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Multi-Period Asset Allocation: An Application of Discrete Stochastic Programming

Abstract

The issue of modeling farm financial decisiong idynamic framework is addressed in
this paper. Discrete stochastic programming isl isenodel the farm portfolio over the
planning period. One of the main issues of digcstbchastic programming is representing the
uncertainty of the data. The development of fina@rscenario generation routines provides a
method to model the stochastic nature of the mobtethis paper, two approaches are presented
for generating scenarios for a farm portfolio pesbl The approaches are based on copulas and
optimization. The copula method provides an alteve to the multivariate normal assumption.
The optimization method generates a number of eis@utcomes which satisfy specified
statistical properties by solving a non-linear wptiation model. The application of these
different scenario generation methods is then eggb the topic of geographical diversification.
The scenarios model the stochastic nature of @ypns and land prices in three separate
geographic regions. The results indicate thabtitamal diversification strategy is sensitive to
both scenario generation method and initial acreagamptions. The optimal diversification

results are presented using both scenario genenatthods.



MULTI-PERIOD ASSET ALLOCATION: AN

APPLICATION OF DISCRETE STOCHASTIC PROGRAMMING

Introduction

One of the keys to long term success in the foadagmnibusiness sector is effective asset
allocation. Farmers must efficiently allocateitt@ssets including cash, land, equipment and
labor over multiple enterprises. The diversificatof these assets provides a key risk
management strategy to handle production riskenf8l8990; Harwood, et al., 1999). The
problem faced by many agricultural producers i$ ghayopic approach such as the standard
single period portfolio optimization as proposedMigrkowitz and used by many of researchers
is often not adequate in the planning process (hotzend King, 2009). Instead, large capital
investments in land and machinery require that peeds formulate strategies for multiple
periods (Kennedy, 1986; Kim and Omberg, 1996).

The development of discrete stochastic optimizatautines provided a method to
analyze these dynamic problems (Cocks, 1968). cbheept was adopted by agricultural
economists who began analyzing multi-period proll@magriculture and particularly began
introducing risk into the models (Brink and McCdr®78; Rae, 1971). The discrete stochastic
modeling approach provided a strong tool for ecastsbut lack of computational power turned
out to be a large barrier to continuing advancegséarch in this area.

As a result of limited computational power, thecdéde stochastic programming has had
a limited number of applications in agriculturabaomics (Featherstone, Preckel, and Baker,
1990; Lambert and McCarl, 1989; Leatham and Baka88). Part of the reason for this lack of
applications is the difficulty of handling uncertj. Stochastic programming assumes that
random variables follow a given distributional farmhis in itself implies that the researcher can

accurately estimate this distribution. Price amddydistributions have also been the topic of



research (Buccola, 1986; Featherstone and Kast6@8; Goodwin and Ker, 2002; Goodwin
and Ker, 1998; Just and Weninger, 1999; Ker amlol&; 2003; Preckel and DeVuyst, 1992).
Furthermore, the computational complexity of reaglproblems requires discrete representation
of the random variables to serve as a proxy foctminuous distribution. It is vital that the
discrete representation accurately depicts thesttal characteristics of the continuous
distribution (Pflug, 2001).

Discrete stochastic programming models assumetha@ndom variables have only a
finite number of possible realizations so that pogsible state of the world over a finite horizon
can be represented as an endpoint of an eventriree case of a farm portfolio optimization,
the random parameters may include yields, commaulites, land prices, and interest rates. The
quality of results that are produced by the digcstbchastic model depends heavily on the
guality of the generated scenarios (Topalogloudwgrou, and Zenios, 2008). The construction
of these scenarios are done via scenario tredwsteuthat are commonly seen in stochastic
programming. Several different methods have beepgsed to generate scenarios. Some of the
common techniques used are time series econonethniques, random sampling,
bootstrapping, and moment matching techniques (KadtWallace, 2007). More recently,
neural networks and copulas have begun to be osgeherate scenarios (Kaut and Wallace,
2009). Each one of these modeling techniquestbasrengths and weaknesses.

The topic of scenario generation for multi-peridaichastic programming has not been
addressed in the agricultural economics literatdreus, the main objective of this paper is to
evaluate current scenario generation techniquesipply a new one using copulas. Copulas
model marginal distributions of the random variad@parately and still maintain the shape of the

multivariate distribution. The concept of usingoatas to model scenarios has been applied to a



single period setting but not to a multi-period lagggion (Kaut and Wallace, 2009). This
research provides an opportunity to extend thesotimesearch on scenario generation by using
copulas in the multi-period setting.

