Assessing the Impact of Cap-and-Trade Climate Legislation on Agriculture in the Northern Plains: A Policy Simulation with Farmer Preference and Adaption

Yong Jiang and Won Koo

Center for Agricultural Policy and Trade Studies
Dept. of Agribusiness and Applied Economics
North Dakota State University, Fargo, ND 58103
Phone: (701)231-7451, Email: yong.jiang@ndsu.edu

Copyright 2010 by Yong Jiang and Won Koo. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies.
Assessing the Impact of Cap-and-Trade Climate Legislation on Agriculture in the Northern Plains: A Policy Simulation with Farmer Preference and Adaption

Yong Jiang and Won Koo, Center for Agricultural Policy and Trade Studies
North Dakota State University, Fargo, ND 58103
Phone: (701)231-7451, Email: yong.jiang@ndsu.edu

Research Objective
- Investigate farmer preference to carbon sequestration potential under cap-and-trade.
- Examine the production cost impact of carbon pricing due to cap-and-trade.
- Simulate acreage enrollment in carbon sequestration, carbon supply, and the impact of cap-and-trade on farm income and its distributional effect.

Policy Background and Motivation
- Co-existence of both opportunity and challenge for agriculture.
- Divided view and debate on the net impact of cap-and-trade on farm income.

Research Challenges and Issues
- Farmer production behavior
 Farmers might not be willing to tradeoff the potential revenue from carbon sequestration with restrictions on production management over a 5 year period and transaction costs.
- Farmer capacity of adaption
 While cap-and-trade can increase prices for energy-intensive inputs, farmers may adjust production practice to mitigate the production cost impact.
- Heterogeneity in farmer and distribution effect of cap-and-trade
 Some farmers may gain and others may lose, depending on farming attributes.

Methodology
- Approach:
 - benefit-cost analysis
 - stated preference approach
 - reduced production cost function
 - statistical simulation
- Modeling tool: Matlab programming

Farmer Preference to Carbon Sequestration Survey

Survey Design:
- Structure of survey questionnaire: preference to participate in carbon sequestration, socio-economic background and attitude to climate legislation, and current production practice.
- Versions of survey questionnaire: 6 different versions corresponding to 6 levels of carbon prices ranging from $5 to $70 per metric ton.
- Sample sizes: 500 for each version
- Survey administration: a random sample of 3000 farmers in the USDA ND Agricultural Statistic Service database selected

Survey Result:
- No. of usable returned survey = 281
- farmer distributions by attributes between participation and not participation

Farmer Behavior Model

Preference to Carbon Sequestration
- Assumption: farmers tend to maximize their profits
- Derived Kuhn-Tucker condition: farmers would participate in carbon sequestration only if the benefit is greater than farmer perceived costs.
- Empirical Specification:
 Probability (carbon sequestration) = binomial logit
- Data for Empirical Estimation: farmer stated preference survey

Adaption to Manage Production Cost
- Economic Production Theory:
 - Production cost function: production cost is a function of output quantity and input prices.
 - Farmer adaption: profit-maximizing farmers will adjust production to reduce their production costs as relative input prices change.
- Hypothesis:
 - Variable production costs are an implicit function of energy prices (given that agriculture production is energy intensive in terms of input).
 - Variable production costs are a non-linear function of energy prices (due to farmer adaption).
- Empirical Specification: Variable production costs per unit land are a quadratic function of energy prices.
- Data for Empirical Estimation: state level variable production costs, acreage of cropland in active production, and energy prices (1945-2008).

Simulated Agricultural Impact of Cap-and-Trade Climate Legislation

Some Caveats
- The study did not consider the effects of higher commodity prices and increased demand for bio-energy feedstock.
- Simulated ex ante carbon revenue based on farmer stated preference might underestimate ex post actual carbon revenue after cap-and-trade climate legislation becomes effective.
- Production cost impact of cap-and-trade might be underestimated as well since the effect of GHG emission regulation on prices for non-energy intensive input was not considered.