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Multi-Period Asset Allocation:  An Application of Discrete Stochastic Programming 
 

Abstract 

 The issue of modeling farm financial decisions in a dynamic framework is addressed in 

this paper.  Discrete stochastic programming is used to model the farm portfolio over the 

planning period.  One of the main issues of discrete stochastic programming is representing the 

uncertainty of the data.  The development of financial scenario generation routines provides a 

method to model the stochastic nature of the model.  In this paper, two approaches are presented 

for generating scenarios for a farm portfolio problem.  The approaches are based on copulas and 

optimization.  The copula method provides an alternative to the multivariate normal assumption.  

The optimization method generates a number of discrete outcomes which satisfy specified 

statistical properties by solving a non-linear optimization model.  The application of these 

different scenario generation methods is then applied to the topic of geographical diversification.  

The scenarios model the stochastic nature of crop returns and land prices in three separate 

geographic regions.   The results indicate that the optimal diversification strategy is sensitive to 

both scenario generation method and initial acreage assumptions.  The optimal diversification 

results are presented using both scenario generation methods.    



MULTI-PERIOD ASSET ALLOCATION: AN  

APPLICATION OF DISCRETE STOCHASTIC PROGRAMMING  

Introduction 

One of the keys to long term success in the food and agribusiness sector is effective asset 

allocation.   Farmers must efficiently allocate their assets including cash, land, equipment and 

labor over multiple enterprises.   The diversification of these assets provides a key risk 

management strategy to handle production risks (Blank, 1990;  Harwood, et al., 1999).  The 

problem faced by many agricultural producers is that a myopic approach such as the standard 

single period portfolio optimization as proposed by Markowitz and used by many of researchers 

is often not adequate in the planning process (Lohano and King, 2009). Instead, large capital 

investments in land and machinery require that producers formulate strategies for multiple 

periods (Kennedy, 1986;  Kim and Omberg, 1996). 

The development of discrete stochastic optimization routines provided a method to 

analyze these dynamic problems (Cocks, 1968).  The concept was adopted by agricultural 

economists who began analyzing multi-period problems in agriculture and particularly began 

introducing risk into the models (Brink and McCarl, 1978;  Rae, 1971).  The discrete stochastic 

modeling approach provided a strong tool for economists but lack of computational power turned 

out to be a large barrier to continuing advances of research in this area.   

As a result of limited computational power, the discrete stochastic programming has had 

a limited number of applications in agricultural economics (Featherstone, Preckel, and Baker, 

1990;  Lambert and McCarl, 1989;  Leatham and Baker, 1988).  Part of the reason for this lack of 

applications is the difficulty of handling uncertainty.  Stochastic programming assumes that 

random variables follow a given distributional form.  This in itself implies that the researcher can 

accurately estimate this distribution.  Price and yield distributions have also been the topic of 



research (Buccola, 1986;  Featherstone and Kastens, 2000;  Goodwin and Ker, 2002;  Goodwin 

and Ker, 1998;  Just and Weninger, 1999;  Ker and Coble, 2003;  Preckel and DeVuyst, 1992).  

Furthermore, the computational complexity of resulting problems requires discrete representation 

of the random variables to serve as a proxy for the continuous distribution.  It is vital that the 

discrete representation accurately depicts the statistical characteristics of the continuous 

distribution (Pflug, 2001).   

Discrete stochastic programming models assume that all random variables have only a 

finite number of possible realizations so that any possible state of the world over a finite horizon 

can be represented as an endpoint of an event tree. In the case of a farm portfolio optimization, 

the random parameters may include yields, commodity prices, land prices, and interest rates. The 

quality of results that are produced by the discrete stochastic model depends heavily on the 

quality of the generated scenarios (Topaloglou, Vladimirou, and Zenios, 2008).  The construction 

of these scenarios are done via scenario tree structure that are commonly seen in stochastic 

programming. Several different methods have been proposed to generate scenarios.  Some of the 

common techniques used are time series econometric techniques, random sampling, 

bootstrapping, and moment matching techniques (Kaut and Wallace, 2007).  More recently, 

neural networks and copulas have begun to be used to generate scenarios (Kaut and Wallace, 

2009).  Each one of these modeling techniques has its strengths and weaknesses.   

The topic of scenario generation for multi-period stochastic programming has not been 

addressed in the agricultural economics literature.  Thus, the main objective of this paper is to 

evaluate current scenario generation techniques and apply a new one using copulas.  Copulas 

model marginal distributions of the random variable separately and still maintain the shape of the 

multivariate distribution.  The concept of using copulas to model scenarios has been applied to a 



single period setting but not to a multi-period application (Kaut and Wallace, 2009).  This 

research provides an opportunity to extend the current research on scenario generation by using 

copulas in the multi-period setting.  

This scenario generation application is applied to the topic of geographical 

diversification.  A discrete multi-period stochastic program is formulated to optimize a farmer’s 

portfolio, where the portfolio is the acreage allocations between three distinct geographic areas.  

The farmer has the ability to allocate wheat production acreage over three dry land production 

regions, Montana, Colorado, and Texas.  The portfolio allocation decisions take place at discrete 

time points (every two years).  At these discrete points the farmer evaluates the previous period's 

market conditions and the composition of the enterprise diversification.  At the same time, the 

farmer evaluates future conditions such as expected future yields and prices.  All this information 

is then used by the farmer to reallocate or adjust the allocation of farmland in the three different 

regions. This may involve increased short term or long term borrowing because of increased 

operating expenses, machinery purchases, and land purchases.  This same decision process 

happens annually for a discrete number of years. 

The results of the discrete multi-period stochastic optimization are presented.  The 

optimization algorithm consists of maximizing expected utility of wealth by allocating acreage 

levels in the three different regions.  A dynamic analysis of the optimal acreage allocations over 

time is estimated, as well as, how these allocations change with different levels of risk aversion.   

The use of copulas to generate the scenarios used in the discrete multi-period program provides a 

foundation for expanding the standard scenario generation methods to multiple risk factors and 

multi-periods.  The use of copulas to generate the scenarios is compared with moment matching 

scenario generation using sequential optimization.  The effectiveness of the copula scenario 



generation technique is analyzed by comparing it to the moment matching technique.   This 

modeling technique also provides a framework to analyze other farm financial decisions, farm 

growth decisions, and even could be applied to loan portfolios from a lender's perspective. 