This scenario generation application is applieth&topic of geographical
diversification. A discrete multi-period stochagprogram is formulated to optimize a farmer’s
portfolio, where the portfolio is the acreage aditians between three distinct geographic areas.
The farmer has the ability to allocate wheat proidmcacreage over three dry land production
regions, Montana, Colorado, and Texas. The partadlocation decisions take place at discrete
time points (every two years). At these discretimis the farmer evaluates the previous period's
market conditions and the composition of the emieediversification. At the same time, the
farmer evaluates future conditions such as expdatade yields and prices. All this information
is then used by the farmer to reallocate or adhestllocation of farmland in the three different
regions. This may involve increased short ternmoaglterm borrowing because of increased
operating expenses, machinery purchases, and laobgses. This same decision process
happens annually for a discrete number of years.

The results of the discrete multi-period stochaggitmization are presented. The
optimization algorithm consists of maximizing exfeetutility of wealth by allocating acreage
levels in the three different regions. A dynammelgsis of the optimal acreage allocations over
time is estimated, as well as, how these allocatadrange with different levels of risk aversion.
The use of copulas to generate the scenarios ngsbkd discrete multi-period program provides a
foundation for expanding the standard scenario rg¢io@ methods to multiple risk factors and
multi-periods. The use of copulas to generatestiemarios is compared with moment matching

scenario generation using sequential optimizatibine effectiveness of the copula scenario



generation technique is analyzed by comparingtihédomoment matching technique. This
modeling technique also provides a framework tdyaeaother farm financial decisions, farm
growth decisions, and even could be applied to fmatfolios from a lender's perspective.

Agriculture is a natural application of sequentiatision problems. The current
decisions that producers make have implicationfiture actions. Agricultural economists have
employed discrete stochastic programming (dsph@s$dol to work with these problems. One of
the first applications and one of the seminal Esiclealing with dsp and agriculture was done by
Rae (1971). Rae published two articles concerthiegpplication of discrete stochastic
programming in agriculture. In his first articlee examined a three-stage fresh vegetable
operation. The states were defined both by preddfiveather conditions and crop prices. He
noted that one of the inherit weaknesses with fiptieation was the lack of more states. The
argument against more states was based on thee“cticsmensionality”. There is a tradeoff of
complexity and solvability when using dynamic prags.

In that same year, Rae (1971) published his sepapdr on discrete stochastic
programming. This one dwelt with viewing the prblusing Bayesian decision theory. He
also investigated the use of alternative utilitgdtions within the objective function. Rae (1971)
concluded that the ability of discrete stochastagpamming to handle alternative utility
functions makes itself a useful tool when studysegquential decision problems in agriculture.

Discrete stochastic programming has been useatiehmulti-period wheat marketing
(Lambert and McCarl, 1989), fixed versus adjustaate loans (Leatham and Baker, 1988), and
capital structure (Featherstone, Preckel, and Ba80). In finance research, discrete stochastic
programming is now used to model asset allocatimhfar portfolio optimization routines

(Infanger, 2006; Mulvey and Shetty, 2004).



One of the key features of a dsp model is thapttvameters describing an optimum
decision are defined as random variables. Extgnalistochastic program to multiple stages
requires that the parameter behavior over timedseribed accurately (Kaut and Wallace, 2007).
In continuous time, the randomness of the parametarld be modeled using stochastic
processes. The standard way of representing thibastic process is by first defining a finite
time horizon, t = 1,....,T, and a probability sp&€eSJ, P) ; within the defined probability space,
where() is the sample spacés is defined as the-field, and P is defined as a finite set of
probabilities. The random variable is defined gy tunctioné. The sequence of
¢1(w), & (w), ..., ér(w) for a givernw € Q is the sample path.

Discrete stochastic programming requires that thesertain parameters are estimated
by a finite number of realizations. Given thesaigtions, a scenario can then be defined as a
possible realization of the underlying stochastmcpss. It is assumed that the probability
distribution of¢ is discrete with a finite number of realizatigis. The probability of each

realization can then be defined as
K
pr =P(&,) fork =1,...,K,wherek > 0 and Zpk = 1.
k=1

For discrete multi-stage stochastic programminig, assumed that the random vector follows a
stochastic process over the planning horizon ohtbdel. Given that the process is assumed to
be discrete with probabilit§ (¢,.), the uncertainty of the model parameters can pesented
through a multilevel scenario tree. This scentage defines the possible sequences of
realizations of the data paths.

