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MethodologyIntroduction
For environmental and economic impact analyses, the knowledge on
physical or monetary input use per production activity is often very 
important. However, input use at production activity level is typically 
not available from accountancy dataand either ad hoc approaches 
or regressions of total input use on output quantities are applied to 
obtain the desired information. In a second step, the obtained 
coefficients are then used to specify Mathematical Programming (MP) 
models for agri-environmental policy assessment calibrated or fitted to 
observed choice in activity levels. 

Here we propose a methodology for specifying a farm group 
model with a Positive Mathematical Programming (PMP) formulation
while simultaneously estimatinginput allocations to enterprises 
instead of using a two step approach. As activity specific input costs 
are relevant for decisions on land allocation, we hypothesize that such 
an estimation approach will make better use of available information 
than the previously applied two-step approach. 

A further contribution of this research is the  real world example 
of estimating a non-linear cost function using multiple observations 
from single farm accountancy data and prior information on shadow 
prices. This generally serves a better empirical foundation for PMP 
type models. 

Data
The developed estimation approach is applied to a set of year 2000 
FADN* accounting data from 56 Belgium farms. The Belgium dataset
we use has a distinctadvantageas input cost per production activity 
are additionally collected and used to validate the results of the 
proposed approach. 

The data distinguishes the five input categories and a ‘value-
added’ category obtained residually. The inputs are used to engage in 
seven production activities.

Table 1: Farm group sample

Note: standard deviations of variables are given in parenthesis
* FADN: European Farm Accountancy Data Network 
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Conclusions
Using a sample of Belgium FADN accountancy records, the 
hypothesis that this simultaneous approachwould outperform 
separate input allocation regressions introduced by Léon et al. (1999) 
was confirmed. The new approach showed better results for all 
considered aggregate measures across farms comparing estimated 
input coefficients with observed ones available for this sample, but not 
used in the estimation.

The concept also offers a farm group supply model with a PMP-
type objective function based on multiple farm level observations, a 
relevant contribution, because most models of this type are not based 
on a statistical estimation approach. 

The ability to include prior information on resource shadow 
prices promise more realistic resultscompared to standard PMP 
specifications.

More observations over time will probably improve the 
specification with respect to the price response behavior of the
resulting farm group model. Panel data typically show more price
variation and will therefore likely result in more robust estimates in 
this respect. Another direction of further development could be the 
application of Bayesian approachesas in Jansson (2007, 2009) which 
promise a more straightforward and transparent implementation of
prior information without support point related complications.
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Results
We evaluate how the simultaneous approach of input allocations and 
behavioral model compares to a separate linear regression (LR-model). Both 
approaches (LR-model and FOC-LR-model) are compared based on 
observed valueson monetary input coefficients as presented in Table 1 that 
were not used in estimation. Then we also look at the fit of the behavioral 
model with respect to the endogenous variables.
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Unit

Inputs (€/ha)

Contract work 124(73) 130 (59) 346 (130) 560 (285) 269 (215) 296 (128) 311 (136)

Seeding 67(23) 65 (25) 113 (2) 573 (285) 339 (99) 216 (58) 201 (28)

Treatment 150(41) 137 (39) 270 (96) 260 (84) 468 (112) 113 (47) 205 (74)

Fertilizer 75(29) 90 (63) 143 (79) 188 (88) 195 (78) 50 (0) 184 (109)

Land (ha) 27 (15) 10 (10) 9 (5) 8 (4) 14 (9) 8 (2) 14 (8) 58 (28)

Yield (t/ha) 9 (1) 7 (1) 47 (6) 43 (18) 44 (7) 8 (1) 71 (10)

Price (€/t) 118 (8) 119 (10) 46 (4) 119 (102) 47 (26) 231 (26) 41 (5)

Observations 54 26 27 8 28 6 56

Potatoes
Green peas 

for tin  
Sugar beet Land

Winter 
Wheat

Winter 
barley 

Chicory
Vegetables 
in open air

Step 2: Error model - simultaneous approach

Adjusted input allocation regression

First order optimality condition (farm group model)
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Step 1: Starting point  

Input allocation regressions (Léon et al., 1999)   

Farm group model (Howitt, 1995 )

λλλ

A matrix of unknown technological coefficients
b vector of total input use in monetary terms
x monetary output vector
u vector of random disturbances
y, p, s expected yields, expected prices, and subsidies
R matrix of coefficients of a land and a sugar quota constraint
c available resources and  the corresponding

vector of shadow prices
Q, d quadratic cost function

cost shares for each i of j per ha - constant across farms

λ

Aɶ

f farm indices ‘o’ observed data
i variable input category j output category

3. step: Estimation 

• Generalised Maximum Entropy (GME) estimator    
(Golan et al. 1997)

• Re-parameterize the unknowns of the model in  
terms of probabilities and support points for 
Input allocation matrix, the dual values for land 
and quota constraints, the linear term of the 
quadratic object function, and the various error 
terms related to acreages, prices and input cost 
shares 

Input allocation

Fit of the behavioral model

Table 2: Pearson’s correlation coefficient for input allocations

FOC-LR-Model LR-Model

Contract Work 0.88 0.81
Seeding 0.73 0.87

Treatment 0.4 0.01
Fertilzer 0.35 0.49

Value added 0.88 0.77

Sum 3.24 2.95

Table 3: Deviation of estimated input shares

Contract 
work

Seeding Treatment Fertilizer
Value-
added

LR -0,019 -0,004 0,035 0,005 -0,014

FOC-LR 0,017 -0,006 0,033 0,019 -0,065

LR 0,010 -0,024 0,009 -0,052 0,057

FOC-LR -0,024 -0,023 0,011 -0,070 0,106

LR 0,053 -0,024 0,029 0,005 -0,062

FOC-LR -0,057 -0,024 0,010 -0,010 0,080

LR -0,103 0,046 -0,047 -0,033 0,138

FOC-LR -0,069 0,055 -0,023 -0,020 0,057

LR 0,049 0,005 0,037 0,011 -0,102

FOC-LR 0,004 -0,032 -0,013 -0,014 0,054

LR -0,029 0,042 -0,048 -0,057 0,092

FOC-LR 0,008 0,035 -0,072 -0,081 0,111

LR 0,047 0,004 -0,040 0,004 -0,016

FOC-LR 0,036 0,003 -0,038 -0,004 0,003

Potatoes

Green peas for tin  

Sugar beet

Winter Wheat

Winter barley 

Chicory

Vegetables in open air

Table 4: Pearson's correlation coefficient “observed” and fitted values 
Crop Land allocation Price

Winter Wheat 0.966 0.299
Winter barley 0.989 0.747
Chicory 0.753 0.638
Vegetables in open air 0.636 0.969
Potatoes 0.917 0.466
Green peas for tin  0.408 0.340
Sugar beet 0.999 0.643

Dual values

Land 0.922
Sugar Quota 0.907

Figure 1: Observed and estimated values for land rent 
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