Agriculture is a natural application of sequential decision problems.  The current 

decisions that producers make have implications on future actions.  Agricultural economists have 

employed discrete stochastic programming (dsp) as the tool to work with these problems.  One of 

the first applications and one of the seminal articles dealing with dsp and agriculture was done by 

Rae (1971).  Rae published two articles concerning the application of discrete stochastic 

programming in agriculture.  In his first article, he examined a three-stage fresh vegetable 

operation.  The states were defined both by predefined weather conditions and crop prices.  He 

noted that one of the inherit weaknesses with the application was the lack of more states.  The 

argument against more states was based on the “curse of dimensionality”.  There is a tradeoff of 

complexity and solvability when using dynamic programs.   

 In that same year, Rae (1971) published his second paper on discrete stochastic 

programming.  This one dwelt with viewing the problem using Bayesian decision theory.  He 

also investigated the use of alternative utility functions within the objective function.  Rae (1971) 

concluded that the ability of discrete stochastic programming to handle alternative utility 

functions makes itself a useful tool when studying sequential decision problems in agriculture.  

 Discrete stochastic programming has been used to model multi-period wheat marketing 

(Lambert and McCarl, 1989), fixed versus adjustable rate loans (Leatham and Baker, 1988), and 

capital structure (Featherstone, Preckel, and Baker, 1990). In finance research, discrete stochastic 

programming is now used to model asset allocation and for portfolio optimization routines 

(Infanger, 2006;  Mulvey and Shetty, 2004).    



One of the key features of a dsp model is that the parameters describing an optimum 

decision are defined as random variables.  Extending a stochastic program to multiple stages 

requires that the parameter behavior over time be described accurately (Kaut and Wallace, 2007).  

In continuous time, the randomness of the parameters could be modeled using stochastic 

processes. The standard way of representing this stochastic process is by first defining a finite 

time horizon, t = 1,….,T, and a probability space �Ω, ℑ, Ρ� ;  within the defined probability space,  

where Ω is the sample space,  ℑ is defined as the σ-field, and P is defined as a finite set of 

probabilities.  The random variable is defined by the function �.  The sequence of 

���	�, �
�	�, … , ���	� for a given 	 ∈ Ω  is the sample path.   

Discrete stochastic programming requires that these uncertain parameters are estimated 

by a finite number of realizations.  Given these realizations, a scenario can then be defined as a 

possible realization of the underlying stochastic process.  It is assumed that the probability 

distribution of � is discrete with a finite number of realizations �� .  The probability of each 

realization can then be defined as 

�� = ����� ��� � = 1, … , �, �ℎ��� � ≥ 0 ��  ! �� = 1.
#

�$�
 

 For discrete multi-stage stochastic programming, it is assumed that the random vector follows a 

stochastic process over the planning horizon of the model.  Given that the process is assumed to 

be discrete with probability �����, the uncertainty of the model parameters can be represented 

through a multilevel scenario tree.  This scenario tree defines the possible sequences of 

realizations of the data paths.  

A scenario tree is shown in figure 1.  A scenario tree is defined by its nodes, and 

branches.  The nodes represent the states of nature at a specific point in time.  Within the 



scenario tree there are three different types of nodes.  The root node represents the initial period 

or 'today' and is immediately observable from deterministic data.   There is only one root node 

per scenario tree.  Leaf nodes are the final nodes in the scenario tree.  These nodes do not have 

any successors that follow them.  In between the root and leaf nodes are the intermediate nodes.  

In this case, decisions will be made at the root and intermediate nodes.  Each branch of the tree 

represents a possible value of the random variable.  An ideal scenario tree would represent the 

whole universe of possible outcomes of the random variables which would include optimistic 

and pessimistic projections.  Though similar in construction, a scenario tree is different from a 

decision tree by the fact that a decision tree branches on both decisions and events, the scenario 

tree only branches for events.   

This type of asset allocation model can be viewed a multi-period dynamic decision 

problem.  The decisions take place at discrete time points.  At each decision point the farmer has 

to evaluate the previous period’s market conditions and the composition of the enterprise 

diversification.  At the same time, the farmer must evaluate future conditions such as future 

yields and prices.  All this information is then used by the farmer to reallocate or adjust how the 

land is allocated in three regions.  This could involve increased short term or long term 

borrowing because of increased operating expenses, machinery purchases, and land purchases.  

This same decision process continues through the time periods of the model.   

At the beginning of each decision period, the farm manager is faced with many difficult 

decisions.  Once a farmer makes a decision on land or crop allocation, it is often very costly and 

difficult to rearrange the land allocation.  Some of those decisions are the levels of investment in 

farmland, capital purchases such as machinery to service new crops or acreage, and debt 

financing on farmland and capital.  These decisions are not limited to one decision period but 



will be made over a finite horizon time period.  Adding more difficulty to this decision process is 

the fact that these allocation decisions are based on the realization of uncertain events. Because 

of this uncertainty, the farm manager’s objective in making these decisions is to maximize 

expected utility subject to land and capital constraints.  Specifically, for this problem, the farm 

manager is seeking to maximize the expected utility of terminal net wealth.  This model 

specification follows the specification developed by Lohano and King (2009) a dynamic 

programming model.  Formally, this problem can be specified as: 

max()*,+,+-.
/ 0123�4��5                                                                    (1) 

Subject to 

  67,8,9 = :1 + :�67,8<�,9<� + =�,7,8,9                                                (2) 

�7,8,9 = >1 + >��7,8<�,9<� + >
67,8<�,9<� + =
7,8,9                          (3) 

?7,8,9 = ?7,8<�,9<� + @7,8<�,9<�                                                        (4)  

AB8,9 = �B8,9 + �1 −  B� ∗ AB8<�,9<�                                         (5)  

�B8,9 ≥ ∑ F?7,8,9 + @7,8,9G − �1 −  B� ∗ AB8<�,9<�H7$1                   (6) 

I8,9 = J ∗ �B8,9 + �1 −  B� ∗ I8,9<�                                           (7) 

49 = �1 + ��2A9 − K?95 + 69?9 + ��9 + J − LKM�?9                    (8) 

@7,9 ∈ N7,9                                                                       (9) 

for t = 0, 1, 2, ….., T, and (R0, P0, L0, W0) are given 

where 

� = O�P Q� R49 − ∑ SF�88,9<� + J + LKG@7,88,9<� − K?7,88,9TH7$U V < 0 
�X �Lℎ���QY�                                                                                            Z    (10) 