A scenario tree is shown in figure 1. A scename tis defined by its nodes, and

branches. The nodes represent the states of ratargpecific point in time. Within the



scenario tree there are three different types déao The root node represents the initial period
or 'today' and is immediately observable from dateistic data. There is only one root node
per scenario tree. Leaf nodes are the final nod#ee scenario tree. These nodes do not have
any successors that follow them. In between tbeand leaf nodes are the intermediate nodes.
In this case, decisions will be made at the rodtiatermediate nodes. Each branch of the tree
represents a possible value of the random variabteideal scenario tree would represent the
whole universe of possible outcomes of the randarales which would include optimistic

and pessimistic projections. Though similar instaunction, a scenario tree is different from a
decision tree by the fact that a decision treedras on both decisions and events, the scenario
tree only branches for events.

This type of asset allocation model can be viewetuti-period dynamic decision
problem. The decisions take place at discrete pioiets. At each decision point the farmer has
to evaluate the previous period’s market conditiamd the composition of the enterprise
diversification. At the same time, the farmer mesgluate future conditions such as future
yields and prices. All this information is theredsby the farmer to reallocate or adjust how the
land is allocated in three regions. This couldime increased short term or long term
borrowing because of increased operating expensad)inery purchases, and land purchases.
This same decision process continues through e pieriods of the model.

At the beginning of each decision period, the fanamager is faced with many difficult
decisions. Once a farmer makes a decision ondantbp allocation, it is often very costly and
difficult to rearrange the land allocation. Sonfi¢hmse decisions are the levels of investment in
farmland, capital purchases such as machineryriiceenew crops or acreage, and debt

financing on farmland and capital. These decisamesnot limited to one decision period but



will be made over a finite horizon time period. dkag more difficulty to this decision process is
the fact that these allocation decisions are bagrdtie realization of uncertain events. Because
of this uncertainty, the farm manager’s objectivenaking these decisions is to maximize
expected utility subject to land and capital caaists. Specifically, for this problem, the farm
manager is seeking to maximize the expected utfitgrminal net wealth. This model
specification follows the specification developsdUmhano and King (2009) a dynamic

programming model. Formally, this problem can pectfied as:

max e BoluC) )
Subject to

Rijt=Po+ BiRij-1-1+ €10 (2)

Pije=ao+a1Pij qp1 QR j_ 11+ &1 (3)

Lije=Lij_1t-1+ Xij-1,6-1 4)

Am;, = Pm;, + (1 —dm) * Am;_; ;4 5)

Pmj, = Y o(Lije +xijc) — (1 —dm) « Amj_y ;4 (6)
M;, =1*xPmj,+ (1 —dm)=* M, (7

W,=QQ+nr)A;—cL]+RL; + (P, + T —tcg)L; (8)

Xt € Xy 9)

fort=0,1, 2, ..... , T, and @RPy, Lo, Wp) are given

where

r= {Tb if [We = Zieo ((Byjama + 7+ €)% 500 = cLigse)| < O (10)
1, otherwise

fo = { tc, if ;¢ >0 (11)

—tc; otherwise



and the variables and parameters of the modeldimed in Table 1. Equation (1) specifies the
objective function of this model. The objectivetlois model is to maximize the expected utility
of terminal wealth. Maximization of terminal neealth is used because of the difficulty of
implementing an additive utility function (Feathterse, Preckel, and Baker, 1990). The use of
maximizing terminal wealth has many advantages vaeseloping a discrete stochastic
program. The main advantage is that there is pert#ence on an additive utility function. An
additive utility function assumes that there isapdndence between periods. In reality, the
assumption of independence is often not the casersiinal wealth will be used to avoid that
problem. In this case, terminal wealth will beidefl by owner’s equity in the final period. This
definition of wealth will then be incorporated irttee utility function to maximize utility of
wealth. A discussion on the appropriateness agtfanal form for the utility function has been
provided by both Rae (1971) and Featherstone (1988¢ power utility function will be used

and is defined as

Uw) =2

(12)
wherer is defined as the Pratt-Arrow coefficient of ralatrisk aversion and w is the wealth of

the individual. Implicit in the definition of theower utility function is the assumption of
constant relative risk aversionlf r is greater than zero, the preferences are risisavdfr is

equal to zero, then the utility function will exiibsk neutral preferences. Absolute risk

aversion is‘:—} and relative risk aversion is simply r. Whes equal to zero, the utility function

