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Can Education Be a Barrier for Technology Adoption?

Abstract

The objective of this study is to test the widely-held belief that the effect of
education has a positive impact on technology adoption. Using 2006 Agricultural Resource
Management Survey (ARMS) data, we estimate a simultaneous equations model to
integrate farmers’ labor allocation decision with adoption of GM crops and precision
farming. We confirm that the marginal effect of education on technology adoption is
significantly larger for large farms for both GM crops and precision farming and it is
unexpectedly negative for GM crops at all levels of farm size. These results suggest that
formal education can be a barrier to technology adoption, especially for small scale farmers

who have higher tendency to work off-farm.
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I. Introduction

Adoption of technology is an extensively studied topic in agricultural economics. A
plethora of empirical literature has identified a wide range of factors that influence
technology adoption decisions by farmers. Among such factors, and being consistent with
the human capital theory, education may be one of the most frequently used variables in
empirical models. Research points out that education is positively correlated with
technology adoption. In agriculture, farmers with higher education have better access to
information and knowledge that are beneficial to farming operation. They also tend to
possess higher analytic capability of the information and knowledge necessary to
successfully implement new technology and realize expected results. Hence, higher
education allows farmers to make efficient adoption decision (Rahm and Huffman, 1984)
and early adopters who can take advantage of new technology are likely to extract
maximum profit (Gardner and Rausser, 2001). Highly educated farmers also tend to adopt
technology with greater intensity (Saha, et al., 1994).

The objective of this study, however, is to challenge this conventional brief. We
believe that it is possible that education could potentially have a negative effect on
technology adoption in agriculture. Take the case of education and labor supply, both on
and off-farm. Education increases farmers’ human capital and gives them more lucrative
incentives for employment opportunities off the farm, which in turn decreases the
managerial time on farm to implement new technologies and realize the expected results!.
This is particularly true for management intensive technologies. This study empirically

examines this theory.

1 Results may vary with occupation of the farm operator and also the size of the farming operation.



Considering the facts that the number of farmers with college education has been
increasing steadily over the last 50 years (Mishra, et al.,, 2009) and increasing share of farm
household income is from off-farm sources (Fernandez-Cornejo, 2007), it is crucial to
accurately assess the effect of education on technology adoption in the context of labor
allocation between on and off the farm by farm households. In so doing, we estimate a
simultaneous equations model that coalesce labor allocation and technology adoption
models using 2006 Agricultural Resource Management Survey (ARMS) data. Technologies
considered in this study are precision farming as a representative of management intensive
technology and genetically modified (GM) crops as a representative of management saving
technology. We estimate this model following the procedure suggested by Nelson and
Olson (1978) to obtain asymptotically consistent estimates of parameters of our interest.

The rest of the paper is organized as follows. Section Il reviews existing literature
on the relationship between education, technology adoption and off-farm labor supply in
agriculture. Section III provides analytical framework, followed by empirical results in

Section IV. The final section offers concluding remarks.

IL. Literature Review

In order to lay a comprehensive theoretical foundation about the net effect of
education on technology adoption, we attempt to unite findings from three different topics
in agricultural economics literature. We first review empirical findings about the effect of
education on technology adoption, followed by the effect of education on off-farm labor

supply. Finally, we shed light on recent studies that account for these two effects into a



single model to explain simultaneous decision making process through which farmers

allocate their time between off-farm and on-farm activities, including technology adoption.

1) Education and Adoption

In agriculture, human capital of farm operators can be represented by a number of
different ways, with formal education and farming experiences being two of the most
commonly adopted measures. Although farming experience can be a preferred measure in
a static environment in which accumulated knowledge in farming operation or on-the-job
training experiences do not depreciate or become obsolete, formal education is widely
considered to be the most important form of human capital (Becker, 1994) in a dynamic
political and economic environment where new technology and information are regularly
developed (Gardner and Rausser, 2001). In such a more realistic setting, formal schooling
will play a more prominent role than farming experience for farm operators to constantly
update their knowledge and farming practices to stay competitive.

A number of empirical studies have shown the positive effect of education on
adoption of various types of technology in agriculture. For example, education is found to
have a positive impact on adoption of forward pricing methods (Goodwin and Schroeder,
1994), computer technology (Huffman and Mercier, 1991; Putler and Zilberman, 1988),
use of the internet (Mishra and Park, 2005; Mishra, et al,, 2009), reduced tillage (Rahm and
Huffman, 1984), recombinant bovine somatotropin (rbST) (Klotz, et al., 1995), precision
farming (Roberts, et al., 2004), genetically engineered corn (Fernandez-Cornejo, et al.,
2001), soil nitrogen testing (Fuglie and Bosch, 1995), conservation practices (Traore, et al.,

1998) and the level of participation in government-supported conservation programs



(Lambert, et al., 2007), to name a few.

On the other hand, there are also some empirical evidences of insignificant or even
negative effect of education on technology adoption. Farmers’ education has insignificant
effect on adoption of variable rate technology (Khanna, 2001) and GPS guidance system for
cotton farmers (Banerjee, et al., 2008). Nyaupane and Gillespie (2009) identified factors
affecting adoption of best management practices (BMP) for Louisiana crawfish producers,
but education was found to be insignificant for adoption of all but one BMP, where
education was found to be negatively correlated with BMP adoption. There are studies that
discovered mixed effects of education on different technologies; Soule, et al., (2000) found
that education positively affected adoption of conservation tillage whereas it had no
significant impact on adoption of medium term practices such as contour farming, strip
cropping, and grassed waterway; Wozniak (1984) found a positive impact of education on
adoption of cattle feeding technology but not such impact is found for implanting
technology.

