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Abstract  

 

Accurately forecasting volatility at distant horizons is critical for managing long-term risk in 

agriculture. Given the poor performance of GARCH-type models in long-term volatility 

forecast, we develop a risk-adjusted implied volatility forecast model, which adjust the risk-

neutral implied volatility by correctly accounting for the volatility risk premium. The paper 

evaluates the performance of the new implied volatility forecast in the corn futures market 

relative to two alternative forecasts - a three-year moving average forecast and a naïve 

forecast. The finding from the study is that the new implied volatility forecasts have better or 

at least equal predictive power compared to alternative predicting approaches. 

 

Keywords: Risk-neutral, Volatility risk premium, Forecast, Corn options  
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Accurately forecasting volatility at distant horizons is critical for measuring, monitoring, and 

managing long-term risk in agriculture. Consider a crop merchant who buys and stores corn 

at harvest for later resale at a price which is unknown at the time of purchase. Clearly he 

needs volatility forecasts to evaluate his future profit margin. If he maintains a hedging 

program, then he needs volatility forecasts to determine effective hedge ratios and evaluate 

potential cash flow demands. Additionally, forecasting volatility can also help crop extension 

educator to develop simulation tools such as AgRisk
TM 

program, which needs volatility as an 

input to develop harvest-time revenue distribution of grain farms with and without using a 

variety of risk management strategies (Manfredo, Leuthold, and Irwin, 2001). 
 

Volatility forecasts have received considerable attention in the literature because of its 

importance in risk management. There is a large body of literature on forecasting 

performance of various volatility models, including econometric models using time series 

data and option implied volatility (IV) models. The econometric method such as using 

ARCH-type models or stochastic volatility models is backward-looking, using the historical 

information. Generally the method could provide accurate predictions for volatility at short 

horizons. But it is inappropriate when used to predict long-term volatilities as more-distant 

predictions generally revert to the unconditional mean (Egelkraut, Garcia, and Sherrick, 

2007). The IV method is obtained from observed options premiums by inverting a theoretical 

option pricing method. It incorporates all market participants‟ expectations based on all 

available historical information, and thus is forward-looking. It is believed to provide a better 

forecast for short and long-term volatilities. The predictive power of these models in 

agricultural commodities markets has also been scrutinized. Garcia and Leuthold (2004) offer 

an early review of the literature and conclude that IV method provides more reasonable 

forecasts for agricultural commodity price volatilities of nearby futures contracts.  
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However, whether the IV approach could provide superior forecast power for distant 

prices is unclear. Research on this issue is scarce. To date, only two known studies have 

investigated forecast power, but both of them find that the implied volatility approach 

provides biased forecasts for the volatility of distant agricultural commodity prices 

(Szakmary et al., 2003 and Egelkraut, Garcia, and Sherrick, 2007). 

  Hence, it is of interest to find out the source of the bias and the way to correct it. The 

bias may be caused by factors such as measurement errors and/or volatility risk premiums. 

Poteshman (2000) shows that the bias in the implied volatility does not disappear after 

measurement errors are corrected by using last-period implied and realized volatilities as 

instrumental variables. Recent research has turned to other explanations, particularly a 

volatility risk premium. In a Monte Carlo simulation, Doran and Ronn (2008) demonstrate 

that the volatility risk premium is the only parameter that generates the disparity between 

implied and realized volatilities in energy markets, even in the presence of jumps and a jump 

premium. It is believed that volatility risk premium also plays a significant role in the forecast 

of long term volatility: the longer the horizon, the less predictable the volatility, and thus 

investors would demand a risk premium for bearing the volatility risk. Therefore, addressing 

the volatility risk premium when inferring the implied volatility may improve forecast of 

volatility at distant horizons.  

