

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from **AgEcon Search** may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

A Regional Decomposition Analysis of CO₂ Emissions and Their Evolutions in China

Fengxia Dong

Center for Agricultural and Rural Development Iowa State University

Jing Lu

Center for Agricultural and Rural Development Iowa State University and School of Economics Nanjing Audit University, China

Xiaodong Du

Center for Agricultural and Rural Development Iowa State University

Poster prepared for presentation at the Agricultural & Applied Economics Association 2010 AAEA, CAES, & WAEA Joint Annual Meeting, Denver, Colorado, July 25-27, 2010

Copyright 2010 by Dong, Lu, and Du. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies.

A Regional Decomposition Analysis of CO₂ Emissions and Their Evolutions in China

Introduction

china is currently the world largest emitter of energy-related carbon dioxide (CO₂). Understanding the driving forces governing CO₂ emission levels and their evolutions in China can provide useful information for policy makers who aim to reduce green house gas emissions. Because of policy and historical reasons, considerable regional growth and income disparities exist in China. The regional disparities may influence energy use and CO₂ emissions. Therefore, this study is to investigate the driving forces governing CO₂ emission levels and their evolutions at regional level in China. We include the North, North-East, East, Central-South, South-West, and North-West region of China.

Methodology and Data

A STRUCTURAL DECOMPOSITION analysis method is used. The total CO_2 emission in the *i*th sector of the region *j* at the time t, CE_{ij}^t is estimated based on energy consumption based on fuel type k at time t, $E_{ij,k}^t$, carbon emission factors of the kth fuel, EF_k , and the fraction of oxidized carbon by fuel as:

$$CE_{ij}^{t} = \sum_{k} CE_{ij,k}^{t} = \sum_{k} E_{ij,k}^{t} EF_{k} (1 - CS_{k}^{t}) O_{k} M$$

where CS_k^t is the fraction of the kth fuel that is not oxidized as raw materials in year t, O_k is the fraction of carbon oxidized based on fuel type k, and M is the molecular weight ratio of carbon dioxide to carbon.

The estimated CO₂ emission is further decomposed in order to analyze its driving forces using the following formula:

$$CE_{j}^{t} = \sum_{i} CI_{ij}^{t} EI_{ij}^{t} ES_{ij}^{t} GDP_{j}^{t}$$

where $CI_{ij}^t = CE_{ij}^t/E_{ij}^t$ is the CO_2 emission coefficient, $EI_{ij}^t = E_{ij}^t/GDP_{ij}^t$ is the energy intensity, $ES_{ij}^t = GDP_{ij}^t/GDP_{j}^t$ is the economic structure share, and GDP_{j}^t is the value of the *j*th sector. Thus the change of CO_2 emission between a base year and a target year (ΔCE) can be decomposed into four effects:

- 1. change in the CO₂ emission coefficient (CI effect),
- 2. changes in the energy intensity effect (*EI* effect),
- 3. changes in the economic structure effect (*ES* effect), and
- 4. changes in the economic activity effect (*GDP* effect).

Data from 1991-2007 are collected from various issues of China Statistical Yearbook and China Energy Statistical Yearbook.

Results

ENERGY CONSUMPTION IN each region in China has been increasing along with the rapid economic growth. Parallel to the growth of energy consumption, energy-related CO₂ emission in each region increased rapidly, especially during 2002-2007 (Figure 1). CO₂ emission intensity in each region showed downward trend from 1990 to

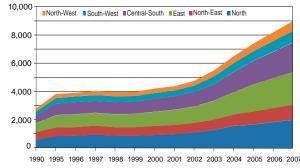


Figure 1. Regional CO₂ emission in China (MT)

2001 (Figure 2). However, a slight increase in CO₂ emission intensity was seen during 2002-2006, especially in North-West and North.

The changes between year 2000 and 2007 in CO₂ emissions in Table 1 shows that GDP growth was the main driving force of total CO₂ emission growth in each region. In addition, the increase of energy intensity and economic structure change in Central-South and North-West increased CO₂ emissions in these two regions. All other regions had favorable changes for reducing CO₂ emissions in CO, emission coefficient, energy intensity, and economic structure. The changes in CO₂ emission intensity in Table 2 show that CO₂ emission intensity (ΔA) increased only in Central-South. In North-West, as the reduction in CO₂ emission coefficient was more than the increase in energy intensity and economic structure effect, the CO₂ emission intensity decreased.

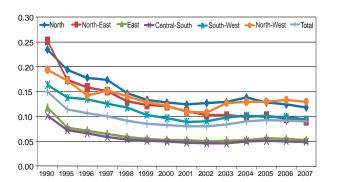


Figure 2. Regional ${\rm CO_2}$ emission intensity in China (MT/100 million yuan)

Table 1. Regional decomposition of CO₂ emission changes between 2000 and 2007

	CI effect	El effect	ES effect	GDP effect	Δ CE
North	-170.501	-8021.140	-350.623	55047.287	46505.024
North-East	-57.728	-9431.574	-1.788	26781.602	17290.512
East	-539.528	-2778.594	-38.527	65419.039	62062.390
Central-South	-917.760	1260.596	312.350	67251.257	67906.443
South-West	-68.041	-6942.405	-9.120	27674.983	20655.417
North-West	-537.829	378.979	43.301	16028.643	15913.093

Table 2. Regional decomposition of ${\rm CO_2}$ emission intensity changes between 2000 and 2007

	CI effect	El effect	ES effect	∆A
North	-0.014	-0.666	-0.029	-0.709
North-East	-0.007	-1.110	0.000	-1.117
East	-0.017	-0.088	-0.001	-0.107
Central-South	-0.030	0.041	0.010	0.021
South-West	-0.011	-1.099	-0.001	-1.112
North-West	-0.135	0.092	0.011	-0.032

Conclusions

EMPLOYING QUANTITATIVE ECONOMIC

tool, this study quantifies the contributions of several predefined factors to changes in energy-related CO₂ emissions and how the effects have evolved in six regions of China. The results reveal that the growth in economic activity accounts for most of the growth of CO₂ emissions. There are potentials for regions to reduce CO₂ emissions through the improvement of CO₂ emission coefficient, energy intensity, and economic structure, especially in Central-South and North-West.