Gould et al. (1989) studied factors affecting adoption of conservation tillage for
Wisconsin farmers. They unexpectedly found that education is negatively correlated with
adoption, holding other factors (such as the proportion of off-farm work time to on-farm
work time, among others) constant. This implies that highly educated farmers are less
likely to adopt conservation tillage, given the same proportion of off and on farm work time.
Because highly educated farmers are more likely to earn higher wages from off-farm work,
they are expected to have a higher proportion of off-farm income to on-farm income given
the same proportion of on and off farm work time. Therefore, it seems plausible if highly

educated farmers, who are more reliant on off-farm income, have fewer incentives to spend



time and effort on farming, including adoption of technology such as conservation tillage.
As these examples show, the effect of education on technology adoption in empirical
literature has yet to reach a consensus consistent with the economic theory. Although the
mixed empirical evidence might to some extent be explained by factors such as type of
technology and diffusion process of the technology (Gardner and Rausser, 2001), relatively
little attention has been paid to explore underlying reasons for such incoherent findings

perhaps because the underlying theory seems intuitively too appealing to refute.

2) Education and Off Farm Labor Supply

One possible explanation for the inconsistent empirical results about the effect of
education on technology adoption may be attributed to the relationship between education
and off-farm labor. The recent trend of increasing off-farm labor supply by U.S. farm
households can be attributed to (1) relative increase in non-farm sector real wage, (2)
decrease in demand for farm labor and family labor (housework) due to development of
labor saving technologies (Gardner and Rausser, 2001). Highly educated farmers have
higher incentives to work more off the farm, ceteris paribus. As human capital
accumulated through longer years of formal education becomes an advantage to find more
off-farm employment opportunities, which makes farming relatively less attractive.
Theoretically, however, the effect of education on off-farm labor supply is ambiguous;
while higher education increases employment opportunities off the farm, farms with highly
educated operator may realize higher productivity in farming operation and thus
reservation wage to work off-farm for such operators may be high ((Hallberg, et al., 1991;

Huffman and Lange, 1989)(Hallberg, et al,, 1991, Huffman and Lange, 1989). The existing



literature has mostly found that education is positively correlated with both off-farm labor
participation and the intensity of off-farm work (Huffman, 1980; Huffman and Lange,
1989), indicating that the marginal effect of education on off-farm wage is higher than the
marginal effect of education on the reservation wage. For instance, Goodwin and Mishra
(2004) found a strong and positive effect of education on off-farm labor participation; an
additional year of education leads an increase in off-farm labor supply by fifteen hours
annually. Huffman (1980) estimated the effect of education on the odds ratio of off-farm
work participation and the number of days worked off-farm by farm operators. The study
found a positive and significant effect of education on both the odds ratio and the number
of days working off-farm by operator.

From theoretical standpoint, there are two seemingly contradicting effects of
education on technology adoption. On one hand, higher education leads to more
technology adoption, but on the other hand, higher education increases off-farm labor
supply, which inevitably affects on-farm labor supply available for technology adoptionZ.
The mixed findings about the effect of education on technology adoption in empirical
literature can perhaps be attributed to the fact that conventional technology adoption

models do not fully account for the role of off-farm labor supply.

3) Technology Adoption and Labor Allocation

Although studies that have combined technology adoption and labor allocation into

a single model had been largely nonexistent until recently, exceptions are Fernandez-

Z Although it is theoretically possible that increased off-farm labor income provides farmers with financial
flexibility to implement a new technology, Wozniak (1993) concluded that the negative impact of reallocation
of operators’ time away from farming on technology adoption seems to be more significant than the financial
flexibility due to off-farm income.



Cornejo et. al. (2005) and Fernandez-Cornejo (2007). The former explored the
simultaneous process through which operators and spouses allocate their time between on
and off farm work and its relation to adoption of herbicide tolerant (HT) soybean as a
representative of time saving technology. The study found a positive correlation between
education and off-farm work for operators but not for spouses. Also, the impact of
education on adoption of HT soybeans was not statistically significant. The study by
Fernandez-Cornejo (2007) employed a model similar to Fernandez-Cornejo et. al. (2005)
but it included adoption of yield monitors, which is required for precision agriculture, as a
representative of management intensive technology. The study confirmed a negative
correlation between adoption of yield monitor and off-farm income. However, they did not
specify if education has a significant effect on adoption of yield monitor as it was not their
primary interest.

In this study, we extend models developed by Fernandez-Cornejo (2007) and
Fernandez-Cornejo et. al. (2005) to estimate the net effect of education on adoption of two
different technologies: GM crops and precision farming. We do so by including in our
model the interaction between farm size and education. The correlation between adoption,
education and farm size is of particular interest because small farms are more likely to
work off-farm (Fernandez-Cornejo, 2007) and less likely to adopt management intensive
technology (Fernandez-Cornejo, et al., 2001; Saha, et al.,, 1994). Therefore, one can capture
the net effect of education that varies across farm sizes. Further, in order to test the
robustness of our findings we use two measures of farm size—namely value of agricultural

sales and total acres operated.

IIL Analytical Framework



1) General Representation of Simultaneous Equations Model

Following Judge et al., (1984), a system of simultaneous equations that consists of |
equations (representing /] endogenous variables) each with T observations can be

generally expressed as follows:
YT+XB+E =0, (1)

where Y isa T X | matrix of observations on endogenous variables, I'isa J X ] matrix of
unknown parameters for endogenous variables, X is a T X K matrix of observations on
exogenous variables, B is a K X | matrix of unknown parameters for exogenous variables, E
isaT X J matrix of error terms, and 0 isa T X J matrix all of whose elements are zero. For
the purpose of exposition, we partitionY = Y1 = Yj), X = (X1 - Xg)and

E = (€1 ° €)wherey; x; and e; represents jth and kth column of corresponding
matrix. We also express elements of I' and B in corresponding lower case letters. Then,

equation (1) can be rewritten as follows:

Y11 0 Yy P11 Bl]
>+(x1 : “ :

> YD ( : XK) : . :
Yin o Yy Pix ,3]K

+€1  €)=0 (2)

Multiplying and summing up matrices on LHS of equation (2) yields a T X ] matrix. We can

rewrite equation (2) as
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Further rearranging,

T
(J’1V11 + ot }’])/11) + (111 + -+ xkPrk) + €1
{(}’1)’12 + e+ }’]ij) + (x1f12 + -+ X fok) + ez} =0. (3)
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Each element in the matrix on LHS of equation (3) isa T X 1 vector. For the purpose of
normalization, we set y;; = —1 and solve jth element in the matrix for jth endogenous

variable to obtain J equations

J

Y1 =) Yy Geafu b+ 2B + e (4)
j=1

]. .
J#]

Estimating each equation in (4) by OLS or any appropriate form of limited dependent
variable models yields biased and inconsistent estimates because of endogenous
regressors. Also note that, in order for this system of equations to be identified, there must
be at least as many number of excluded exogenous variables as right hand side endogenous
variables in each equation (Kennedy, 2008).