In this study we estimate a volatility risk premium using the GMM approach and 

adjust the implied volatility for the volatility risk premium accordingly. We further evaluate 

whether the adjusted implied volatility forecasts are superior to other forecasts. We compare 

the forecasts with the forecasts derived from time series models: a moving average forecast 

and a naïve forecast. In the empirical application we focus on corn futures contracts and study 

the price volatilities in 2-month and 3-month horizons in view of the structure of corn futures 

options contract expiration. 
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Methodology 

Heston model 

The existing literature that uses the B-S model assumes that volatility of the logarithm of the 

underlying asset price is constant over the life of the option. Since this contradicts the 

empirical findings that volatility is time-varying, more generalized option pricing models are 

developed to incorporate stochastic volatility. In this study volatility is assumed to follow 

Heston‟s (1993) one-factor mean-reverting square root process. 
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where tp  is the logarithmic corn futures price ( )log( tt Sp  ) and tV is the instantaneous 

volatility. The instantaneous correlation between the two separate Brownian motions driving 

the price and volatility processes is generally negative in empirical analysis, or 0 .  

Given this dynamic specification for the underlying process and assumptions of no 

arbitrage and a linear volatility risk premium, standard pricing arguments can be transformed 

into the following equivalent martingale measure, or risk-neutral distribution: 
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where tr  is the risk-free interest rate. The risk-neutral parameters in (2) is directly associated 

with the parameters in the actual price process in eq. (1) by the relationships,  kk *  and 

)/(*   kk , where *k means the speed of mean reversion for the risk-neutral volatility 

process, *  is the long-term mean volatility, and  refers to the stochastic volatility risk 

premium. Since volatility risk premium is generally empirically estimated to be negative, the 
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degree of mean reversion for the risk-neutral volatility process, as determined by *k , is 

slower than the mean reversion for the actual process, as determined by k .  

 

Moment Conditions 

Doran and Ronn (2008) recommend a two-step procedure to estimate volatility risk premiums 

based on the Heston‟s volatility specification. But the limitation of the method is that it places 

strong restrictions on the data-generating process, e.g. the correlation between the volatility 

and the asset return is zero )0(  . Following Bollerslev, Gibson, and Zhou (2008), we 

apply a more generalized estimation method - GMM. Two moment conditions are derived 

from the Heston model under a risk-neutral probability measure and a physical probability 

measure, respectively.  

First, we define an integrated volatility from date t  to date t as  

(3) 


 

t

t

stt dsVv , , 

From model (1), one relationship between the integrated volatility and his lag value can be 

derived (Bollerslev and Zhou, 2002)  

(4) 
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where  ke and )1(  ke . Therefore the first conditional moment can be reached 

by taking the expectation under the physical measure at time t  

(5) 𝐸 𝑣𝑡+∆,𝑡+2∆ ℱ𝑡
  = 𝛼 ∙ 𝐸 𝑣𝑡,𝑡+∆ ℱ𝑡

  + 𝛽, 

where ℱ𝑡  is available information at time t . The first conditional moment equation 

establishes the link between the objective expectation of the integrated volatility and its lag. 
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The second moment condition can be derived from the model (2). As formally shown by 

Bollerslev and Zhou (2006), the relationship between the objective expectation of the 

integrated volatility with its first moment under the risk-neutral dynamics is  

(6) 𝐸 𝑣𝑡,𝑡+∆ ℱ𝑡
  = 𝑎 ∙ 𝐸∗ 𝑣𝑡,𝑡+∆ ℱ𝑡

  + 𝑏, 

where )(* E  refers to the expectation under the risk-neutral measure, 𝑎 =
1−𝑒−𝑘∆

𝑘

1−𝑒−𝑘∗∆

𝑘∗ , 

and 𝑏 = 𝜃  ∆ −
1−𝑒−𝑘∆

𝑘
 −

(1−𝑒−𝑘∆)/𝑘

(1−𝑒−𝑘∗∆)/𝑘∗
𝜃∗[∆ −

1−𝑒−𝑘∗∆

𝑘∗
]. 