LK = [ LK\ Q� @7,9 > 0
−LKM �Lℎ���QY�Z                                                                            (11) 



and the variables and parameters of the model are defined in Table 1. Equation (1) specifies the 

objective function of this model.  The objective of this model is to maximize the expected utility 

of terminal wealth.  Maximization of terminal net wealth is used because of the difficulty of 

implementing an additive utility function (Featherstone, Preckel, and Baker, 1990).  The use of 

maximizing terminal wealth has many advantages when developing a discrete stochastic 

program.  The main advantage is that there is no dependence on an additive utility function.  An 

additive utility function assumes that there is independence between periods.  In reality, the 

assumption of independence is often not the case, so terminal wealth will be used to avoid that 

problem.  In this case, terminal wealth will be defined by owner’s equity in the final period.  This 

definition of wealth will then be incorporated into the utility function to maximize utility of 

wealth.  A discussion on the appropriateness of functional form for the utility function has been 

provided by both Rae (1971) and Featherstone (1989).  The power utility function will be used 

and is defined as 

^��� = ��<_
1 − � 

                                                           (12) 
where � is defined as the Pratt-Arrow coefficient of relative risk aversion and w is the wealth of 

the individual.  Implicit in the definition of the power utility function is the assumption of 

constant relative risk aversion1.  If � is greater than zero, the preferences are risk averse.  If � is 

equal to zero, then the utility function will exhibit risk neutral preferences.  Absolute risk 

aversion is 
_
`  and relative risk aversion is simply r.  When r is equal to zero, the utility function 

                                                 
1 Constant relative risk aversion is shown in the following manner 

^��� = ��<_
1 − � 

^′��� = �<_ ^′′��� = −��<_<� 
 
 
 



takes the form of U(w) = w.  Thus, when there are risk neutral preferences, the objective function 

is simply owner’s equity.   One of the main problems with the power utility function is that it is 

not defined for negative wealth.  Some authors have overcome this weakness using Taylor’s 

series expansion (Featherstone, Preckel, and Baker, 1990).  This model will rely on the utility 

model specification provided by Lohano and King (2009).  Lohano and King specified the utility 

function in two ways to account for negative wealth.  The two specifications are 

4ℎ�� � > 0:   3�4� = O^�4�         Q� 4 ≥ c
d�P�

P 4     Q� 4 ≤ c Z                      (13) 

where U(W) is the utility function specified in equation (12) and b > 0.  Under this specification, 

the utility function is defined for all levels of wealth and is a continuous function.   

Equations (2) and (3) model the stochastic processes for the two stochastic variables in 

the model:  gross return for dry land wheat (Rt) and farmland price for the three regions (Pi,t).  It 

is assumed that both land prices and wheat returns follow an autoregressive process.  The land 

price specification differs from wheat returns in that it also depends on previous year returns.   

Further details on the estimation of these equations will be presented in the next section of the 

study.  Equation (4) models the land allocation.  The amount of land owned ?7,9  depends on the 

quantity of owned land from the previous period and the purchase or sale of land from the 

previous period @7,9<�. 

Each acre of land that the farmer owns must be serviced by a given level of machinery 

and equipment. Equations (5) through (7) describe the purchases of machinery and ensure that 

there are adequate machinery levels to service the production acreage. Equation (5) ensures that 

the acres with machinery (AB8,9) is equal to the acreage needing machinery (�B8,9) plus the 

acreage with machinery from the previous period (AI8<�,9<��.  The previous period acreage is 



assumed to lose productivity because of use.  This loss of productivity is represented by the 

parameter �1 −  B�.  

Equation (6) constrains the acreage needing machinery ��B8,9�  to be greater than or 

equal to the current acreage level F∑ F?7,8,9GH7$1 G less the depreciated machinery from the previous 

period �1 −  B� ∗ AB8<�,9<�.  Equation (7) transfers the value of machinery from year to year.  

It is assumed that there is a fixed value of machinery that is needed to farm each acre of land.  

This assumption has been relied on for other dynamic modeling applications (Featherstone et al., 

1990, Lohano and King, 2009). This level of machinery and equipment required on a per acre 

basis is given by the parameter J. It is assumed that J is fixed and will not change based on 

acreage levels.  

One of the keys in formulating this dynamic problem is the specification of net wealth.  

Formally, the dynamics are described in equation (8).  Net wealth itself is defined by 

48,9 ≡ A8,9 + ∑ F�7,8,9 + J − LKMG?7,8,9H7$1  - g�cL8,9                       (14) 

where  A8,9 represents the net cash balance at state j and time t.  The net sale of farmland and 

machinery is represented by  ∑ F�7,8,9 + J − LKMG?7,8,9H7$1  .  The term �7,8,9 represents the price of 

land at node j and time t for region i. The parameter LKM represents the transaction costs 

associated with selling land and equipment.  The wealth formulation also has to account for the 

debt level carried at each period and node.  The term debt g�cL8,9 captures the actual debt level 

carried at each node. The level of debt is calculated as    

g�cL8,9 = ∑ F�7,8<�,9<� + J + LKG@7,8<�,9<� + g�cL8<�,9<�H7$1                             (15) 

where the terms within the parentheses SF�7,8<�,9<� + J + LKG@7,8<�,9<�T captures debt incurred 

because of  land and machinery purchases in the current period and the debt from the previous 



period is captured by �g�cL8<�,9<�� .  To be consistent with the dynamic formulation, the 

dynamics of the cash balance are specified as 

  A8,9 = �1 + ��hA8<�,9<� − ∑ FK?7,8,9G − K�� − �P ∗ g�cL8<�,9<�H7$U i + ∑ 67,8,9?7,8,9H7$1           (16) 

Current net cash balance is calculated as previous year’s net cash balance (A8<�,9<�) less current 

year’s cash allocated for production expensesFK?7,8,9G , consumption �K���, and interest paid on 

debt F�P ∗ g�cL8<�,9<�G,  plus the gross revenue from production F∑ 67,8,9?7,8,9H7$1 G. The 

parameter �K��� represents the annual cash withdrawals. It is fixed and does not change with 

wealth level. Current cash balance is represented by A8,9.  Net cash balance is not constrained to 

positive values, it can also be negative.  If net cash balance is negative (equation (15)), the 

farmer must use short term debt and thus interest must be paid on the debt (rb) (see equation 

(10)).  If net cash balance is positive, the farmer can invest the money in a relatively risk free 

investment.  This cash can then be earning interest at the risk free rate (rl).  The cash balance in 

time period t is thus equal to the sum of:  net cash balance in time period t multiplied by one plus 

interest rate r and revenue from crop production 67,8,9?7,8,9.   