In order to obtain consistent estimates for the system of equation, we post-multiply

(1) by I'"13 and solve for Y

YDr+&Br1+ert=0

3 We assume that I' is invertible.



Y = —XBI~! — ET1
Y=XI+V, (5)

where I[1 = —BI'"t and V = —ET L. Equation (5) represents reduced form equations of
simultaneous equations in (1). Estimating equation (5) by OLS or any appropriate form of
limited dependent variable models yields unbiased estimates as endogenous regressors are
no longer present. Replacing endogenous variables in the structural equations in (1) with
predicted values from reduced form equations in (5) yields consistent estimates of

unknown parameters I' and B (Nelson and Olson, 1978).
2) Empirical Model

The purpose of this study is to build an empirically estimable system of
simultaneous equations that incorporates farmers’ labor allocation decisions into
technology adoption model. The system we consider here consists of four equations:
adoption of precision farming, adoption of GM crops, and off-farm labor supply by farm
operators and spouses. Based on the general results above, we can express the technology

adoption and labor allocation model as follows:
yi=ay;+8%X;+¢& (6)
y2=Byz +n'Xz+e (7)

* y !
yi=0n ¥ (p)) +0Xs+e5 (8)

. y /
yi=01 Y2) (yl) +0'X,+e; (9)



ys3 = h(y3) = max(0,y3) (10a)
ya = h(y3) = max(0,y;) (10b)

, where y; is a dummy variable that takes 1 if the farm employs precision farming and 0
otherwise, y, is also a dummy variable that takes 1 if the farm adopts GM crops and 0
otherwise. y; and y, are off-farm working hours for ith farm operators and spouses with
y; and y; being the latent variable of y; and y,, respectively. a and f§ are unknown
constants and y, 8,17 and @ are vectors of unknown parameters to be estimated.

X4, X5, X3 and X, are vectors of exogenous variables. Note that equations (6), (7), (8) and
(9) are equivalent to the set of structural equations solved for endogenous variables,
represented by equation (4) and the system of these four equations satisfies identification
condition mentioned earlier. The error terms, €4, €, and €5 are assumed to be normally
distributed with zero means but we assume that €; and ¢, are correlated with each other at
p.

We first estimate the reduced form equations of (8) and (9) in which endogenous
variables, y; and y,, are absent. We employ Tobit model as the dependent variables,
annual off-farm working hours by operators and spouses, are censored variables bounded
from below at zero. Then, we obtain linear prediction of the latent variable, ﬁ and ﬁ,
which are used as instruments in the second stage estimation of adoption of GM crops and

precision farming by bivariate probit model.
3) Interaction between Education and Farm Size

The primary interest of this study lies in estimating the effect on technology

adoption of the interaction between education and farm size as an approximation of the



tendency for farm operators and spouses to work off-farm. A common approach to
incorporate an interaction of two variables into a regression model is to assume that the
coefficient of one variable is dependent on the other variable. Following Ramanassan

(2002), suppose we have a simple regression model given by

Y=0F+FX+e (10)

and assume that ; is dependent on another variable, Z. That s,

Br = o +v12). (11)

Substituting equation (11) into equation (10), we have

Y=B+ 0o +1rZ2)X +e

Equation (12) shows that Y is now dependent on X as well as a new regressor that is a
product of the two variables of interest, X and Z.

However, following this method and creating a product of education and farm size
would not allow us to fully capture the potential interaction between education and farm
size. This is because we expect that the coefficient of the interaction term, equivalent to y;
in equation (12) in the above example, will not be a constant.

Therefore, instead of simply creating a product of the two variables, we employed
the following steps to estimate the interaction between the two variables. First, as a
measurement of farm size, we select gross cash farm income (gcfi). Next, we create dummy
variables for each quintile of gcfi. Then we multiply each of the five dummy variables with

education to create five interaction variables each of which represents different levels of



farm size in terms of farm income. We include four of the five dummy variables created,
each representing first, second, fourth and fifth quintile of farm size, into the regression
model and assume coefficient of each dummy variable is associated with education as in
equation (11)%.

For the lowest quintile interaction variable, for example, we expect the sign of
coefficient to be smaller than those for higher quintile interactions. This is because, for
smaller farms, more educated operators are likely to work more off-farm and thus adopt
fewer technologies. For the highest quintile, on the other hand, we expect the sign of
coefficient to be more elusiveS. The point we wish to clarify here is that we expect the
effects of interaction between farm size and education to be different for small farms with
higher education and large farms with lower education. If this is the case, simply

multiplying education and farm size does not capture such conflicting effects.

4) Data

This study employs 2006 Agricultural Resource Management Survey (ARMS) data.
ARMS is conducted annually by the Economic Research Service and the National
Agricultural Statistics Service. The ARMS, which has a complex stratified, multiframe design,
is a national survey conducted annually by the Economic Research Service (ERS) and the

National Agricultural Statistics Service (for more detail, see

4 We exclude interaction between 3rd quintile of gross cash farm income and education from the model to
avoid the dummy variable trap. This excluded group will be the base group to be compared with other
groups.