 

Volatility Measures 

If integrated volatilities under the risk-neutral and physical measures can be observed, we can 

construct a standard GMM type estimator for parameters in model (2) using the moment 

conditions (5) and (6). However the integrated volatilities entering the moment conditions are 

not directly observable. A proxy measure or an approximation to the unobserved needs to be 

found. Much of the recent literature has suggested that the model-free realized volatility 

measures can afford an integrated volatility to any desired degree of accuracy (Anderson et 

al., 2008). The model-free realized volatility can be computed by summing the squared high-

frequency returns over the time interval.
1
 We let 

n

ttv ,  be the realized volatility computed by 

aggregating intra-day returns over the interval [𝑡, 𝑡 + ∆]: 

(7) 𝑣𝑡,𝑡+∆
𝑛 =  [𝑝

𝑡+
𝑖

𝑛
 ∆ 

− 𝑝
𝑡+

𝑖−1

𝑛
 ∆ 

]2𝑛
𝑖=1  

Based on the theory of quadratic variation, 𝑣𝑡,𝑡+∆
𝑛  becomes an increasingly accurate measure 

of integrated volatility when 𝑛  increases asymptotically. Empirically, we construct the 

realized volatility from the summation of the five-minute squared return within the time 

interval.  

                                                           
1
 Bollerslev and Zhou (2006) points out that a host of market microstructure frictions invalidate the underlying 

martingale assumption for the returns at the ultra highest frequencies. Therefore, we need test the sensitivity of 

parameter estimator to the different frequency approximation of model free realized volatility.  
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  Using option prices, it is also possible to construct a model-free measure of the risk-

neutral expectation of the integrated volatility. Suppose that call options with a continuum of 

strike price (𝐾) for a given maturity t  are traded on an underlying asset. Britten-Jones 

and Neuberger (2000) define model-free implied volatility as the integral of call option prices 

over an infinite range of strike prices, 

(8) 𝐼𝑉𝑡,𝑡+∆
∗ = 2  

𝐶 𝑡+∆,𝐾 −max ⁡(0,𝑆𝑡−𝐾)

𝐾2 𝑑𝐾
∞

0
 

where ),( KtC denotes the price of a European call option maturing at time t with an exercise 

price 𝐾. They show that the model free implied volatility can equals the true risk-neutral 

expectation of the integrated volatility,
2
 

(9) 𝐼𝑉𝑡,𝑡+∆
∗ = 𝐸∗ 𝑣𝑡,𝑡+∆ ℱ𝑡

  .  

If option prices are available for all strike prices, the model free volatility can be calculated 

using numerical integration method. But in fact only a finite number of strike prices are 

traded in the market so that it can lead to truncation errors in the calculation process. In 

addition, the implementation also involves discretization errors due to numerical integration. 

Thus the empirical measure is  

(10) 𝐼𝑉𝑡,𝑡+∆
∗ ≈ 2  

𝐶 𝑡+∆,𝐾 −max  0,𝑆𝑡−𝐾 

𝐾2 𝑑𝐾
𝐾𝑚𝑎𝑥

𝐾𝑚𝑖𝑛
 

≈  [𝑔 𝑡 + ∆, 𝐾𝑖 + 𝑔 𝑡 + ∆, 𝐾𝑖−1 

𝑚

𝑖=1

]∆𝐾 

where ∆𝐾 = (𝐾𝑚𝑎𝑥 − 𝐾𝑚𝑖𝑛)/𝑚 , 𝐾𝑖 = 𝐾𝑚𝑖𝑛 + ∆𝐾  for 0 ≤ 𝑖 ≤ 𝑚 , and 𝑔 𝑡 + ∆, 𝐾𝑖 =

𝐶 𝑡+∆,𝐾𝑖 −max ⁡(0,𝑆𝑡−𝐾𝑖)

𝐾𝑖
2 . 𝐾𝑚𝑎𝑥 and 𝐾𝑚𝑖𝑛 are upper and lower bounds of strike prices. Jiang 

and Tian (2005) show that these measurement errors can be ignored and the volatility can be 

accurately approximated from a finite number of options empirically. Therefore, we can 

                                                           
2
 Jiang and Tian (2005) also show that the same result can be derived even when the price process contains jump 

diffusions.  
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approximate the risk-neutral expectation of integrated volatility by the above numerical 

integration.  

