

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
<http://ageconsearch.umn.edu>
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their employer(s) is intended or implied.

Crop Choice, Non-Target Pest Levels, Yield Loss and Their Effect on Insecticide Use in South Dakota

Tia Michelle McDonald

Tia.Mcdonald@sdstate.edu

Ariel Ruth Keating

Arkeating@jacks.sdstate.edu

Scott Fausti

Scott.Fausti@sdstate.edu

Jing Li

Jing.Li@sdstate.edu

Department of Economics, South Dakota State University, Brookings, South Dakota

Jonathan G. Lundgren

Jonathan.Lundgren@ars.usda.gov

Central Agricultural Research Laboratory, Brookings, South Dakota

*Poster prepared for presentation at the Agricultural & Applied Economics Association 2010 AAEA,
CAES, & WAEA Joint Annual Meeting, Denver, Colorado, July 25-27, 2010*

Copyright 2010 by Tia McDonald, Ariel Keating, Scott Fausti, Jing Li & Jonathan Lundgren. All Rights Reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies.

Crop Choice, Non-Target Pest Levels, Yield Loss and Their Effect On Insecticide Use in South Dakota

Tia Michelle McDonald, Ariel Ruth Keating, Scott Fausti, Jing Li

Department of Economics, South Dakota State University, Brookings, South Dakota

Jonathan G. Lundgren

Central Agricultural Research Laboratory, Brookings, South Dakota

Introduction

The rapid adoption of genetically modified (GM) crops in South Dakota prompted us to examine changes in pest management practices over time. GM adoption has been linked to decreased need for pesticides (Cornejo 2005, Vialou 2008). Surprisingly, as Figure 1 indicates, South Dakota has experienced an increase in the proportion of acres treated with insecticide over the past two decades leading to an investigation of why this has occurred. Figure 2 is an extension of this information, showing the location of the outliers visible in Figure 1. The outliers represent counties that are spraying an unusually high percentage of their acres. These counties tend to be clustered, especially in 2002 and 1987. Seemingly, counties with widespread insecticide use remain in the south-east portion of the state. One outlier, Shannon county in 2007, represents a county will very few acres planted with crops, thus easily achieving a high proportion of planted acres treated with insecticide.

Due to data limitations the answers to many of our questions could not be addressed directly. There is limited information about GM adoption and pest infestation in South Dakota so the following research uses the proportion of different crops planted as a way to identify general trends in insecticide use.

Figure 2. Indicates the location of the outliers by year, visible in Figure 1.

1999
2002
1987
1992
2007

Methodology and Data

To ascertain the effect of different variables on insecticide use for all counties in South Dakota, a fixed effects model was employed. A fixed-effect model is often used on non-experimental data, where a scientific control group is not available or possible, treating each observation as its own control (Allison, 1). This model also accounts for time-invariant unobserved effects that are not captured with available data (Wooldridge, 461).

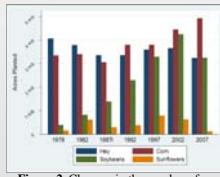


Figure 2. Changes in the number of acres that are planted with various crops.

$$\text{Equation 1. } Y_{it} = \delta_1 + \delta_2 YR07_{it} + \delta_3 Aphi_{it} + \delta_4 Corn_{it} + \delta_5 Soybean_{it} + \delta_6 Sunflower_{it} + \delta_7 Hay_{it} + \delta_8 + U_{it}$$

$$\text{Equation 2. } Y_{it} = \delta_1 + \delta_2 YR07_{it} + \delta_3 Aphi_{it} + \delta_4 Corn_{it} + \delta_5 Soybean_{it} + \delta_6 Sunflower_{it} + \delta_7 Hay_{it} + \delta_8 + \delta_9 + U_{it}$$

For the i county in the year.

Two regressions are presented in this paper. The first uses all of the variables listed in Table 1, notice the presence of only a dummy variable for 2007 (see Eqn 1). The second regression includes interaction terms: all variables interacted with the 2007 dummy variable.

Variable Name	Definition	Source/Description
Year	Dependent variable - percentage of total planted acres treated with insecticide	USDA Agriculture Census 1978, 1982, 1987, 1992, 1997, 2002, 2007
YR07	Percentage of total acres planted with corn in 2007	USDA NASS
Corn	Percentage of total acres planted with soybeans	USDA NASS
Soybean	Percentage of total acres planted with sunflowers	USDA NASS
Sunflower	Percentage of total acres planted with hay	USDA NASS
Hay	Percentage of total acres planted with aphid	USDA NASS/ Includes alfalfa
Aphid	Desire variable for presence of soybean aphid in a county in a given year	Field surveys for extension educators (Cataungu)
Intercept	Constant term	

Objectives

- 1) Investigate the main causes of the increase in acres treated with insecticide
- 2) Establish whether there is a link between the type of crop planted and acres treated with insecticide
- 3) Determine whether there is a relationship between yield loss and acres treated with insecticide

Results

The following display highlights some unexpected results from the regression analysis. Initially the model included yield loss variables, but because of lack of significance the variables were dropped. This will be an avenue for future research.