! Constant relative risk aversion is shown in tHefdng manner
1-r

w
Uw) = 1—-r
U'w)=wT

U'(w) = —rw™ 1t



takes the form of U(w) = w. Thus, when there @l neutral preferences, the objective function
is simply owner’s equity. One of the main probsewith the power utility function is that it is
not defined for negative wealth. Some authors leaeecome this weakness using Taylor’s
series expansion (Featherstone, Preckel, and BE®@0). This model will rely on the utility
model specification provided by Lohano and Kingd@20 Lohano and King specified the utility
function in two ways to account for negative wealfthe two specifications are

uw) ifw=b

"Wy ifw<b (13
b

Whenr >0: u(W) = {

where U(W) is the utility function specified in egjion (12) and b > 0. Under this specification,
the utility function is defined for all levels ofealth and is a continuous function.

Equations (2) and (3) model the stochastic prosefesehe two stochastic variables in
the model: gross return for dry land wheR) é&nd farmland price for the three regioRg) It
is assumed that both land prices and wheat refaliosv an autoregressive process. The land
price specification differs from wheat returnshat it also depends on previous year returns.
Further details on the estimation of these equatwiti be presented in the next section of the
study. Equation (4) models the land allocatiofe &mount of land owndd , depends on the
guantity of owned land from the previous period #mpurchase or sale of land from the
previous period; ;.

Each acre of land that the farmer owns must becsghby a given level of machinery
and equipment. Equations (5) through (7) desctibegptirchases of machinery and ensure that
there are adequate machinery levels to servicprtiwuction acreage. Equation (5) ensures that

the acres with machineryifn; ) is equal to the acreage needing machinBmy; () plus the

acreage with machinery from the previous perid¥;(_,._,). The previous period acreage is



assumed to lose productivity because of use. [dhssof productivity is represented by the
paramete(1 — dm).

Equation (6) constrains the acreage needing magh{Ren;.) to be greater than or
equal to the current acreage le(ElL,(L; ;.)) less the depreciated machinery from the previous
period(1 — dm) = Am;_,,_,. Equation (7) transfers the value of machineoynfiyear to year.

It is assumed that there is a fixed value of maafyithat is needed to farm each acre of land.
This assumption has been relied on for other dyoanaideling applications (Featherstone et al.,
1990, Lohano and King, 2009). This level of machyrend equipment required on a per acre
basis is given by the parameteilt is assumed thatis fixed and will not change based on
acreage levels.

One of the keys in formulating this dynamic problenthe specification of net wealth.
Formally, the dynamics are described in equation k8t wealth itself is defined by

Wi =Aj + Z?:O(Pi,j,t + 17— tCs)Li,j,t - Debt;, (14)
where 4;, represents the net cash balance at state j aed.tiifhe net sale of farmland and
machinery is represented W:o(Pi,j,t +1— sz)Li,j,t . The ternm?, ; , represents the price of
land at node j and time t for region i. The parangt, represents the transaction costs
associated with selling land and equipment. Thaltivdormulation also has to account for the
debt level carried at each period and node. Time debtDebt;, captures the actual debt level
carried at each node. The level of debt is caledlas

Debtj't - Z?:O(Pi,j—l,t—l + 7+ tc)xi,j—l,t—l + Debtj_l't_l (15)
where the terms within the parentheééléi_j_llt_1 +7+ tc)xi,j—1,t—1) captures debt incurred

because of land and machinery purchases in thentyperiod and the debt from the previous



period is captured b§Debt;_;,_1) . To be consistent with the dynamic formulatithe
dynamics of the cash balance are specified as

Ay =(0+1) [Aj—l,t—l - Z?=0(CLi.j.t) —con —1p * Debtj—1,t—1] + XizoRijieLije (16)
Current net cash balance is calculated as preyeass net cash balancé;(;._,) less current
year's cash allocated for production expe(lcseig,t) , consumptior(con), and interest paid on
debt(r, * Debt;_;,_,), plus the gross revenue from producti®®,R; ;.L; ). The
parametelcon) represents the annual cash withdrawals. It isifexed does not change with
wealth level. Current cash balance is representetj b Net cash balance is not constrained to
positive values, it can also be negative. If msthcbalance is negative (equation (15)), the
farmer must use short term debt and thus interast be paid on the debt)(see equation
(10)). If net cash balance is positive, the farg@er invest the money in a relatively risk free
investment. This cash can then be earning intatdbe risk free rate|{r The cash balance in
time periodt is thus equal to the sum of: net cash balantienm periodt multiplied by one plus
interest rate and revenue from crop producti@p; .L; ; ..