 

Estimation 

Based on the two derived moment conditions and approximations to the dependent and 

independent variables, the standard GMM estimation procedure is used. An additional 

moment condition that uses the lag of realized volatility as instrument is used for more 

efficient estimation, taking the advantage of over-identified restrictions. The system of 

equations is  

(11) 𝑓𝑡 𝜉 =

 
 
 
 
 

𝑣𝑡+∆,𝑡+2∆ − 𝛼 ∙ 𝑣𝑡,𝑡+∆ − 𝛽

(𝑣𝑡+∆,𝑡+2∆ − 𝛼 ∙ 𝑣𝑡,𝑡+∆ − 𝛽)𝑣𝑡−Δ,𝑡

𝑣𝑡,𝑡+∆ − 𝑎 ∙ 𝐼𝑉𝑡,𝑡+Δ
∗ − 𝑏

(𝑣𝑡,𝑡+∆ − 𝑎 ∙ 𝐼𝑉𝑡,𝑡+Δ
∗ − 𝑏)𝑣𝑡−Δ,𝑡  

 
 
 
 

 

where 𝜉  is the parameter vector (𝑘, 𝜃, 𝜆)′ . Under the GMM framework, parameters are 

estimated by setting sample moments to be close to population counterpart. In population 

moment, we know that  𝐸(𝑓𝑡 𝜉  ℱ𝑡) = 0 . Thus we define its sample average 𝑔𝑇 𝜉 =

1

𝑇−3
 (𝑓𝑡 𝜉 )𝑇−2

𝑡=2 . Since we have more moment conditions than parameters to estimate, we 

will not obtain a unique solution for 𝜉. The corresponding GMM estimator is defined as the 

one that minimizes𝑔𝑇 𝜉 ′𝑊
−1𝑔𝑇 𝜉 , where 𝑊denotes a weighting, positive definitive matrix. 

To be efficient, 𝑊 is generally taking the asymptotic covariance matrix of 𝑔𝑇 𝜉  (Hansen 

1982).  So 

(12) 𝜉 = argmin𝜉  𝑔𝑇 𝜉 ′𝑊
−1𝑔𝑇 𝜉   

Under the null that the moment restrictions hold, the criterion function evaluated at the 

estimated 𝜉  has the chi-squared distribution with degrees of freedom equal to the number of 

independent moment conditions less than the number of estimated parameters. The criterion 

function is the minimized value of the objective function 𝑔𝑇 𝜉 ′𝑊
−1𝑔𝑇 𝜉  multiplied by the 
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sample size. We use the statistic to test the validity of the instruments.  We follow Bollerslev, 

Gibson, and Zhou (2008) and employ an autocorrelation and heteroscedasticity robust 

covariance matrix 𝑊 to do statistical inference.  Once the volatility risk premium is estimated, 

a risk-adjusted implied volatility can be derived from the second moment condition.  

 

Evaluating forecasts 

A popular norm to evaluate different forecast models is the minimization of a particular 

statistical loss function. However, there does not exist a unique loss function to evaluate the 

quality of forecast. In much of the previous literature, the general use of loss function is a 

particular set of statistical loss of function of the MSE-type. In the present work, instead of 

choosing a particular statistical loss function as the best and unique criterion, we follow 

Marcucci (2005) to adopt six different loss functions, which have different interpretations and 

can lead to a more complete forecast evaluation of the competing models.
3
  These statistical 

loss functions are: 

