

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search http://ageconsearch.umn.edu aesearch@umn.edu

Papers downloaded from **AgEcon Search** may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

Estimating a farm group model and input allocations using accountancy data

Alexander Gocht* & Thomas Heckelei**

* Institute of Rural Studies. Johann Heinrich von Thünen-Institute **Institute for Food and Resource Economics, University of Bonn

Introduction

For environmental and economic impact analyses, the knowledge on physical or monetary input use per production activity is often very important However, input use at production activity level is typically not available from accountancy data and either ad hoc approaches or regressions of total input use on output quantities are applied to obtain the desired information. In a second step, the obtained coefficients are then used to specify Mathematical Programming (MP) models for agri-environmental policy assessment calibrated or fitted to observed choice in activity levels.

Here we propose a methodology for specifying a farm group model with a Positive Mathematical Programming (PMP) formulation while simultaneously estimating input allocations to enterprises instead of using a two step approach. As activity specific input costs are relevant for decisions on land allocation, we hypothesize that such an estimation approach will make better use of available information than the previously applied two-step approach.

A further contribution of this research is the real world example of estimating a non-linear cost function using multiple observations from single farm accountancy data and prior information on shadow prices. This generally serves a better empirical foundation for PMP type models.

Data

The developed estimation approach is applied to a set of year 2000 FADN* accounting data from 56 Belgium farms. The Belgium dataset we use has a distinct advantage as input cost per production activity are additionally collected and used to validate the results of the proposed approach.

The data distinguishes the five input categories and a 'valueadded' category obtained residually. The inputs are used to engage in seven production activities.

Table 1		Farm group sample						
	Unit	Winter Wheat	Winter barley	Chicory	Vegetables in open air	Potatoes	Green pes for tin	
Inputs	(Cha)							
Contract work		124 (73)	130 (59)	346 (130)	560 (285)	269 (215)	296 (128	

T-11-1 E

Observations		54	26	27	8	28	6	56	
Price	(€/t)	118 (8)	119 (10)	46 (4)	119 (102)	47 (26)	231 (26)	41 (5)	
Yield	(0 ha)	9(1)	7 (1)	47 (6)	43 (18)	44 (7)	8 (1)	71 (10)	
Land	(ha)	27 (15)	10 (10)	9 (5)	8 (4)	14 (9)	8 (2)	14 (8)	58 (28)
Fertilizer		75 (29)	90 (63)	143 (79)	188 (88)	195 (78)	50 (D)	184 (109)	
Treatment		150 (4I)	137 (99)	270 (96)	260 (84)	468 (112)	113 (47)	205 (74)	
Seeding		67 (23)	65 (25)	113 (2)	573 (285)	339 (99)	216 (58)	201 (28)	
CONTREEWORK		124 (73)	130 (59)	340 (199)	300 (203)	209 (215)	290 (128)	311 (136)	

Surar beet Lane 211 0100

Note: standard deviations of variables are given in parenthesis * FADN: European Farm Accountancy Data Network

Acknowledgments

The authors highly appreciate the help of J. Buysse from University of Gent, who provided the data for the validation of input coefficients.

Methodology
Step 1: Starting point
Input allocation regressions (Léon et al., 1999)
$\mathbf{b} = \mathbf{A}\mathbf{x} + \mathbf{u}$
Farm group model (Howitt, 1995)
$\max f(\mathbf{x}) = [\mathbf{p}' \odot \mathbf{y}' + \mathbf{s}' \cdot 1'_M \mathbf{A}]\mathbf{x} - [\mathbf{d}' - 0.5\mathbf{x}'\mathbf{Q}]\mathbf{x}$
x subject to
$\mathbf{R}\mathbf{x} \leq \mathbf{c} [\lambda]$
$\mathbf{x} \ge 0$
Step 2: Error model - simultaneous approach
Adjusted input allocation regression
$\mathbf{b}_f = \left(\tilde{\mathbf{A}} \odot \mathbf{T}_f\right) \mathbf{x}_f + \mathbf{u}_f \ \forall f$
$\mathbf{T}_{j,f} = \left(\mathbf{y}_{f}^{o} \odot \mathbf{p}_{f} + \mathbf{s}_{f}^{o}\right) \forall j$
First order optimality condition (farm group model)
$0 = \mathbf{p}_{f} \odot \mathbf{y}_{f} + \mathbf{s}_{f}^{o} - 1^{M'} \mathbf{A}_{f} - \mathbf{d} - \mathbf{Q} \mathbf{x}_{f} - \mathbf{R}_{f}^{o'} \boldsymbol{\lambda}_{f} \forall f$
$\mathbf{x}_f = \mathbf{x}_f^o + \mathbf{e}_f \ \forall \ f$
$\mathbf{p}_{f,t} = \mathbf{p}_{f,t-1}^o + \mathbf{e}_f^p \forall f$
57 57 5
$\mathbf{Q} = \mathbf{L}\mathbf{L}' \text{with} \mathbf{L}_{ij} = 0 \forall \ j > i$
f farm indices 'o' observed data i variable input category i output category
A matrix of unknown technological coefficients
 b vector of total input use in monetary terms x monetary output vector
 vector of random disturbances
 y, p, s expected yields, expected prices, and subsidies matrix of coefficients of a land and a sugar quota constraint
c available resources and the corresponding λ vector of shadow prices
Q, d quadratic cost function
A cost shares for each <i>i</i> of <i>j</i> per ha - constant across farms

3. step: Estimation

- Generalised Maximum Entropy (GME) estimator (Golan et al. 1997)
- Re-parameterize the unknowns of the model in terms of probabilities and support points for Input allocation matrix, the dual values for land and quota constraints, the linear term of the quadratic object function, and the various error terms related to acreages, prices and input cost shares

Results

We evaluate how the simultaneous approach of input allocations and behavioral model compares to a separate linear regression (LR-model). Both approaches (LR-model and FOC-LR-model) are compared based on observed values on monetary input coefficients as presented in Table 1 that were not used in estimation. Then we also look at the fit of the behavioral model with respect to the endogenous variables.