A constraint on debt levels is also incorporated into the model.  This can also be viewed 

as a credit constraint (Barry, Baker, and Sanint, 1981).  This constraint aids in restricting 

purchases of land and equipment relative to the leverage ratio.  The leverage ratio is defined as  

j�k = B�@ [0, l<mn,+< opP9n,+l
∑ Fq*,n,+rs<9tuGv*,n,+w*-.

x                                     (17) 

where the numerator is the total debt which is a function of both debt from cash shortages (−A8,9) 

and debt from land and machinery purchases (g�cL8,9).  The denominator represents all of the 

farm assets.  The constraint takes the form of 

l<mn,+< opP9n,+l
∑ Fq*,n,+rs<9tuGv*,n,+w*-.

≤ y                                                         (18) 



where  y represents the maximum level of the leverage ratio which will range from 0 to 1.   

One of the key ingredients in an optimization problem is the constraint specification.  

This problem has the following constraints.  The first is a land constraint.  The land constraint is 

formulated so that it satisfies  ?7,8 ≤ ?7,8 ≤ ?7,8. The variable  ?7,8 represents the minimum 

amount of land the farmer requires in region i and ?7,8 represents the maximum of land the 

farmer can have in region i.  The next constraint is the liquidation constraint.  The purpose of this 

constraint is to handle the case of negative wealth.  In the case that wealth is negative, all land 

will be liquidated 

@7,8,9 = −?7,8,9       Q�  49 < 0.                                                       (19) 

The farmer also has the option of selling all land when wealth is positive as well.  One of the 

assumptions of this model is that when all the land is sold or liquidated, the farmer will not re-

enter into farming which is represented by 

@7,8,9 = −?7,8,9,          Lℎ�� @7,8,9r� = @7,8,9r
 = ⋯ = @7,8,� = 0.            (20) 

Data 

Stochastic equations for gross returns for dry land wheat (Ri,t) from each of the three 

production regions (Texas, Montana, and Colorado) and farmland price from each region (Pi,t) 

are estimated using time series data covering the years 1973-2008.  Gross returns are calculated 

for each region using county level yields and prices gathered from National Agricultural 

Statistics Service (USDA, 2008).  Farmland prices are gathered from two sources.  The farmland 

values for Montana and Colorado are gathered from Farm Real Estate Values (USDA, 2008) and 

Texas land values are from Real Estate Center at Texas A&M University (TAMU).  The time 

span covered for Texas and Montana was 1973-2008 while Colorado had limited data and only 

covered the time span of 1994-2008.   



The method to estimate the gross return equations for the three individual regions follows 

the Box-Jenkins methodology (Box and Jenkins, 1976).  The Box-Jenkins methodology consists 

of identifying the order of the autoregressive process, estimation of the model, and finally testing 

to ensure that the error terms are white noise.  Three separate equations are estimated for each 

region.  All three regions were identified with a first order autoregressive model, AR(1).  OLS 

was used to estimate each equation.  All three autoregressive terms were found to be significant 

(Table 2) but the explanatory power of the models is low.  For this reason, an AR(1) model will 

not be used to model the gross return equations.  It is assumed that the scenario generated gross 

returns are independent of the previous period returns. 

The purpose of this research is not to expand the literature surrounding the topic of land 

valuation.  This topic has been heavily researched (Chavas and Thomas, 1999;  Fontnouvelle and 

Lence, 2002).  For the purpose of this research, the farmland price equations will be based on the 

following specification  

�9 = >1 + >� �9<� + >
 69<� +=
9.                                      (21) 

After the first pass of estimations, it was found that the lagged values of gross returns (Rt-1) were 

not statistically significant, so the equation was re-estimated using the simple first order 

autoregressive AR(1) form with only lagged land prices and not lagged returns(Table 3).  All 

three AR(1) terms were found to be significant and the models illustrate that current land prices 

are explained by previous period land prices. 

Scenario Generation using Copulas 

The estimated models above give a starting point in generating the scenarios that are used 

to model the scenario tree.  For modeling purposes, the estimated coefficients are used as 

constants and use alternative methods in modeling the error terms from each model.  The 



simplest method is to assume independence and model each error term as normally distributed.  

An estimated correlation matrix shows that the error terms are not independent and this 

relationship must be taken into account (Table 4).  The standard method for accounting for the 

dependency of the variables is to use the estimated correlation.  The use of copulas allows the 

estimation of alternative dependency measures beyond linear correlation.  These are discussed 

below and are used to generate the alternative scenarios. 

Copulas provide a flexible method of separating the marginal distributions from the joint 

distribution.  This maintains the “shape” of the joint distribution.  The use of copulas has been 

used in finance, statistics, and recently in the agricultural economics literature (Bai and Sun, 

2007;  Clemen and Reilly, 1999;  Joe, 1997;  Patton, 2002;  Rank, 2000;  Trivedi and Zimmer, 

2005;  Vedenov, 2008;  Xu, 2005;  Zhu, Ghosh, and Goodwin, 2008).  Copulas are used to model 

multivariate distributions.  An extensive treatment of copulas can be found in numerous books 

and research articles (Patton, 2002).   

The origin of copulas can be traced back to the Sklar theorem (Sklar, 1959). The Sklar 

theorem allows one to construct joint distribution of several random variables based on their 

marginal distributions and a copula. By definition there are an infinite number of copula 

functions, therefore an infinite number of joint distributions that may be generated for given 

marginal distributions. Various copula families have been used in risk research (e.g. Gaussian, 

Archimedean, etc. (Hennessy and Lapan, 2002)). However, it is not the purpose of this research 

to investigate various copula functions. Instead, the Gaussian and t copula will be used to 

estimate alternative scenarios to be used in the optimization model. 