(13) 𝑀𝑆𝐸1 =  (𝑣𝑡,𝑡+∆
1/2𝑇

𝑡=1 − 𝑓𝑡,𝑡+∆
1/2

)2/𝑇 

(14) 𝑀𝑆𝐸2 =  (𝑣𝑡,𝑡+∆
𝑇
𝑡=1 − 𝑓𝑡,𝑡+∆)2/𝑇 

(15) 𝑀𝐴𝐷1 =   𝑣𝑡,𝑡+∆
1/2

− 𝑓𝑡,𝑡+∆
1/2

 𝑇
𝑡=1 /𝑇 

(16) 𝑀𝐴𝐷2 =   𝑣𝑡,𝑡+∆ − 𝑓𝑡,𝑡+∆ 
𝑇
𝑡=1 /𝑇 

(17) 𝑄𝐿𝐼𝐾𝐸 =  (𝑙𝑜𝑔(𝑓𝑡,𝑡+∆) + 𝑣𝑡,𝑡+∆𝑓𝑡,𝑡+∆
−1 )/𝑇𝑇

𝑡=1  

(18) 𝑅2𝐿𝑂𝐺 =  (𝑙𝑜𝑔(𝑣𝑡,𝑡+∆𝑓𝑡,𝑡+∆
−1 ))2/𝑇𝑇

𝑡=1  

(13) and (14) are the typical mean squared error (MSE) metrics, while (15) and (16) are mean 

absolute deviation (MAD) criteria. The latter are more robust to the presence of outliers than 

the former, although they impose the same penalty on over- and under-prediction. The loss 

                                                           
3
 Marcucci (2005) adopts seven different loss functions. We exclude heteroscedasticity-adjusted MSE (HMSE) 

because the HMSE loss is not particularly suitable for evaluating different volatility forecasts.  
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function in (17) suggested by Bollerslev et al. (1994) is originated from a Gaussian likelihood. 

The criteria in (18) is similar to (14), using the 𝑅2 metric in the regression of 𝑙𝑜𝑔(𝑣𝑡,𝑡+∆) on a 

constant and 𝑙𝑜𝑔𝑓𝑡,𝑡+∆ given that the forecasts are unbiased. 

These loss measures are statistically compared using the Modified Diebold Mariano 

(MDM) test (Harvey, Leybourne, and Newbold 1997). Diebold and Mariano (1995) propose 

a test of equal predictive ability of two competing models based on the null hypothesis of no 

difference in the accuracy of the two forecasts. The procedure first specifies one loss function 

𝑙(𝑒)  of the forecast error 𝑒 . And then the loss differential between the two competing 

forecasts can be defined as 𝑑𝑡 = 𝑙 𝑒𝑖,𝑡 − 𝑙(𝑒𝑗 ,𝑡), where 𝑖 and 𝑗 are two competing models. 

Assuming the sequence  𝑑𝑡 𝑡=1
𝑇  is covariance stationary and has a short memory, Diebold 

and Mariano (1995) show that the asymptotic distribution of the sample mean loss 

differential 𝑑 =
1

𝑇
 𝑑𝑡

𝑇
𝑡=1  is  𝑇 𝑑 − 𝜇 

𝑑
 𝑁(0, 𝑉 𝑑  ). The DM statistic is  

(19) 𝐷𝑀 = 𝑑 / 𝑉 𝑑   . 

where 𝑉 𝑑    is an estimate of the asymptotic variance. Under the null hypothesis of 𝐸(𝑑𝑡) =

0, the DM test statistic has a standard normal distribution asymptotically. The modified DM 

test suggested by Harvey, Leybourne, and Newbold (1997) takes into account over-sized 

problem met by DM test in small samples and long forecast horizons. Its statistic is generated 

by multiplying DM statistic by the factor  𝑇−1[𝑇 + 1 − 2𝑚 + 𝑇−1𝑚(𝑚 − 1), where 𝑚 is 

the forecast horizon. The statistic is compared to critical value from the t-distribution with 

𝑇 − 1 degrees of freedom rather than the normal distribution as with the DM test.  The MDM 

test can be applicable to a variety of loss functions and is asserted to be the best available 

method for determining differences in competing forecasts (Harvey, Leybourne, and 

Newbold 1997). 
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Data 

Our empirical analysis is based on 2-month and 3-month implied and realized volatilities for 

corn futures. The intervals for which volatilities are computed are relevant to the structure of 

expiration for corn futures and options. Corn futures contracts expire five times a year, that is, 

March, May, July, September, and December. And the corresponding options contracts 

mature about one-month ahead of futures expiration. The intervals can be settled at the same 

time each year because corn futures and options contracts are listed repeatedly each year. The 

fixed five intervals over which volatilities are examined at each year are November to 

February, February to April, April to June, June to August, August to November.  