A constraint on debt levels is also incorporated the model. This can also be viewed

as a credit constraint (Barry, Baker, and San@81]). This constraint aids in restricting

purchases of land and equipment relative to therége ratio. The leverage ratio is defined as

lev = max {O [4,0= Debtl } a7)

"X o(PyjetT—tes)Lije
where the numerator is the total debt which isrecfion of both debt from cash shortagesi(,)
and debt from land and machinery purchage{; ;). The denominator represents all of the

farm assets. The constraint takes the form of

|_Aj,t_ Debt]"t|
i o(Pije+T—tes)Lije

<p (18)



where p represents the maximum level of the leverage valich will range from 0 to 1.
One of the key ingredients in an optimization peoblis the constraint specification.

This problem has the following constraints. Thstfis a land constraint. The land constraint is

formulated so that it satisfiek; ; < L;; < L; ;. The variableL; ; represents the minimum

amount of land the farmer requires in region i Enprepresents the maximum of land the
farmer can have in region i. The next constrainhe liquidation constraint. The purpose of this
constraint is to handle the case of negative weaithihe case that wealth is negative, all land
will be liquidated

Xije=—Lij: if We<O. (29)
The farmer also has the option of selling all larieen wealth is positive as well. One of the
assumptions of this model is that when all the lisrgbld or liquidated, the farmer will not re-
enter into farming which is represented by

Xijt = —Lije then x;jev1 = Xijr2 = = = X jr = 0. (20)

Data

Stochastic equations for gross returns for dry lahdat R ;) from each of the three
production regions (Texas, Montana, and Coloradd)farmland price from each regida {)
are estimated using time series data coveringehesy1973-2008. Gross returns are calculated
for each region using county level yields and grigathered from National Agricultural
Statistics Service (USDA, 2008). Farmland pricesgathered from two sources. The farmland
values for Montana and Colorado are gathered frarmMReal Estate Values (USDA, 2008) and
Texas land values are from Real Estate CentenatsT&&M University (TAMU). The time
span covered for Texas and Montana was 1973-2008 @hlorado had limited data and only

covered the time span of 1994-2008.



The method to estimate the gross return equatmmié three individual regions follows
the Box-Jenkins methodology (Box and Jenkins, 197®)e Box-Jenkins methodology consists
of identifying the order of the autoregressive jgsx; estimation of the model, and finally testing
to ensure that the error terms are white noiseged beparate equations are estimated for each
region. All three regions were identified withiesf order autoregressive model, AR(1). OLS
was used to estimate each equation. All threeragtessive terms were found to be significant
(Table 2) but the explanatory power of the modelsw. For this reason, an AR(1) model will
not be used to model the gross return equatidris.absumed that the scenario generated gross
returns are independent of the previous periodmstu

The purpose of this research is not to expandtiérature surrounding the topic of land
valuation. This topic has been heavily resear¢fdthvas and Thomas, 1999; Fontnouvelle and
Lence, 2002). For the purpose of this researehfahmland price equations will be based on the
following specification

Pr=ayg+ ay Pr_q +a; Ri_q1 +&5¢. (22)
After the first pass of estimations, it was fouhdttthe lagged values of gross returns Rere
not statistically significant, so the equation wasstimated using the simple first order
autoregressive AR(1) form with only lagged lanccpsi and not lagged returns(Table 3). All
three AR(1) terms were found to be significant #r&lmodels illustrate that current land prices

are explained by previous period land prices.