The Gaussian copula is an extension of the multivariate normal distribution but it can be 

used to model multivariate data that may exhibit non-normal dependencies and fat tails. The 

Gaussian copula is formally defined as 

{�3�, … , 3H; Σ� = Φ#�Φ<��3��, … , Φ<��3H�; Σ� ,                       (22) 

where )(⋅Φ  is the cumulative distribution function of the standard normal distribution and Σ  is 

the variance-covariance matrix.  

In the two-dimensional case, the Gaussian copula density can be written as 

K�3, k� = �
��<�� �@� �SΦ�����T�rSΦ�����T�


 + 
�Φ�����Φ�����<SΦ�����T�<SΦ�����T�


��<��� � ,           (23)   

where ρ  is the linear correlation between the two variables and Φ�∙� is the cumulative density 

function of the standard normal distribution.  One of the useful features of the Gaussian copula is 

that it is parameterized by a single parameter (correlation coefficient) which can be estimated 

from historical data. 

 The copula based joint cdf is obtained by transforming the margins to standard uniform 

distribution.  One can view this joint cdf as the joint distribution stripped of all information about 

the margins.  The only thing remaining is the information about the multivariate structure.  

Therefore, copulas enable the decoupling of the marginal distributions from the multivariate 

structure.  This gives the modeler much more flexibility in modeling multivariate relationships.    

In this study, the marginal distributions are modeled using an empirical distribution.  This does 

not enforce any assumed distributional form on the margins.  The copula will then be modeled 

using the Gaussian copula.   

The copula based scenario generation consists of two parts.  The first part consists of 

creating the scenario copula.  This copula will be described in terms of the ranks of the margins.  

This will be accomplished by using the Gaussian copula.  The parameters for the copula will be 



estimated from the historical data.  The next step consists of generating the values of each 

margin.  This will be accomplished by using empirical cdf estimated in Matlab.  One of the 

benefits of using copulas is that the multivariate data can be simulated based on the estimated 

copula.  Two samples will be generated, one based on the multivariate normal distribution and 

one based on the Gaussian copula.  Using these random samples, values will be generated for 

each period based on the sample and the stochastic processes of the variables. 

The next step was to then discretize the outcomes for each period.  This was done using 

Gauss-Hermite multivariate quadrature2.  Essentially this method uses a specified number of 

nodes and weights to evaluate the specified function.  This method has been shown to be 

particularly useful for portfolio allocation problems (Judd, 1998 ) and for discretizing continuous 

data (Miranda and Fackler, 2002).  In addition, this method is also consistent with moment 

matching techniques, which ensures that the simulated scenarios are consistent with the original 

data.  The CompEcon Matlab toolbox (Miranda and Fackler, 2002) is used for this method.  At 

each time period, a specified number of nodes are used to estimate the branches on the scenario 

tree and its associated probability.  Five nodes are used for each decision period (every two 

years), with five total decision periods. This combination will lead to a total of 3,125 final 

scenarios and 3,905 nodes in the decision tree.   

Scenario Generation through Optimization 

 The scenario generation approach using optimization requires that the statistical 

properties of the random variables be specified.  The scenario tree is then constructed so that 

these pre-specified statistical properties are satisfied.  These properties are maintained by letting 

                                                 
2 Gauss-Hermite Quadrature is defined by 

� ��@��<)� @ = ! 	7��@7� + �! √�
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�2��!
H
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the stochastic variables and probabilities be decision variables in a non-linear optimization 

problem.  The objective function in the non-linear problem is to minimize the square distance 

between the specified statistical properties and the statistical properties of the scenario tree.  The 

non-linear problem is often not convex, which implies that the solution may be a local optimum.  

In many cases this is not satisfactory, but in the case of scenario generation, the local optimum is 

sufficient.   

 The advantage of using an optimization approach to generate the scenario tree is that any 

central moments and co-moments can be part of the statistical specifications of the distribution.  

The first four moments will be considered in this study.  The dependency between variables will 

be modeled using the covariance.  Let � = {1,2,...n} denote the set of random variables.  Let I7�, 

for k = 1, 2, 3, 4, be the first four central moments of the continuous distribution of random 

variable i.  The covariance between random variable  Q and j �such that Q, j ∈ � and Q < j� is 

denoted by {7X.Let �9 be the number of branches from a node at stage L = 1, … , � − 1.  The 

scenarios @78 for random variable Q ∈ � and probabilities �8 for � = 1, … , �9 of the continuous 

distribution are decision variables in the following non-linear optimization problem: 

min),\ ∑ ∑ �7��B7� − I7��
 + ∑ �7X�K7X − {7X�
7,X∈�,7�X��$�H7$�         (24) 

            Y. L.    ∑ �8 = 1,�+8$�                                                                              (25) 

B7� = ∑ @78�8 ,      Q ∈ �,�+8$�                                                                  (26) 

B7� = ∑ F@78 − B7�G��8 ,      Q ∈ �,   � = 2,3,4,�+8$�                               (27) 

K7X = ∑ F@78 − B7�GF@X8 − BX�G�8 ,      Q, j ∈ � ��  Q < j,�+8$�             (28) 

�8 ≥ 0,   � = 1, … , �9,                                                                      (29) 

 



where �7� are weights in which ��′  for �� = 1, … ,4� are the relative importance of the central 

moments and �7X′  for covariances of the random variables Q, j ∈ �.  The first constraint shows that 

the probabilities must sum to one at each branch.  The rest of the constraints are used to 

formulate the first four central moments and the covariance.  The last constraint is to ensure that 

probabilities are non-negative.   

 It is important to note that the estimated moments of the distributions are conditional on 

past history and are conditional on the associated path of the scenario tree.  This implies that the 

historical data is recalculated after each scenario estimation.   Thus the updated historical mean 

of each distribution contains both the historical observations and the new observations generated 

through the scenarios.   

Results 

The model was solved using various starting points and scenarios.  The model was first 

solved assuming that geographical diversification was not an option.  The production was 

constrained to the base region.  Next, the model was solved varying the base region.  The base 

region began with the most acres and could not drop below a specified level. The results of each 

will be discussed below. 

The certainty equivalents of wealth for each scenario generation method and each model 

scenario is shown in Table 7.  When production is limited to one region, as expected Montana 

has the highest wealth levels and Texas has the lowest wealth levels.  The results are consistent 

with the multivariate normal scenarios but not with the moment matching scenario generation 

method.  Colorado has the highest wealth level followed closely by Texas and then Montana.  