Implied volatilities are extracted from call options contracts traded from 25 June 2001 

to 22 April 2010. These contract prices are obtained from Bloomberg Terminal. We calculate 

the model-free implied volatility with the discrete version of (10). Striking prices on corn 

options are integer multiples of five and ten cents per bushel. Since trading volume of corn 

options with strike price interval of 5 points is too small to permit extraction of sufficient 

implied volatilities, we discretize the range of integration onto a grid of 10 points. Meanwhile, 

the call options prices are filtered to exclude options that are: (1) no contract volume; (2) 

options premium is smaller than its intrinsic value. 

Our realized volatilities are calculated based on the summation of the five-minute 

squared returns on logarithmic corn futures within the corresponding intervals. Intra-day corn 

futures prices are purchased from an outside financial company. The realized volatilities 

based on high-frequency data should provide a good approximation to the unobserved 

integrated volatilities, especially, a better approximation than the one calculated from the sum 

of the daily squared returns.  

Figure 1 plots realized volatility, and risk-neutral implied volatility. The graph shows 

three features about volatilities in the sample period: (a) both of the volatility measures were 
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higher during the latter half of the sample, which resulted from the commodities boom 

associated with bad weather and increasing demand for corn from biofuel production. They 

have also decreased more recently because the commodities bull is coming to an end; (b) 

volatilities have strong seasonality. They are higher at corn critical growth stages each year 

(July to August) than other stages such as harvest or planting. Corn is considered a 

determinant crop. That is, if the loss is brought about during key growth periods, it cannot be 

compensated by new growth from the later good weather. Thus crop-growing conditions, 

such as moisture and temperature in critical growth periods are important factors in affecting 

corn production. The periods are also characterized with high price volatilities; (c) the two 

measures have the similar movement over the time. Summary statistics are reported in Table 

1.  The risk-neutral implied volatility is systematically higher than realized volatility. 

Meanwhile, their unconditional distributions deviate from the normal.  

 

Empirical Results 

We separate the data into two parts to do an estimation and an out-of-sample evaluation. The 

estimation period contains data from 25 June 2001 to 24 Aug 2007. Table 2 reports the GMM 

estimation results. As can be seen from the table, when we specify a linear risk premium, the 

estimated 𝜆 is -3.0 and is statistically significant at 1% level. This finding is consistent with 

other papers that have found a negative risk premium on stochastic volatility. For example, 

Doran and Ronn (2008) found the strong statistical significance for the negative volatility risk 

premium in energy markets even after accounting for the price risk premium and leverage 

effect. Volatility risk premium estimates are -1.1, -0.5 and -0.6 for natural gas, heating oil, 

and crude oil by using the sample from Jan 1994 through Apr 2004. Other parameters, such 

as the long-term mean volatility 𝜃  is positive and significant at the 1% level, while the 

adjustment speed 𝑘 is not significant even if it is positive. Finally, the Sargan test shows that 
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the overidentifying restrictions cannot be rejected at the traditional level and thus validates 

the choice of instrumental variables.   

 Alternative forecasts compared with our adjusted implied volatility include a naïve 

forecast and a moving average forecast. The naïve forecast is defined as the volatility realized 

during the interval last year while the moving average forecast is developed by averaging past 

three-year realized volatilities during the respective intervals. Table 3 reports the out-of-

sample evaluation of different volatility forecasts according to the statistical loss functions.  