5 Large farms are less likely to work off-farm and more likely to be focused on farm operation. This implies,
for operators of large farms, that opportunity cost of farming is relatively unimportant for labor allocation
decisions as farming tend to be the most attractive employment opportunity. At the same time, the degree to
which large farm operators commit to farming may be even stronger for those operators with lower
education as they will not have as many attractive off-farm employment opportunities as highly educated
counterparts do.



http://www.ers.usda.gov/Briefing/ARMS/). Each observation in the ARMS represents a
number of similar farms, the particular number being the survey expansion factor (or the
inverse of the probability of the surveyed farm being selected for surveying), and is
referred to henceforth as survey weight, or w; (/= 1, ..., n, where ndenotes sample size).
To demonstrate, the size of the samples considered in the analysis was 4,674 which when
properly expanded using survey weights yielded populations of farm operator households
totaling 345,241. The ARMS collects data to measure the financial condition (farm income,
expenses, assets, and debt) and operating characteristics of farm businesses, the cost of
producing agricultural commodities, and the well-being of farm operator households. The
2006 ARMS also collected information on farm households; in addition to farm economic
data, the survey contains detailed information on off-farm hours worked by spouses and
farm operators, the amount of income received from off-farm work, net cash income from
operating another farm/ranch, net cash income from operating another business, and net
income from share renting.

The target population of the survey is operators associated with farm businesses
representing agricultural production in the 48 contiguous states. A farm is defined as an
establishment that sold or normally would have sold at least $1,000 of agricultural
products during the year. Due to the nature of the study dairy farms are excluded from the
sample. Farms can be organized as sole proprietorships, partnerships, family corporations,
non-family corporations, or cooperatives. Data are collected from one operator per farm,
the senior farm operator. A senior farm operator is the operator who makes the majority of
the day-to-day management decisions. For the purpose of this study, operator households

organized as nonfamily corporations or cooperatives and farms run by hired managers



were excluded. Table 1 provides the complete list of variables used in this study, their
definitions and descriptive statistics.

Finally, following Goodwin and Mishra (2004) we adopt a bootstrapping approach
that consistently accounts for the stratification inherent in the survey design®. The ARMS
database contains a population-weighting factor that indicates the number of farms in the
population (i.e., all U.S. farms) represented by each individual observation. We utilize the
weighting (population-weighting factor) factor in a probability weighted bootstrapping
procedure. Specifically, the data (selecting N observations from the sample data) are
sampled with replacement. The models are estimated using the pseudo sample of data. This
process is repeated a large number of times and estimates of the parameters and their
variances are given by sample means and variance of the replicated estimates. We utilize

2,000 replications in the application that follows.

IV. Results and Discussion

Maximum likelihood estimates of the first stage Tobit models of off-farm labor
supply by operators and spouses are provided in Table 2. The results show that, for both
operators and spouses, off-farm labor supply is positively correlated with education and
age. Highly educated operators and spouses are more likely to work off-farm as suggested
by past literature (Hallberg, et al., 1991; Huffman, 1980; Huffman and Lange, 1989). The
effect of age on off-farm labor supply, however, is increasing at a decreasing rate, as the

coefficients of age squared (opageZand spageZ) are negative and significant. Unlike the

6 Goodwin, Mishra and Ortalo-Magne (2003) point out that the jackknife procedure may suffer from
some limitations and they propose bootstrapping procedure as an alternative.



concave relationship between age and off-farm labor supply, acreage (acres) and off-farm
labor supply, for both operators and spouses, have a convex relationship; acreage has a
negative impact on off-farm labor supply, but the positive and significant coefficients of
squared acreage (acresZ2/1000) indicates that its impact on off-farm labor supply is
decreasing at an increasing rate for both operators and spouses. Financial position of the
farm household as represented by debt-to-asset ratio (dta) and farm net worth (ntw) are
also correlated with farm household off-farm labor supply; higher debt to asset ratio is
positively correlated with off-farm work by operators and higher net worth is negatively
correlated with off-farm labor supply by both operators and spouses.

Farm tenure exhibits mixed results for operators and spouses. For operators, being
a full owner is positively correlated with off-farm labor supply and being a tenant is
negatively correlated with off-farm labor supply, relative to the base group of part owners
who, on average, operate the largest farms and account for the largest share of farm sales in
the United States (USDA, 1998). For spouses, on the other hand, being a full owner or a
tenant relative to a part owner is negatively correlated with off-farm labor supply. Since
part owners tend to operate larger farms, it may be the case that they have second and
third operators (who are not the primary operator’s spouse) who have higher comparative
advantages in agricultural operation to spouses (who tend to have fewer farming
experiences), thereby allowing spouses to work off-farm more than full owner or tenant
counterparts.

The presence of children in family (hh6, hh7-13, and hh14-17) has no significant
impact on operators’ off-farm labor supply, whereas it has negative and significant impact

on spouses, who are mostly female. The younger the children, the larger the negative



impact on off-farm labor supply for spouses, however, presence of children between age 14
and 17, has no significant impact on spouses’ off-farm labor supply. This is consistent with
the views that the presence of young children requires more childcare (Fernandez-Cornejo,
et al.,, 2005; Kimhi and Lee, 1996) and the need for childcare may have a bigger impact on
off-farm labor supply by spouses rather than operators (Fernandez-Cornejo, 2007).
Geographical location of farms (urban and metro) also shows significant effect on
off-farm labor supply. Operators whose farm is located in urban area are more likely to
work off-farm compared to their counterparts. Contrary to a priori expectation, on the
other hand, spouses whose farm is located in either urban or metro are less likely to work
off-farm relative to the base group and the negative impact is even stronger for spouses in
metro area. Government payments also have significant impact on off-farm labor supply by
farm household. Direct and indirect payments both have negative impact on operators’ off-
farm labor supply, which is consistent with recent findings by El-Osta et al., (2008) and
Dewbre and Mishra (2007).
For spouses, however, only direct payment has a negative impact on off-farm labor supply.
Payments from Conservation Reserve Program (crp) exhibits a positive and significant
impact on operators’ off-farm labor supply, whereas payments from Working Land
Conservation Programs (wi/cp) has negative and significant impact on off-farm labor supply
for spouses. These are consistent with a priori expectations that participation in long-term
land retirement programs such as CRP frees up operators’ time that would have otherwise
been expended in farming while Working Land Conservation programs such as
Environmental Quality Incentives Programs increases labor requirement on the farm as

suggested by Lambert, et al., (2006).