Scenario Generation using Copulas
The estimated models above give a starting poigemrerating the scenarios that are used
to model the scenario tree. For modeling purpdbesgstimated coefficients are used as

constants and use alternative methods in moddimegtror terms from each model. The



simplest method is to assume independence and readelerror term as normally distributed.
An estimated correlation matrix shows that thergigans are not independent and this
relationship must be taken into account (Table®)e standard method for accounting for the
dependency of the variables is to use the estin@tedlation. The use of copulas allows the
estimation of alternative dependency measures loeljjo@ar correlation. These are discussed
below and are used to generate the alternativeasosn

Copulas provide a flexible method of separatingnttaeginal distributions from the joint
distribution. This maintains the “shape” of thenjadistribution. The use of copulas has been
used in finance, statistics, and recently in thecafjural economics literature (Bai and Sun,
2007; Clemen and Reilly, 1999; Joe, 1997; Paf2602; Rank, 2000; Trivedi and Zimmer,
2005; Vedenov, 2008; Xu, 2005; Zhu, Ghosh, anddwvin, 2008). Copulas are used to model
multivariate distributions. An extensive treatmehtopulas can be found in numerous books
and research articles (Patton, 2002).

The origin of copulas can be traced back to tharSkleorem (Sklar, 1959). The Sklar
theorem allows one to construct joint distributarseveral random variables based on their
marginal distributions and a copula. By definitibiere are an infinite number of copula
functions, therefore an infinite number of joinstdibutions that may be generated for given
marginal distributions. Various copula families bdeen used in risk research (e.g. Gaussian,
Archimedean, etc. (Hennessy and Lapan, 2002)). Mexvé is not the purpose of this research
to investigate various copula functions. Instebd,&aussian and t copula will be used to

estimate alternative scenarios to be used in thim@ation model.



The Gaussian copula is an extension of the muieiteanormal distribution but it can be
used to model multivariate data that may exhibit-normal dependencies and fat tails. The
Gaussian copula is formally defined as

C(Uyg, o, Ups Z) = OK (D7 (uy), oo, D71 (wy); 2) (22)
where ®([) is the cumulative distribution function of therstard normal distribution ang g
the variance-covariance matrix.

In the two-dimensional case, the Gaussian copulaityecan be written as

(@—1(u))2+(q>—1(v))2 N zp@—l(u)@—l(v)—(@—l(u))z—(m—l(v)f)

1
e €XP ( > 20-p?) (23)

c(u,v) =

where p is the linear correlation between the two variataladd(-) is the cumulative density

function of the standard normal distribution. riiehe useful features of the Gaussian copula is
that it is parameterized by a single parameterétation coefficient) which can be estimated
from historical data.

The copula based joint cdf is obtained by tramafog the margins to standard uniform
distribution. One can view this joint cdf as thé} distribution stripped of all information about
the margins. The only thing remaining is the infation about the multivariate structure.
Therefore, copulas enable the decoupling of thegmak distributions from the multivariate
structure. This gives the modeler much more fldiggtin modeling multivariate relationships.

In this study, the marginal distributions are medelising an empirical distribution. This does
not enforce any assumed distributional form onntlaegins. The copula will then be modeled
using the Gaussian copula.

The copula based scenario generation consistscopants. The first part consists of
creating the scenario copula. This copula wiltlescribed in terms of the ranks of the margins.

This will be accomplished by using the GaussiarutapThe parameters for the copula will be



estimated from the historical data. The next stapsists of generating the values of each
margin. This will be accomplished by using emgaiticdf estimated in Matlab. One of the
benefits of using copulas is that the multivari@d¢a can be simulated based on the estimated
copula. Two samples will be generated, one basdbdemultivariate normal distribution and
one based on the Gaussian copula. Using thesemasamples, values will be generated for
each period based on the sample and the stochastiesses of the variables.

The next step was to then discretize the outcowresach period. This was done using
Gauss-Hermite multivariate quadraturé&ssentially this method uses a specified nuraber
nodes and weights to evaluate the specified functithis method has been shown to be
particularly useful for portfolio allocation proltes (Judd, 1998 ) and for discretizing continuous
data (Miranda and Fackler, 2002). In additiors thiethod is also consistent with moment
matching techniques, which ensures that the simdlstenarios are consistent with the original
data. The CompEcon Matlab toolbox (Miranda andkkeaic2002) is used for this method. At
each time period, a specified number of nodes sed to estimate the branches on the scenario
tree and its associated probability. Five nodesuaed for each decision period (every two
years), with five total decision periods. This conattion will lead to a total of 3,125 final

scenarios and 3,905 nodes in the decision tree.