The higher levels of wealth for both Gaussian and multivariate normal methods could represent 

the inability of both methods to capture the higher moments of the historical distributions.   The 



wealth levels when allowing for geographical diversification are also shown in Table 7.  The 

results indicate an interest point.  The incentive to diversify depends on both base region and 

scenario generation method.  Diversification decreased wealth levels when Texas is the base 

region under both Gaussian and multivariate normal methods but gains wealth under the moment 

matching scenarios.  Diversification increased wealth levels for Montana and Colorado for all 

scenario generation methods.   

 The results for the optimal acreage allocations when production is limited to Texas is 

shown in Table 8.  The assumption is that the farmer begins with 3,000 acres and has the 

opportunity to expand acreage to 10,000 acres.  In all three scenario methods, the farmer expands 

slowly for the first three periods.  The farmer then reduces acreage in the final two periods.  It is 

important to remember that these are mean allocations.  The maximum and minimum allocations 

are shown in Table 8.  The standard deviation of the acreage allocations are also shown in Table 

8.  The Gaussian method has the smallest standard deviations.  The multivariate normal method 

has the highest standard deviations.     

 The results for the optimal acreage allocations when production is limited to Colorado is 

shown in Table 9.  Unlike Texas, there is a difference between the scenario methods.  The farmer 

increases acreage slowly and maintain acreage levels over the planning period for both Gaussian 

and moment matching methods.  The same behavior is not seen with the multivariate normal 

method.  The farmer increases acreage slightly over the first two periods but then reduce acreage 

levels over the subsequent periods.  As was seen with Texas, multivariate normal scenarios have 

the highest standard deviations.  The moment matching method had lower standard deviations 

than the Gaussian method in periods two and three but higher standard deviations for periods 

four and five. 



 The results for acreage allocations in Montana produce different results than both 

Colorado and Texas.  The results are found in Table 10.  The farmer increases acreage slowly 

over the planning period for the Gaussian and multivariate normal scenario methods.  For the 

moment matching method, the acreage increases slightly for the first three periods but then the 

acreage decreases over the last two periods  

 The results of the optimal acreage allocation based on the assumption that the farmer is 

based in Texas and has the opportunity to acquire land for production in Montana and Colorado 

is shown in Table 10.  This means that the majority of the initial acreage allocation is in Texas 

and that the farmer will maintain a given level of acreage in the base region.  The farmer 

purchases land in Montana and sell land in Texas at the beginning of the planning period under 

the Gaussian and multivariate normal scenarios.  The farmer maintains the same acreage level in 

Texas over the rest of the planning period.  The Montana acreage will remain relatively constant 

until period four when the acreage will be sold and acreage will be purchased in Colorado.  

Under the moment matching scenarios, the farmer does not purchase land in Montana but 

increases acreage in Texas until period four when additional acreage is purchased in Colorado 

and acreage is sold in Texas.    

 The optimal acreage allocations when Colorado is the base region are shown in Table 12.  

This implies that the base acreage is now shifted to Colorado.  In this case, land will be 

purchased in Texas only under the moment matching scenarios.  Additional acreage is purchased 

in Montana under the Gaussian and multivariate normal scenarios but not the moment matching 

method.   The amount of acreage in Colorado is decreased at the beginning but then is increased 

in periods four and five for all three scenario methods.  These results illustrate the sensitivity of 



the results to the scenario generation method.  Montana and Texas allocations are the most 

influenced in all three base acreage location scenarios.   

 The results for the acreage allocations given that Montana is the base location is shown in 

Table 13.  Under both the Gaussian and multivariate normal scenarios, the amount of land in 

Texas is basically constant.  In periods four and five, acreage will shifted from Montana to 

Colorado for both scenarios.  Under the moment matching method, acreage is transferred to 

Texas from Montana in period one and then is transferred from Texas to Colorado in period 4.  

These results are consisted with the previous acreage allocations results. 

Conclusions 

 A multi-period discrete stochastic programming model was formulated to analyze 

geographical diversification.  Specifically, it analyzed whether a farmer would expand by buying 

more land locally or expand to other regions.  The production of dry land wheat consisted of 

three different regions: Texas, Colorado, and Montana.  The objective function consisted of 

maximizing terminal net wealth.  The model analyzed the decision of how a farmer would 

allocate land to different production regions.  Land is one of the most important resources a 

farmer has.  Land traditionally composes a large share of the farmer’s balance sheet.  It is the 

base for loan collateral and future wealth.  Not only is it important to consider the revenue stream 

from production on the land but also returns from land appreciation.  The inclusion of both 

aspects is critical to effectively model geographical diversification decisions.  

Discrete stochastic programming models both land prices and production revenue in a 

dynamic setting. As a farmer looks to make large investments in land and machinery, it is 

important to consider the results of the investment over multiple periods and not just look at the 

single period consequences.  Discrete stochastic programming breaks away from the single 



period methodology of the traditional portfolio optimization and analyzes the optimal 

investments in a dynamic setting.   

This research looked at three different methods to handle the joint distributions of the 

random variables.  The random variables were modeled using a multi-variate normal distribution, 

Gaussian copula, and moment matching methods.  The acreage allocation results illustrate the 

importance of properly specifying the distribution of the random variables used in the discrete 

stochastic program.  When the third and fourth moments of the historical distributions are taken 

into consideration, the acreage allocations to Texas and Montana are drastically different.  Under 

the moment matching method of scenario generation, the majority of land is allocated to Texas 

and Colorado, whereas under the other two methods, the majority of land is allocated to 

Colorado and Montana.  

In addition, the use of copulas provides an alternative method to estimate the dependence 

between the random variables.  The results from these joint distributions were then used as the 

stochastic inputs into the model.  Future work could look at alternative scenario generation 

methods beyond the two copulas used in this model and also additional methods to match the 

first four moments closer.  The inclusion of non-parametric copulas could overcome the 

limitation of the two parametric copulas used for this research.  In addition, future work could 

focus on new techniques that are being used to reduce the number of scenarios in the model.   