Overall, results from Table 2 underlie the importance of including spouses in the
analysis of off-farm labor supply by farm households (Goodwin and Mishra, 2004). The
effects of tenure, presence of young children in the family, farm location and government
payments are all found to be significant but signs of the coefficients may be different on off-
farm labor supply by operators and spouses.

Next we estimate the second stage bivariate probit model of technology adoption for
precision farming (PF) and GM crops using the predicted values of off-farm labor supply by
operators and spouses (o0ols_hat and sols_hat)” obtained in the first stage as instruments.
Parameter estimates and summary statistics are presented in Table 3, while Table 4
presents the marginal effects of explanatory variables on probability of adopting precision
farming (PF) or GM crops8. The Wald test statistic suggests that the null hypothesis of no
correlation between two error terms can be rejected at 1% significance level, which
supports the use of bivariate probit model instead of two separate probit models.

In the case of precision farming (PF) adoption, the predicted value of operators’ off-
farm labor supply (ools_hat) has a marginally insignificant coefficient estimate (p-value of
0.13) while coefficient of sols_hat, the predicted value of spouses’ off-farm labor supply, is
not significant. This is contrary to our expectation that adoption of management intensive
technology like PF is negatively correlated with off-farm labor supply. This may be due to
the relatively broad definition of precision farming in our data. The 2006 version of ARMS

queried respondents on adopt any precision farming practices that reduce production costs.

7 Strictly speaking, ools_hatand sols_hatare the predicted value of the latent variable ofoff-farm labor supply
by farm operators and spouses, repectively. However, we refer to them as “predicted value of off-farm labor
supply” or simply “off-farm labor supply” to keep the notation simple and to avoid wordiness.

8 GM crops included in the analysis presented in Table 3 and 4 are corn, soybeans and cottons. We have also
conducted analysis using only GM corn and soybeans. See Table 5 for partial results.



Because precision farming can involve a wide range of technologies such as Global
Positioning System (GPS), Geographical Information System (GIS) and yield monitors, to
name a few, some farmers may leave a positive response when they practice relatively less
management intensive technologies. We are not able to capture the potentially
heterogeneous perceptions about PF by respondents in this study and this may have
obscured the relationship between off-farm labor supply and adoption of PF.

On the other hand, the predicted value of operators’ off-farm labor supply, ools_hat,
is negatively correlated with adoption of GM crops and the predicted value of spouses’
labor supply yields an insignificant coefficient estimate, which is also inconsistent with a
priori expectation that adoption of management saving technology such as GM crops would
increase off-farm labor supply. As unexpected as it may seem, it may not simply indicate
that GM crops are not management saving. Adopting a relatively new technology such as
GM crops may be a manifestation of commitment to farming business by itself, which could
be why the adoption is found to be negatively correlated with operators’ off-farm labor
supply. Even if adoption of GM crops is management saving, operators’ off-farm labor
supply is least likely to increase in the family since operators are the primary decision-
makers of farm operation with comparative advantage in farming and thus they would
have the highest opportunity cost of working off the farm of all family members. If this is
the case, adoption of GM crops may allow operators to focus more on farming resulting in
shorter off-farm working hours while possibly increasing off-farm labor supply by other
family members. However, our results do not confirm this argument as we obtained a
positive but insignificant coefficient of off-farm labor supply by spouses.

Coefficients of interaction between operators’ education and total acres are partially



inconsistent with our expectation but they nonetheless provide interesting results. First of
all, note that coefficient of education (educ) represents the effect of education on
technology adoption (either precision farming or GM crops) for the base group farmers
whose total operated acres belong to the third quintile (from 41st percentile to 60t
percentile). For precision farming, educ is found to be positive and significant whereas it is
negative and significant for GM crops. Coefficient estimates of interaction between
operators’ education and total acres (oeduc*ac1 ~oeduc*ac5) relative to the base group are
negative and significant for farms with smaller acreages (oeduc*acl1 and oeduc*ac2) and
positive and significant for farms with larger acreages (oeduc*ac4 and oeduc*ac5) for both
precision farming and GM crops. Marginal effects estimates evaluated at means of
explanatory variables shows that the absolute values of marginal effects become larger as
the total acreage deviates away from the base group of the third quintile, again for both
precision farming and GM Crops. In other words, the effect of education on technology
adoption is dependent on farm size represented by total acres and the larger the total acres
are, the stronger the effect of education on adoption of both precision farming and GM
crops. For instance, the marginal effect of 0.0096 for the base group farmers (whose total
acres belong to the third quintile) means that an additional year of education for farm
operators increases probability of precision farming adoption by 0.96%. The
corresponding probabilities become even larger for farms with larger acreage (oeduc*ac4
and oeduc*ac5); probability of precision farming adoption in increased by 1.1% (=0.0096
+ 0.0018) for farms with fourth quintile total operated acres and by 1.4% (=0.0096 +
0.0044) for farms with fifth quintile total operated acres. On the other hand, farms with

smaller acreage has lower probabilities of adopting precision farming; the marginal effect



of operators’ education is 0.56% (=0.0096 - 0.0038) and 0.55% (=0.0096 - 0.0039) for
farms with second and first quintile total operated acres, respectively. In summary,
marginal effect of education on probability of precision farming adoption is positive for
farms at all levels of farm size, but the effect is larger for farms with large total operated
acres.

Although the increasing marginal effect of education according to total acres also
holds true for GM crops, the notable difference from precision farming is that the marginal
effects of operators’ education on GM crops adoption are negative at all levels of total acres.
An additional year of education decreases probability of GM crops adoption by 1.2% (=-
0.0063 - 0.0057) for farms whose total acres classified into the first quintile, and analogous
probabilities for farms with second through fifth quintiles are, respectively, -0.88%, -0.63%,
-0.44%, and -0.28%.