Scenario Generation through Optimization
The scenario generation approach using optimizaquires that the statistical
properties of the random variables be specifiede 3cenario tree is then constructed so that

these pre-specified statistical properties aresfgadi. These properties are maintained by letting

2 Gauss-Hermite Quadrature is defined by

e N VT £ (p)
| reoe =Y o G + 5 L




the stochastic variables and probabilities be datigariables in a non-linear optimization
problem. The objective function in the non-linpaoblem is to minimize the square distance
between the specified statistical properties ardsthtistical properties of the scenario tree. The
non-linear problem is often not convex, which ireplthat the solution may be a local optimum.
In many cases this is not satisfactory, but inddiee of scenario generation, the local optimum is
sufficient.

The advantage of using an optimization approadeterate the scenario tree is that any
central moments and co-moments can be part otdtistecal specifications of the distribution.
The first four moments will be considered in thisdy. The dependency between variables will
be modeled using the covariance. Let{1,2,...n} denote the set of random variablést M;,,
fork =1, 2, 3, 4, be the first four central monseof the continuous distribution of random
variablei. The covariance between random variabdnd! (such thati,l € Iandi <) is
denoted by;;.Let N; be the number of branches from a node at stagé,...,T — 1. The
scenarios;; for random variablé € I and probabilitiep; for j = 1, ..., N; of the continuous

distribution are decision variables in the follogiinon-linear optimization problem:

ming , Xty Yoy Wik My — Mip)? + X rerico Wi (i — Cip)? (24)

s.t. Z?’il pj =1, (25)

m;; = Z?Iil xijpj, L€ (26)

my, = Z?’;l(xij — mil)kpj, iel, k=234, (27)
Cii = Z?’il(xij - mil)(xlj - mll)pj, i, lLelandi <], (28)

p;=0, j=1,..,N, (29)



wherew;,, are weights in whicl,, for (k = 1, ...,4) are the relative importance of the central
moments anav;; for covariances of the random variabigse I. The first constraint shows that
the probabilities must sum to one at each braridte rest of the constraints are used to
formulate the first four central moments and theac@mnce. The last constraint is to ensure that
probabilities are non-negative.

It is important to note that the estimated momeitse distributions are conditional on
past history and are conditional on the associaéld of the scenario tree. This implies that the
historical data is recalculated after each sceresiimation. Thus the updated historical mean
of each distribution contains both the historidadervations and the new observations generated

through the scenarios.

Results

The model was solved using various starting pants scenarios. The model was first
solved assuming that geographical diversificati@s wot an option. The production was
constrained to the base region. Next, the modslsed/ed varying the base region. The base
region began with the most acres and could not Hedgw a specified level. The results of each
will be discussed below.

The certainty equivalents of wealth for each sdengeneration method and each model
scenario is shown in Table 7. When productiomigt¢d to one region, as expected Montana
has the highest wealth levels and Texas has thestomealth levels. The results are consistent
with the multivariate normal scenarios but not vilte moment matching scenario generation
method. Colorado has the highest wealth leveb¥alid closely by Texas and then Montana.
The higher levels of wealth for both Gaussian amdtivariate normal methods could represent

the inability of both methods to capture the higimerments of the historical distributions. The



wealth levels when allowing for geographical divieation are also shown in Table 7. The
results indicate an interest point. The incentivdiversify depends on both base region and
scenario generation method. Diversification desedavealth levels when Texas is the base
region under both Gaussian and multivariate nomethods but gains wealth under the moment
matching scenarios. Diversification increased Welavels for Montana and Colorado for all
scenario generation methods.

The results for the optimal acreage allocationsmwbroduction is limited to Texas is
shown in Table 8. The assumption is that the falmegins with 3,000 acres and has the
opportunity to expand acreage to 10,000 acresll three scenario methods, the farmer expands
slowly for the first three periods. The farmerrireduces acreage in the final two periods. Itis
important to remember that these are mean allotatidhe maximum and minimum allocations
are shown in Table 8. The standard deviation ®fitreage allocations are also shown in Table
8. The Gaussian method has the smallest standarations. The multivariate normal method
has the highest standard deviations.