Overall, the regression results indicate that the type of crop matters when looking at acres treated with insecticide. Corn and hay were positive and significant, meaning the larger the proportion of these crop planted within a county the larger the proportion of acres treated with insecticide. The soybean variable was negative, but when the aphid is considered there may be a positive effect on acres treated when soybeans and aphids are both present in a county. Also, there is a statistical difference between 2007 and all other years. Because of this, a second regression was completed that included interaction terms.

Variable	Coefficient	Robust standard error	t-statistic
YR07	0.0822	0.0139	5.93***
Corn	0.2592	0.0847	3.04***
Soybean	-0.1208	0.5416	-2.23**
Sunflower	0.0522	0.0731	0.71
Hay	0.2286	0.0834	2.74***
Aphid	0.0325	0.0174	1.87*
Intercept	-0.0245	0.0327	-0.75
Overall model	F = 21.32	P < 0.000	R ² = 0.3538

*** significant at 1% level
** significant at 5% level
* significant at 10% level

Corn

Is highly significant and positive. This result was not expected given South Dakota's high GMO adoption.

Aphid

The aphid variable shows that when the aphid is present in a county the proportion of acres sprayed increases.

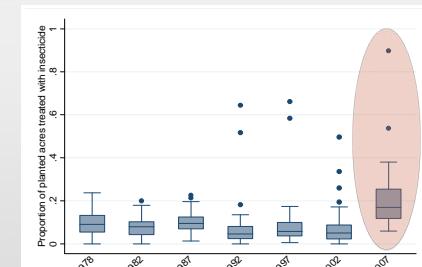


Figure 1. Proportion of planted acres that were treated with insecticide. This is the dependent variable is the regression analysis discussed below.

Significant 2007 interaction terms:

	Hay	Sunflower	Corn
Table 3. Results from panel regression analysis with interaction terms			
Variable	Coefficient	Robust standard error	t-statistic
Corn	0.2168	0.0928	2.34**
Soybean	-0.0961	0.0504	-1.91*
Sunflower	-0.0124	0.0734	-0.17
Hay	0.2002	0.0806	2.84**
Corn*07	0.2546	0.0992	2.57***
Soybean*07	-0.0020	0.1277	-0.01
Sunflower*07	0.4392	0.1498	2.93***
Hay*07	0.1053	0.0287	3.66***
Intercept	-0.007	0.0320	-0.23
Overall Model	F = 26.43	Prob < 0.000	R ² = 0.3641

*** significant at 1% level
** significant at 5% level
* significant at 10% level

Conclusions

Because of data limitations the full extent of the relationship between the type of crops planted and the impact on insecticide use is not fully known. The results of this analysis lend themselves to a series of stylized facts, which taken together tell the story of insecticide use in South Dakota.

The number of acres planted with corn has increased

Several factors have contributed to the increase in acres of corn planted in South Dakota. Over time, the development of corn varieties that were better suited to South Dakota's shorter growing season led to a gradual increase in corn production. This, though, was compounded by the ethanol boom, which might account for much of the increase in corn production shown in 2002 and 2007.

The number of acres planted with soybeans has decreased in 2007

By 2007 the soybean aphid had infested all soybean producing counties in South Dakota (Catangui). This combined with a high demand for corn may have contributed to the decrease in soybean acres planted in 2007.

Adoption of GMO varieties has increased dramatically

Given South Dakota's high levels of GM adoption one would expect that insecticide use would decrease over time. The results from the regression suggest that corn has contributed to the overall increase in insecticide use. The reasons for this will be the subject for future study.

The proportion of acres treated with insecticide has increased

Our analysis suggests that there are three variables that significantly increase insecticide use, corn and hay acres planted and the presence of the soybean aphid. Overall, hay acres have been decreasing over the years, so this is unlikely to account for the large upswing in acres treated in 2007. The largest contributor, the variable with the largest coefficient, is the presence of the soybean aphid while corn has a slightly lower impact on acres treated.

Literature cited

Allison, Paul D. "Fixed Effects Regression Methods in SAS." Paper presented at the SUGI Proceedings, San Antonio, California, March 26-29, 2006.

Catangui, Michael. "Infestation of the Soybean Aphid in South Dakota." <http://pubs.iastate.edu/extension/pubs/History.htm>

Fernandez-Cornejo, Jorge, Juvi Li. "The Impacts of Adopting Genetically Engineered Crops in the USA." Paper presented at AAEA, Providence, RI July 24-27, 2005.

Woodridge, Jeffrey M. *Introductory Econometrics: A Modern Approach*. United States: South-Western College Publishing, 2000.

Vialou, Alexandre, Richard Nehring, Jorge Fernandez-Cornejo, Arthur Grube. "Impact of GMO Crop Adoption on Quality-Adjusted Pesticide Use in Corn and Soybeans: A Full Picture." Paper presented at AAEA, Orlando, FL July 27-29, 2008.

Acknowledgments

Funding for this project was provided by the South Dakota Corn Utilization Council.

For further information

Please contact ia.mcdonald@sdsu.edu.

More information on this and related projects can be obtained at www.econ.sdsu.edu.

