 1.03 0.91 

32 0.912 1 0.91 0.97 0.94 

33 0.80 0.994 0.81 0.67 1.20 

34 0.94 1 0.94 0.99 0.95 

Average 0.891 0.998 0.893 0.88 1.03 

Std Dev 0.07 0.01 0.06 0.13 0.10 

Min 0.72 0.97 0.72 0.65 0.80 

Max 1 1 1 1.16 1.23 
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Table 9. Size and Efficiency  

 Efficiency Component 

 Size Group 

Marketing  

Efficiency 

Technical  

Efficiency 

Allocative 

Efficiency 

Average - Whole Sample 1.024 0.998 0.889 

Average - Big 1.042 0.999 0.894 

Average - Small 1.006 0.997 0.883 

Efficiency Big/Efficiency Small 1.036 1.002 1.012 

 

Appendix A 

The measure in (4) can be computed as the value of  λ  in the following non-linear 

programming problem: 
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Appendix B 

The measure in (9) can be computed as the value of  λ  in the following non-linear 

programming problem: 
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Appendix C 

The measure in (10) can be computed as the value of λ  in the following non-linear 

programming problem: 
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