The results for the optimal acreage allocationsmwroduction is limited to Colorado is
shown in Table 9. Unlike Texas, there is a diffieeebetween the scenario methods. The farmer
increases acreage slowly and maintain acreageslevel the planning period for both Gaussian
and moment matching methods. The same behavnat iseen with the multivariate normal
method. The farmer increases acreage slightly theefirst two periods but then reduce acreage
levels over the subsequent periods. As was set@rilwkas, multivariate normal scenarios have
the highest standard deviations. The moment majaniethod had lower standard deviations
than the Gaussian method in periods two and thuebkigher standard deviations for periods

four and five.



The results for acreage allocations in Montanapce different results than both
Colorado and Texas. The results are found in ThbleThe farmer increases acreage slowly
over the planning period for the Gaussian and naitate normal scenario methods. For the
moment matching method, the acreage increasedlglighthe first three periods but then the
acreage decreases over the last two periods

The results of the optimal acreage allocation thasethe assumption that the farmer is
based in Texas and has the opportunity to acqaie for production in Montana and Colorado
is shown in Table 10. This means that the majafitthe initial acreage allocation is in Texas
and that the farmer will maintain a given levebofeage in the base region. The farmer
purchases land in Montana and sell land in Tex#seabeginning of the planning period under
the Gaussian and multivariate normal scenario® falmer maintains the same acreage level in
Texas over the rest of the planning period. Thetdioa acreage will remain relatively constant
until period four when the acreage will be sold asteage will be purchased in Colorado.
Under the moment matching scenarios, the farmes doepurchase land in Montana but
increases acreage in Texas until period four widelitianal acreage is purchased in Colorado
and acreage is sold in Texas.

The optimal acreage allocations when Coloradbesbase region are shown in Table 12.
This implies that the base acreage is now shifigddiorado. In this case, land will be
purchased in Texas only under the moment matcluegasios. Additional acreage is purchased
in Montana under the Gaussian and multivariate absmenarios but not the moment matching
method. The amount of acreage in Colorado isedsed at the beginning but then is increased

in periods four and five for all three scenario hogels. These results illustrate the sensitivity of



the results to the scenario generation method. tdf@nand Texas allocations are the most
influenced in all three base acreage location scena

The results for the acreage allocations givenMwaitana is the base location is shown in
Table 13. Under both the Gaussian and multivaniatenal scenarios, the amount of land in
Texas is basically constant. In periods four ane, facreage will shifted from Montana to
Colorado for both scenarios. Under the moment niiadgcmethod, acreage is transferred to
Texas from Montana in period one and then is temnsfl from Texas to Colorado in period 4.

These results are consisted with the previous gerakocations results.

Conclusions

A multi-period discrete stochastic programming eloglas formulated to analyze
geographical diversification. Specifically, it &ymed whether a farmer would expand by buying
more land locally or expand to other regions. Ppraduction of dry land wheat consisted of
three different regions: Texas, Colorado, and MeataThe objective function consisted of
maximizing terminal net wealth. The model analy#ezldecision of how a farmer would
allocate land to different production regions. dlasone of the most important resources a
farmer has. Land traditionally composes a largeesbf the farmer’s balance sheet. It is the
base for loan collateral and future wealth. Ndy s it important to consider the revenue stream
from production on the land but also returns framd appreciation. The inclusion of both
aspects is critical to effectively model geographdiversification decisions.

Discrete stochastic programming models both lammeprand production revenue in a
dynamic setting. As a farmer looks to make largestments in land and machinery, it is
important to consider the results of the investnosetr multiple periods and not just look at the

single period consequences. Discrete stochasigrgmming breaks away from the single



period methodology of the traditional portfolio mpization and analyzes the optimal
investments in a dynamic setting.

This research looked at three different methodsatalle the joint distributions of the
random variables. The random variables were mddeseng a multi-variate normal distribution,
Gaussian copula, and moment matching methods.aditeage allocation results illustrate the
importance of properly specifying the distributioithe random variables used in the discrete
stochastic program. When the third and fourth masnef the historical distributions are taken
into consideration, the acreage allocations to $exal Montana are drastically different. Under
the moment matching method of scenario generatienmajority of land is allocated to Texas
and Colorado, whereas under the other two methbesnajority of land is allocated to
Colorado and Montana.

In addition, the use of copulas provides an alt&raanethod to estimate the dependence
between the random variables. The results fromet@nt distributions were then used as the
stochastic inputs into the model. Future work ddabk at alternative scenario generation
methods beyond the two copulas used in this maaebéso additional methods to match th