It is surprising that education has a negative impact on technology adoption,
however, several explanations could be for this unexpected results. First, precision farming
is more human capital intensive whereas GM crops are considered a time-saving and
convenient technology (Smith, 2002). Different labor and human capital requirements of
the two technologies might have caused smaller marginal effects estimates of education on
adoption of GM crops relative to precision farming. Second, and perhaps more importantly,
the controversy over manipulation of gene structures in GM crops might have discouraged
its adoption, especially for highly educated farmers, leading to negative marginal effects.
Note that marginal effects of education on GM crops adoption are negative regardless of the
size of farming operation, but they become less negative as the farm size increases.

However, farmers’ risk perceptions about GM crops are not observed in 2006 versions of



ARMS data and thus we are unable to verify such claim in this study.

In order to examine the robustness of our specification of farm size (proxy via total
acres), we also estimated the same two stage models using interaction between education
and gross cash farm income, following Mishra and Park (2005). We also estimated each
model with another definition of GM crops that only includes corn and soybeans in addition
to the original definition that includes corn, soybeans and cotton, which was reported in
Table 3 and 4. Estimates of marginal effects of education for these four models are
summarized in Table 5. The results are similar when we replace total operated acres by
farm income and for alternate definitions of GM crops. The fact that all but two marginal
effect estimates have significant coefficients and marginal effects in four different models
validates inclusion of the interaction between education and farm size in our model. It also
confirms our expectation that the effect of education on technology adoption do vary
across farm sizes, holding off-farm labor supply by farm operators constant. As we
expected, the effect of education is smaller for small farms for adoption of both precision
farming and GM crops and, contrary to our expectation, it becomes negative for adoption of
GM crops.

Now we turn back to results in Table 3 and 4 to interpret coefficients and marginal
effects of other explanatory variables. For precision farming, operators’ age (opage) has
positive and age squared (opageZ) has negative coefficients, as expected, but they are not
significant for GM crops. Total operated acres in operation divided by 1,000 (acres/1,000)
has no significant impact on adoption of precision farming but has a positive and significant
impact on adoption of GM crops; an increase in total operated acres by 1,000 acres

increases probability of GM crops adoption by 0.69%.



Household net worth and average interest rates charged on loans are two variables
that represent financial status of farm households (netwand interest) and they are
included only in precision farming equation on the assumption that precision farming is
capital intensive while GM crops are not. While new worth is not found significant, interest
rate has a positive impact on probability of precision farming adoption. This supports the
above claim that adoption of precision farming is capital intensive and those who have
higher probability of adopting it would be willing to take on loans with higher interest
rates.

The degree of risk aversion® (risk), measured by ratio of crop insurance expenses to
total variable costs, as proposed by Goodwin and Rejesus (2008), has positive and
significant effect for both precision farming and GM crops. The positive coefficient of risk
indicates that as risk aversion increases operators are more likely to adopt these
technologies. This gives us another insight into the unexpected negative effect of operators’
off-farm labor supply on adoption of GM crops. Because off-farm labor is often seen as a
means to diversify income risk, farmers may perceive risk reducing technologies such as
GM crops as a substitute of off-farm labor to manage risks, and thus having more of one
leads to less of the other as it may have been the case in our estimation.

Estimates for fownerand ftenant represent effects of being a full owner or tenant
relative to the effect of being in the excluded base group of part owners. Descriptive
statistics in Table 1 shows that part owners and tenants explain 45% and 11% of the

sample respectively and the rest of the 44% is represented by full-owners. Coefficients and

9 We use the share of crop insurance expense to total farm operating expenses as a measure of risk aversion-
higher share of crop insurance expense imply risk aversion (Goodwin and Mishra, 2004; Goodwin and
Rejesus, 2008).



marginal effects of fownerare negative while marginal effects of ftenants are not significant
relative to the base group of part owners for both precision farming and GM crops.
Although one might expect the degree of land ownership to be positively correlated with
technology adoption, the results need to be interpreted with caution. Our results is
consistent with the fact that it is part owners who operate the largest farms and account for
the largest share of farm sales, followed by tenants in the U.S. agriculture (USDA, 1998);
part owners and tenants may face higher profit opportunities and/or longer time horizon
(and thus ftenants are not significant ) when considering adoption of precision farming and
GM crops than full-owners.

Another variables that was only included in precision farming equation is internet, a
dummy variable that takes a value of one if the household has an internet connection. It
has a positive and significant impact on probability of adopting precision farming.

Marginal effect estimate of 0.04 (Table 4) indicates that having an internet connection
increases probability of adopting precision farming by 4%, which is a very significant effect
considering the fact that an additional year of education increases the probability of
adoption by only 1.4% at most. It appears that knowledge and experiences in computer
and the internet important factor for precision farming adoption and this is evidence that
precision farming is a human capital intensive technology.

Government payment is also found to be positively correlated with adoption of both
technologies. A possible explanation of this finding is that farm program payments may
provide farmers with additional source of income that can be used to purchase newer
technologies and adopt newer practices (Caswell, et al.,, 2001; Lambert, et al., 2006;

Lambert, et al.,, 2007). Results indicate that farmers who receive any type of government



payments are 2.3% more likely to adopt precision farming and 17% more likely to adopt
GM crops. The higher marginal effect of government payments on GM crops can be
attributed to the fact that farm program payments are tied to production of corn, soybean,
cotton and other cash grain crops.

Literature indicates that technology adoption is affected by regional location of the
farm (Mishra, et al,, 2009). Parameter estimated in Table 3 and marginal effects in Table 4
show that most of the coefficients of regional dummy variables were statistically significant
for GM crops but only four of them are significant for precision farming. Note that the
Mississippi Portal region serves as a base group and thus it is excluded from the model. For
precision farming, farmers in Heartland, Northern Crescent, Southern Sea Board and
Fruitful Rim regions have higher probability of adoption relative to farmers in the
Mississippi Portal region. For GM crops, farmers in all but the Heartland region have a
lower probability of adoption relative to the base group, although the effect of Fruitful Rim
region is not significant. Higher probability of GM crop adoption in the Heartland region
where crop production is active is also expected as found by (Fernandez-Cornejo, et al.,

2005).