The results of this research also indicate that there are possible gains from geographical 

diversification.  Wealth levels are increased for all three regions when production is diversified 

over the different regions.  One important factor of geographic diversification is the additional 

costs incurred.  Future research could take into consideration not only the wealth benefits but 

also the additional management, transportation, and labor costs that may occur.   
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Table 1.  Variable and Parameter Descriptions 
Variable/Parameter Definition 
t Time index for the beginning of each year where t = 0,1,….,T 

Ri,j,t 
Gross return per acre from dry land wheat production in region i, state j, and 
year t 

Pi,j,,t Farmland price per acre for region i, state j, and in year t 
L i,j,t Farmland acreage owned by the farmer in region i, state j, and year t 
Pmj,,t Acreage needing machinery in state j and year t 
Amj,,t Acres with machinery in state j and year t 
M j,,t Value of machinery in dollars in state j and year t 

  Value of machinery and equipment required per acre of farmland 
dm Depreciation rate for machinery 
Wt Net wealth in year t 
xi,j,t Farmland acreage purchased or sold by the farmer in region i and year t 

tcp 
Total transaction costs per acre on purchasing farmland, machinery and 
equipment 

tcs Transaction costs per acre on selling farmland and equipment 
rb Interest rate on short term borrowing  
rl Interest rate on lending 
Εi,j,t Error term for region I, node j, and time t. 
  



 
Table 2. Estimation of gross return equation for three states:  Dependent variable Rt 
State Variable Coefficient Estimate Standard Error t-statistic 
 Constant 0.0653 0.0861 0.76 
Texas Rt-1 -0.4421**  0.1504 -2.94 
 ¢��£ 2=�95 = 0.2442, 6
 = 0.213, A �3YL�  6
 = 0.188 

Colorado 
Constant 2.4899 0.7361 3.38 
Rt-1 0.4614**  0.1598 2.89 ¢��£ 2=�95 = 0.0806, 6
 = 0.202, A �3YL�  6
 = 0.178 

Montana 
Constant 1.8796 0.7312 2.57 
Rt-1 0.6084**  0.1540 3.95 

¢��£ 2=�95 = 0.1337, 6
 = 0.321, A �3YL�  6
 = 0.301 
** Significant at 5% level. 
Note:  Refer to Table 1 for variable definitions. 
 
  



Table 3. Estimation of farmland price equation for each state:  Dependent variable Pt 
State Variable Coefficient Estimate Standard Error t-statistic 

Texas 
Constant -0.380 0.672 -0.57 
Pt-1 1.070**  0.113 9.42 

¢��£ 2=�95 = 0.155, 6
 = 0.73, A �3YL�  6
 = 0.72 

Colorado 
Constant -0.089 0.484 0.86 
Pt-1 1.022**  0.070 14.67 ¢��£ 2=�95 = 0.001, 6
 = 0.96, A �3YL�  6
 = 0.96 

Montana 
Constant 0.197 0.213 0.93 
Pt-1 0.979**  0.038 25.48 ¢��£ 2=�95 = 0.011, 6
 = 0.96, A �3YL�  6
 = 0.96 

** Significant at 5% level. 
 



Table 4.  Correlation Matrix of Land Price Error Terms and Gross Returns from Each 
Region 

Tx Land Price Co Land Price Mt Land Price 
Tx  

Returns 
Co  

Returns 
Mo  

Returns 
Mt Land Price 1.000 -0.123 0.796 -0.404 0.030 0.335 
Tx Land Price -0.123 1.000 -0.052 0.700 0.721 0.390 
Co Land Price 0.796 -0.052 1.000 -0.386 -0.111 0.076 
Tx Returns -0.404 0.700 -0.386 1.000 0.460 0.170 
Co Returns 0.030 0.721 -0.111 0.460 1.000 0.716 
Mt Returns 0.335 0.390 0.076 0.170 0.716 1.000 



 

Table 7.  Certainty Equivalents of Wealth (1,000s) 
Production in One Region 

Region Gaussian Scenarios MVN Scenarios Moment Matching 
Texas 968.64 972.79 880.24 
Colorado 1030.41 1065.09 887.59 
Montana 1138.10 1144.46 851.22 

Production in Multiple Regions 
Base Region  Gaussian Scenarios MVN Scenarios Moment Matching 
Texas 921.12 927.54 967.76 
Montana 1225.10 1228.13 951.46 
Colorado 1287.60 1309.35 1102.10 



Table 8.  Optimal Acreage with Land Only in Texas 
Mean Min Max SD 

Gaussian Copula Scenario Generation 
Period 0 3000 3000 3000 0 
Period 1 3316 3316 3316 0 
Period 2 3522 3518 3526 3 
Period 3 3702 3477 3740 65 
Period 4 3595 2612 3907 307 
Period 5 3498 2000 4091 583 

Multivariate Normal Scenario Generation 
Period 0 3000 3000 3000 0 
Period 1 3316 3316 3316 0 
Period 2 3520 3427 3611 66 
Period 3 3721 3529 3916 132 
Period 4 3442 2843 4060 456 
Period 5 3169 2000 4296 943 

Moment Matching Scenario Generation 
Period 0 3000 3000 3000 0 
Period 1 3316 3316 3316 0 
Period 2 3531 3527 3545 7 
Period 3 3697 3562 3839 114 
Period 4 3202 2649 4084 432 
Period 5 2799 2000 4355 934 



Table 9. Optimal Acreage with Land Only in Colorado 
Mean Min Max SD 

Gaussian Copula Scenario Generation 
Period 0 3000 3000 3000 0 
Period 1 3133 3133 3133 0 
Period 2 3265 3183 3336 56 
Period 3 3323 3116 3540 120 
Period 4 3285 2724 3557 150 
Period 5 3314 2000 3599 205 

Multivariate Normal Scenario Generation 
Period 0 3000 3000 3000 0 
Period 1 3156 3156 3156 0 
Period 2 3302 3262 3345 30 
Period 3 2884 2667 3543 327 
Period 4 2316 2000 3520 463 
Period 5 2256 2000 3499 397 

Moment Matching Scenario Generation 
Period 0 3000 2867 250 0 
Period 1 2867 2867 2867 0 
Period 2 3026 3021 3037 6 
Period 3 3221 3211 3244 9 
Period 4 3319 2619 3462 266 
Period 5 3417 2000 3685 555 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 10.  Optimal Acreage with Land Only in Montana 
Mean Min Max SD 

Gaussian Copula Scenario Generation 
Period 0 3000 3000 3000 0 
Period 1 3216 3216 3216 0 
Period 2 3462 3398 3532 47 
Period 3 3691 3556 3839 91 
Period 4 3896 3697 4138 126 
Period 5 4092 3842 4448 167 