Input allocation

Table 2: Pearson's correlation coefficient for input allocations

FOC-LR-Model LR-Model Contract Work 0.88 0.81 Seeding 0.73 0.87 Treatment 0.4 0.01 Fertilze 0.35 0.49 Value added 0.88 0.77 3 24 2.95 Sum

Table 3: Deviation of estimated input shares

		Contract work	Seeding	Treatment	Fertilizer	Value- added
Winter Wheat	LR	-0,019	-0,004	0,035	0,005	-0,014
winter wheat	FOC-LR	0,017	-0,006	0,033	0,019	-0,065
117 (LR	0,010	-0,024	0,009	-0,052	0,057
Winter barley	FOC-LR	-0,024	-0,023	0,011	-0,070	0,106
Chicory	LR	0,053	-0,024	0,029	0,005	-0,062
Cnicory	FOC-LR	-0,057	-0,024	0,010	-0,010	0,080
Vegetables in open air	LR	-0,103	0,046	-0,047	-0,033	0,138
vegetables in open air	FOC-LR	-0,069	0,055	-0,023	-0,020	0,057
Potatoes	LR	0,049	0,005	0,037	0,011	-0,102
Potatoes	FOC-LR	0,004	-0,032	-0,013	-0,014	0,054
0	LR	-0,029	0,042	-0,048	-0,057	0,092
Green peas for tin	FOC-LR	0,008	0,035	-0,072	-0,081	0,111
6 h	LR	0,047	0,004	-0,040	0,004	-0,016
Sugar beet	FOC-LR	0.036	0.003	-0.038	-0.004	0.003

Fit of the behavioral model

Table 4: Pearson's correlation coefficient "observed" and fitted values

				Crop	Lane	i allocati	on	Prie	ce	
			Wint	ter Wheat		0.966		0.29	99	_
			Wint	ter barley		0.989		0.74	17	
			Chie	ory		0.753		0.63	38	
			Vege	tables in open a	ir	0.636		0.96	59	
			Potat			0.917		0.46		
			Gree	n peas for tin		0.408		0.34	40	
			Suga	r beet		0.999		0.64	43	
				Dual values						
			Land			0.922				
			Suga	r Quota		0.907				
igure	1:	Obse 1000 900		nd estimate	d value	s for la	und re	nt		•*
igure		1000 900 800 700								
igure		1000 900 800 700 600		observed						
igure		1000 900 800 700 600 500		observed					**** ****	
igure	Euro per hectare	1000 900 800 700 600 500 400		observed					1.000 A	
ïgure		1000 900 800 700 600 500 400 300		observed		s for la			, a	
ïgure		1000 900 800 700 600 500 400 300 200		observed						
ïgure		1000 900 800 700 600 500 400 300		observed					1. 1. 1.	

Conclusions

Using a sample of Belgium FADN accountancy records, the hypothesis that this simultaneous approach would outperform separate input allocation regressions introduced by Léon et al. (1999) was confirmed. The new approach showed better results for all considered aggregate measures across farms comparing estimated input coefficients with observed ones available for this sample, but not used in the estimation.

The concept also offers a farm group supply model with a PMPtype objective function based on multiple farm level observations. a relevant contribution, because most models of this type are not based on a statistical estimation approach.

The ability to include prior information on resource shadow prices promise more realistic results compared to standard PMP specifications.

More observations over time will probably improve the specification with respect to the price response behavior of the resulting farm group model. Panel data typically show more price variation and will therefore likely result in more robust estimates in this respect. Another direction of further development could be the application of Bayesian approaches as in Jansson (2007, 2009) which promise a more straightforward and transparent implementation of prior information without support point related complications.

Literature cited

Golan, A., Judge, G. and Miller, D. Maximum entropy econometrics, Robust Estimation with Limited Data, (New York: John Wiley, 1997).

Howitt, R. E. 'Positive Mathematical Programming', American Journal of Agricultural Economics, Vol. 77, (1995) pp. 329-342. Jansson, T. 'Econometric specification of constrained optimization models'

- (Dissertation University of Bonn 2007) Jansson, T. and Heckelei, T. 'A new estimator for trade costs and its small sample
- properties' Economic Modelling, Vol. 26, (2009) pp. 489-498. Léon, Y., Peeters, L., Quinqu, M., and Surry, Y. 'The Use of Maximum Entropy to Estimate Input-Output Coefficients from Regional Farm Accounting Data',

Journal of Agricultural Economics, Vol. 50, (1999) pp, 425-439.

For further information

Prof. Thomas Heckelei, thomas.heckelei@ilr.uni.bonn.de +49-(0)228-73 2332).

PDF-version of the poster is available at AgEcon.

Poster prepared for presentation at the Agricultural & Applied Economics Association's 2010 AAEA CAES & WAEA Joint Annual Meeting, Denver, Colorado, July 25.-27 2010.

universität**bonn**

VT