V. Conclusions

While the economic theory suggests that education has a positive influence on
technology adoption for farmers, existing studies on technology adoption have yielded
mixed results. We hypothesize that this is because conventional technology adoption
models do not account for the potentially negative effect of education on technology

adoption through labor allocation between on and off the farm.



The purpose of this study is to fill the gap between the economic theory and
empirical findings in agricultural economics. We built a simultaneous equations model that
coalesce labor allocation and technology adoption decisions following Fernandez-Cornejo
et al. (2005) and Fernandez-Cornejo (2007) and included interactions between education
and farm size to estimate the net effect of education. The results confirm our expectation
that the marginal effect of education on technology adoption is significantly higher for large
farms. Contrary to a priori expectation, however, the marginal effects of education on GM
crops adoption are found to be negative at all levels of farm size. These results suggest that
formal education can be a barrier to technology adoption, especially for small scale farmers
who have higher tendency to work off-farm.

Given the increasing federal spending on agri-environmental programs that
encourages farmers to adopt environmentally benign practices over the last two decades, a
precise assessment of the effect of education on technology adoption is of great importance
for policy makers. Our findings suggest that simply targeting highly educated farmer to
adopt new farming practices on the basis of the conventional theory is not sufficient to
achieve an efficient outcome. This is primarily because highly educated operators who
have small operations are usually more dependent on off-farm income and thus their
opportunity cost of farming is higher than that for relatively less educated counterparts.

Finally, some limitations this study has encountered have to be noted. First, the
definition of precision farming in our data is more broadly defined than previous studies
such as Banerjee, et al. (2008) and Roberts, et al. (2004). This may have obscured the
relationship between off-farm labor supply and adoption of precision farming. Second, our

results showed that the marginal effect of education on adoption of GM crops were



negative regardless of farm size. As mentioned earlier, this unexpected result could be
attributed to the controversy over the genetically modified crops, especially for highly
educated farmers who would be more aware of the latest discussion and findings about the
risk and safety of GM crops. Third, we have employed Nelson and Olson’s procedure to
estimate a simultaneous equations model with endogenous limited dependent variables.
The simplicity of this procedure is a tremendous advantage for practitioners. Although this
procedure allows us to obtain consistent estimates of unknown parameters, there exists an
asymptotically efficient, but relatively more complicated, estimator suggested by Amemiya
(1979). Future researches will address these limitations to build on our early attempt to
estimate the true effect of education on technology adoption in the context of labor

allocation between on and off the farm.
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Table 1: Variable Definitions and Descriptive Statistics

Variables Definitions Mean Std. Dev
op_educ operator's years of education 13.50 1.91
opage operator's age 55.96 12.14
opage2 operator's age squared 3279 1380
sp_educ spouse's years of education 13.68 1.86
spage spoues's age 53.33 12.00
spage2 spouse's age squared 2988 1302
acres total number of operated acres 1396 5864
acres2 total number of operated acres squared 36328871 8060777
dta debt to asset ratio 0.19 2.20
netw household net worth 2011206 7709863
interest ~ Average interest rates charged on farm loans 1.28 1.80
risk share of crop insurance premiums in total variable cost 0.01 0.03
fowner = 1 if operator is full owner 0.45 0.50
powner = 1 if operator is part owner 0.44 0.50
ftenant = 1 if operator is a tenant 0.11 0.31
hh5 number of household members younger than 6 years old 015 049
hh6_13 number of household members between 6 and 13 years old 028  0.66
hh14_17  number of household members between 14 and 17 years old 024 0.55
internet =1 if household has an internet connection 074 044
urban = 1if farm is located in urban county 0.46 0.50
metro = 1if farm is located in metro county 0.41 0.49
direct direct payments received in dollar 14238 43812
indirect indirect payments received in dollar 1258 11054
crp CRP payments received in dollar 1.02 7.82
wlcp WLCP payments received in dollar 0.80 7.46
govpay = 1 if farm receives any government payments 0.52 0.50
HEART = 1 if farm located in the Heartland region 012 033
NORTHC =1 if farm located in the Northern Crescent region 011  0.31
NORTHGP =1 if farm located in the Northern Great Plains region 005 023
PGATE = 1 if farm located in Prairie Gateway region 012  0.32
EUPLAND =1 if farm located in Eastern Upland region 010  0.30
SSBOARD =1 if farm located in Southern Sea Board region 016  0.37
FRIM = 1 if farm located in Fruitful Rim region 020 040
BASINR =1 iffarm located in Basin and Range region 0.06  0.24
MPORTAL =1 if farm located in Mississippi Portal region 0.07 0.26

Observations =4676

Source: Agricultural Resource Management Survey, 2006




Table 2: First State Tobit Estimates of Off-Farm Labor Supply by Operators and Spouses

Operator Spouses
Variables Coefficient P-value Variables Coefficient P-value

constant -103.0257 0.000 constant -88.40325 0.000
op_educ 2.082749 0.000 sp_educ 4.388557 0.000
opage 3.730851 0.000 spage 3.178093 0.000
opage2 -0.043907 0.000 spage2 -0.0428509 0.000
acres -0.0007988 0.010 acres -0.000806 0.000
acres2/1000 0.0000075 0.000 acres2/1000 0.0000033 0.042
dta 0.5896203 0.025 dta 0.0029975 0.989
netw -0.000004 0.000 netw -0.000006 0.000
fowner 8.647161 0.000 fowner -2.242776 0.059
ftenant -10.31768 0.000 ftenant -2.465392 0.171
hhé6 1.141448 0.480 hhé6 -7.730682 0.000
hh7_13 -1.810035 0.118  hh7_13 -4.727877 0.000
hh14 17 0.1782719 0.891 : hh14_17 -1.334393 0.169
urban 5.589422 0.015 urban -2.777317 0.092
metro 3.491241 0.139 metro -6.129276 0.000
direct -0.0002973 0.000 direct -0.0000714 0.000
indirect -0.000634 0.000 indirect 0.0000361 0.460
crp 0.4317853 0.000 crp 0.025968 0.789
wlcp -0.1941671 0.170 wlcp -0.1744061 0.058
Observations 4715 Observations 4676
Log-Likelihood -10010.733 | Log-Likelihood -12622.118
LR(chi18) 906.76 LR(chi18) 1132.66
Prob>chi 0.00 Prob>chi 0.00