Multivariate Normal Scenario Generation 
Period 0 3000 3000 3000 0 
Period 1 3312 3312 3312 0 
Period 2 3580 3500 3657 56 
Period 3 3842 3663 4024 118 
Period 4 3840 2958 4392 468 
Period 5 3834 2000 4758 928 

Moment Matching Scenario Generation 
Period 0 3000 3000 3000 0 
Period 1 2938 2938 2938 0 
Period 2 3313 3311 3320 3 
Period 3 3351 2837 3771 455 
Period 4 2729 2000 4306 784 
Period 5 2419 2000 4925 967 
 



Table 11.  Optimal Acreage Allocations Given Texas is Base Region 
Colorado Texas Montana 

Mean Min Max SD Mean Min Max SD Mean Min Max SD 
Gaussian Copula Scenario Generation 

Period 0 250 250 250 0 3000 3000 3000 0 250 250 250 0 
Period 1 250 250 250 0 2000 2000 2000 0 1505 1505 1505 0 
Period 2 250 250 250 0 2000 2000 2000 0 1764 1728 1799 26 
Period 3 250 250 250 0 2000 2000 2000 0 1964 1708 2083 103 
Period 4 1623 1401 1747 94 2000 2000 2000 0 250 250 250 0 
Period 5 1633 1517 1760 77 2000 2000 2000 0 250 250 250 0 

Multivariate Normal Scenario Generation 
Period 0 250 250 250 0 3000 3000 3000 0 250 250 250 0 
Period 1 250 250 250 0 2000 2000 2000 0 1552 1552 1552 0 
Period 2 250 250 250 0 2000 2000 2000 0 1813 1728 1894 59 
Period 3 250 250 250 0 2000 2000 2000 0 1944 1681 2256 171 
Period 4 1441 250 1922 496 2199 2000 3602 503 250 250 250 0 
Period 5 1635 1346 1904 171 2000 2000 2000 0 250 250 250 0 

Moment Matching Scenario Generation 
Period 0 250 250 250 0 3000 3000 3000 0 250 250 250 0 
Period 1 250 250 250 0 3316 3316 250 0 250 250 250 0 
Period 2 250 250 250 0 3582 3577 250 9 250 250 250 0 
Period 3 250 250 250 0 3901 3683 250 45 250 250 250 0 
Period 4 1564 250 1923 629 2085 2000 1923 264 428 250 2763 622 
Period 5 1687 250 2046 605 2000 2000 2046 0 250 250 250 0 



Table 12.  Optimal Acreage Allocations Given Colorado is Base Region 
Colorado Texas Montana 

Mean Min Max SD Mean Min Max SD Mean Min Max SD 
Gaussian Copula Scenario Generation 

Period 0 3000 2000 250 0 250 250 250 0 250 250 250 0 
Period 1 2000 2000 2000 0 250 250 250 0 1907 1907 1907 0 
Period 2 2000 2000 2000 0 250 250 250 0 2162 2084 2245 57 
Period 3 2000 2000 2000 0 415 250 2380 563 2187 250 2597 600 
Period 4 3518 2000 3956 506 331 250 2290 393 343 250 2692 410 
Period 5 3674 2000 4204 226 250 250 250 0 253 250 1922 67 

Multivariate Normal Scenario Generation 
Period 0 3000 2000 250 0 250 250 250 0 250 250 250 0 
Period 1 2000 2000 2000 0 250 250 250 0 2037 2037 2037 0 
Period 2 2000 2000 2000 0 250 250 250 0 2345 2321 2364 15 
Period 3 2000 2000 2000 0 269 250 517 59 2525 1878 2695 185 
Period 4 3209 2000 4102 686 350 250 2650 462 592 250 2528 717 
Period 5 3325 2000 4286 551 250 250 250 0 252 250 1560 52 

Moment Matching Scenario Generation 
Period 0 3000 2000 250 0 250 250 250 0 250 250 250 0 
Period 1 2000 2000 2000 0 2056 2056 2056 0 250 250 250 0 
Period 2 2000 2000 2000 0 2382 2378 2400 9 250 250 250 0 
Period 3 2000 2000 2000 0 2730 2719 2751 10 250 250 251 0 
Period 4 3335 2000 4060 793 667 250 2647 769 312 250 3318 361 
Period 5 3388 2000 4138 737 254 250 2446 88 250 250 250 0 



Table 13.  Optimal Acreage Allocation Given Montana is Base Region 
Colorado Texas Montana 

Mean Min Max SD Mean Min Max SD Mean Min Max SD 
Gaussian Copula Scenario Generation 

Period 0 250 250 250 0 250 250 250 0 3000 3000 3000 0 
Period 1 250 250 250 0 250 250 250 0 3208 3208 3208 0 
Period 2 250 250 250 0 250 250 250 0 3468 3398 3540 51 
Period 3 250 250 250 0 299 250 1336 213 3656 2147 3877 323 
Period 4 1356 250 1970 667 338 250 2124 361 2266 2000 4015 544 
Period 5 1681 250 2216 530 250 250 250 0 2000 2000 2000 0 

Multivariate Normal Scenario Generation 
Period 0 250 250 250 0 250 250 250 0 3000 3000 3000 0 
Period 1 250 250 250 0 250 250 250 0 3312 3312 3312 0 
Period 2 250 250 250 0 250 250 250 0 3612 3529 3690 58 
Period 3 250 250 250 0 258 250 452 40 3851 3532 4091 149 
Period 4 1490 250 2065 616 383 250 2362 460 2279 2000 4288 696 
Period 5 1902 250 2495 229 250 250 250 0 2007 2000 4263 122 

Moment Matching Scenario Generation 
Period 0 250 250 250 0 250 250 250 0 3000 3000 3000 0 
Period 1 250 250 250 0 1177 1177 1177 0 2000 2000 2000 0 
Period 2 250 250 250 0 1510 1508 1517 3 2000 2000 2000 0 
Period 3 250 250 250 0 1455 250 1865 681 2472 2000 3922 816 
Period 4 1547 250 1885 443 250 250 250 0 2361 2000 4494 647 
Period 5 2004 250 2208 460 250 250 250 0 2000 2000 2000 0 



Figure 1.  Scenario Tree 
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