Considering all the alternative loss functions examined over these three volatility forecasts, 

we found that risk-adjusted implied volatility always has the minimum forecast errors 

compared to other two forecasts, regardless of which loss function is adopted. The ranking 

order of other two forecasts is complex, depending on specific loss functions. For example, 

forecast errors for the moving average forecast as measured by the MSEs or MADs are 

smaller than for the naïve forecast while the results are opposite if other functions are adopted.  

 Table 4 reports the MDM test when the benchmark is the best forecast (risk-adjusted 

implied volatility), compared to each of the other models. Also, the comparison is made 

taking into account all the loss functions. Significant difference can be found for the majority 

of loss functions between the implied volatility and the naïve forecast. We reject the null of 

equal forecast accuracy between the implied volatility and the naïve forecast at the 10% level 

for all loss functions but QLIKE, for which we only reject it at the 15% level. Differences 

between the implied volatility and the moving-average forecast are not significant for most of 

loss functions. Under the MSE loss function, the risk-adjusted implied volatility has a p-value 

of more than 0.15 for DMD test, failing to reject the null hypothesis. Under 1MAD and 

LOGR2 Loss functions, both p-values are below 10%, suggesting the significant 

improvement over the moving-average model.  
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As the  IV from an efficient options market incorporates past information and future 

expectation - a larger information set, such a forecast should be able to perform at least as 

well as models based purely on historical data (Becker, Clements and Coleman-Fenn 2009). 

The results of this study are consistent with this conclusion. We further found when more 

historical information is incorporated into the time series forecast, the forecast ability will 

improve.  

 

Conclusion 

This paper proposes to adjust the volatility risk premium in pricing options on distant futures 

contracts and investigates whether the adjustment can improve the implied volatility forecasts. 

The volatility risk premium explains a significant portion of the bias in implied volatility 

forecasts found in the existing literature, thus reducing the bias in volatility forecasts. In this 

study we found that the new forecasts of implied volatilities have greater or at least as good 

predictive power as alternative predicting approaches. The framework developed in this paper 

can be used to forecast volatilities of futures contracts of longer horizons. It can also be used 

to derive the volatilities of non-corn agricultural commodities futures.  
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Figure 1: Realized Volatility and Risk-Neutral Implied Volatility 
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Table 1: Summary Statistics for all-Sample Volatilities 

 

Statistics Realized Volatility Implied Volatility 

Mean 0.0038 0.0164 

Std. Dev. 0.0024 0.0080 

Skewness 2.2648 1.1801 

Kurtosis 10.7836 5.0489 

Minimum 0.0009 0.0050 

Maximum 0.0147 0.0451 

 

 

 

 

Table 2: Estimation of Parameters  

 

Parameters estimator Standard Error p-value 

𝑘 0.5782 0.7837 0.4675 

𝜃 0.0031 0.0006 0.0001 

𝜆 -3.0036 0.5193 0.0001 

𝜒2(D.O.F=1) 1.3819  0.3988 
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Table 3: Out-of-sample Evaluation of Different Volatility Forecasts 

 

 

Fun. 
1MSE  2MSE  1MAD  2MAD  QLIKE  LOGR2  

Implied Vol. 0.0001 0.000001 0.0073 0.0009 -4.2800 0.0920 

Mov.  Ave. 0.0003 0.000009 0.0124 0.0018 -4.1929 0.2389 

Naive 0.0003 0.000012 0.0127 0.0020 -4.2106 0.2098 

 

 

 

 

 

 

Table 4: Modified Diebold-Mariano Test  

(Benchmark: Risk-Adjusted Implied Volatility Forecast) 

 

Fun. 
1MSE  2MSE  1MAD  2MAD  QLIKE  LOGR2  

Mov.  Ave. -1.5227 -1.2625 -1.8067 -1.5761 -1.6173 -1.8026 

p-value 0.1518 0.2289 0.0940 0.1390 0.1298 0.0947 

Naïve -1.9101 -1.8799 -2.0496 -2.1527 -1.5392 -1.9218 

p-value 0.0784 0.0827 0.0611 0.0507 0.1477 0.0768 

 

 

 