Table 3: Parameter Estimates from Bivaraite Probit Model

Precision Farming GM Crops _
Variable Coefficient P-value Coefficient P-value

ools_hat -0.0021 0.134 -0.0039 0.006
sols_hat -0.0023 0.322 0.0017 0.458
opage 0.0547 0.003 -0.0013 0.942
opage?2 -0.0005 0.003 -0.0001 0.669
op_educ 0.0548 0.000 -0.0446 0.005
oeduc_acl -0.0221 0.002 -0.0398 0.000
oeduc_ac2 -0.0213 0.002 -0.0179 0.012
oeduc_ac4 0.0105 0.063 0.0135 0.018
oeduc_ac5 0.0249 0.000 0.0244 0.001
acres -0.000005 0.330 -0.00005 0.001
netw -0.000000004 0.547 Not Included
interest 0.0719 0.000 Not Included

risk 2.4983 0.002 2.9186 0.002
fowner -0.1794 0.008 -0.5295 0.000
ftenant 0.1010 0.203 -0.0155 0.842
internet 0.2697 0.000 Not Included
govpay 0.1330 0.037 1.1874 0.000
heart 0.2187 0.070 0.2722 0.005
northc 0.4482 0.000 -0.1335 0.209
northgp -0.1030 0.474 -1.2145 0.000
pgate 0.0695 0.574 -0.8054 0.000
eupland 0.1390 0.305 -0.8828 0.000
ssboard 0.2599 0.029 -0.4627 0.000
frim 0.4692 0.000 -1.4238 0.000
basinr 0.1887 0.190 -1.4372 0.000
_cons -3.8685 0.000 -0.2357 0.645
Log pseudolikelihood =-3040.0852 Wald Testof p =0
Wald chi2(47) =1347.38 chi2(1) = 14.0663

Prob>chi2 = 0.0000 Prob > chi2 = 0.0000




Table 4: Marginal Effects on Probability of Adoption

Precision Farming GM Crops
variable dy/dx P>z ‘ dy/dx P>z Mean
ools_hat -0.0004 0.135 -0.0006 0.007 -16.06
sols_hat -0.0004 0.322 0.0002 0.459 2.13
opage 0.0096 0.003 -0.0002 0.942 56.01
opage?2 -0.0001 0.003 0.0000 0.669 3285.87
op_educ 0.0096 0.000 -0.0063 0.006 13.57
oeduc*acl -0.0039 0.002 -0.0057 0.000 2.75
oeduc*ac2 -0.0038 0.002 -0.0025 0.012 2.61
oeduc*ac4 0.0018 0.063 0.0019 0.019 2.77
oeduc*ac5 0.0044 0.000 0.0035 0.001 2.81
acres 0.0000 0.330 0.0000 0.001 1378.98
netw 0.0000 0.603 Not Included 1700000
interest 0.0126 0.000 Not Included 1.31731
risk 0.4396 0.002 0.4147 0.003 0.01
fowner* -0.0312 0.007 -0.0732 0.000 0.45
ftenant* 0.0187 0.225 -0.0022 0.841 0.11
internet* 0.0435 0.000 Not Included 0.751872
govpay* 0.0233 0.036 0.1705 0.000 0.53
heart* 0.0426 0.099 0.0446 0.014 0.13
northc* 0.0971 0.003 -0.0176 0.178 0.11
northgp* -0.0171 0.447 -0.0806 0.000 0.06
pgate* 0.0126 0.586 -0.0741 0.000 0.12
eupland* 0.0262 0.337 -0.0764 0.000 0.10
ssboard* 0.0510 0.048 -0.0526 0.000 0.16
frim* 0.0991 0.001 -0.1147 0.000 0.18
basinr* 0.0368 0.233 -0.0857 0.000 0.06

* dy/dx is for discrete change of dummy variable from 0 to 1



Table 5: Marginal Effects of Interaction between Education and Farm Size

Version 1: Interaction between Educatin and Farm Income

Version 1a: GM Corn and Soybeans

Version 1a: GM Corn, Soybeans and Cotton

Precision Farming GMCrops | Precision Farming GM Crops
Variable dy/dx p-value = dy/dx  p-value dy/dx p-value dy/dx p-value
oeduc*fil -0.007 0.000 -0.004 0.001 -0.007 0.000 -0.004 0.001
oeduc*fi2 -0.003 0.005 -0.001 0.187 -0.003 0.005 -0.001 0.180
op_educ 0.005 0.039 -0.006 0.005 0.005 0.043 -0.006 0.018
oeduc*fi4 0.005 0.000 0.002 0.034 0.005 0.000 0.002 0.004
oeduc*fi5 0.008 0.000 0.000 0.727 0.008 0.000 0.002 0.053

Version 2: Interaction between Educatin and Total Acres

Version 2a: GM Corn and Soybeans

Version 2b: GM Corn, Soybeans and Cotton

Precision Farming GM Crops GM Crops
Variable dy/dx p-value : dy/dx  p-value dy/dx p-value
oeduc*acl -0.004 0.00 -0.005 0.00 -0.006 0.000
oeduc*ac2 -0.004 0.00 -0.003 0.01 -0.003 0.012
op_educ 0.010 0.00 -0.007 0.00 -0.006 0.006
oeduc*ac4 0.002 0.06 0.001 0.09 0.002 0.019
oeduc*ac5 0.004 0.00 0.002 0.02 0.003 0.001
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