

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search http://ageconsearch.umn.edu aesearch@umn.edu

Papers downloaded from **AgEcon Search** may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. Livelihood Disruption and Venture Creation: Entrepreneurship as Technology Adoption, A Case of Tobacco Farmer in Kentucky

> Sivalai V. Khantachavana Graduate Researcher Applied Economics and Management Cornell University sv223@cornell.edu

> David R. Just Associate Professor Applied Economics and Management Cornell University drj3@cornell.edu

Helen Pushkarskaya Assistant Professor Agricultural Economics University of Kentucky helen.pushkarskaya@uky.edu

Poster prepared for presentation at the Agricultural & Applied Economics Association 2010 AAEA,CAES, & WAEA Joint Annual Meeting, Denver, Colorado, July 25-27, 2010

Copyright 2010 by S. Khantachavana, D. Just and H. Pushkarskaya. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies.

Livelihood Disruption and Venture Creation: Entrepreneurship as Technology Adoption, **A case of Tobacco Farmer in Kentucky** Sivalai V. Khantachavana, David R. Just, Helen Pushkarskaya

Introduction

 Technology adoption and Entrepreneurial activity both involve substantial risks. • The uncertainty in household income and changes in economic environment during the tobacco transition payment program lead many individuals into entrepreneurial activities. • Heterogeneity in learning by doing, or knowledge generated by direct or indirect experience, is determined by the degree to which the individual is connected to an entrepreneurial social network.

• Entrepreneurs need complementary resources to produce and deliver their goods and service (Teece 1987). They need support, knowledge and access to distribution channels through social network.

• The link and the interaction among entrepreneurs and their social network can enlarge the availability of resources that help maintain a new firm (Hansen 1995).

Objectives

 Use the theory of technology adoption to study entrepreneurship

• Examine the role of social networks (learning by doing) in the adoption of entrepreneurship • Study the factors associated with an entrepreneurial activity decision

Hypotheses

• The "push" hypothesis: farmers with decreased income are pushed into starting a new business • Learning by Doing: Farmers who have friends who have started ventures will be more likely to start their own, controlling for other social connections.

Data

• A Survey of Kentucky Farmers: The Tobacco Buyout, 2005-2006 • 702 respondents

<u>Bivar</u>

$max_{t\in I}$

- *S* =Soc
- • $\pi_e = C$ • π_0 = E
- *t* = Per entrepr
- *T* = Lei
- *U* = Sta • θ = Pe

$EU(\pi_{e})$

- Disc - wł U_i^*
 - U_i^*
 - Z_i
- wh EU_i

EU_{i}

 Factor techno - Far

Cornell University, University of Kentucky

Methods		
	Bivari b/s	
Bivariate Probit Model	entrep	
	income1 0.4	84'
\mathbf{u} $(\mathbf{u}$ $(\mathbf{u}$ \mathbf{u} \mathbf{u}) \mathbf{u} $(\mathbf{u}$ $(\mathbf{u}$ \mathbf{u})	(0.2	
$max_{t\in[0,1],T}U(\pi_0(\theta,(1-t),T)) + EU(\pi_e S,\theta,t,T),$	income2 0.03	
	(0.1	.74
• <i>S</i> =Social network	income3 0.1	08
• π_e = Current employment profit	(0.2	00
• π_0 = Entrepreneurial activity random profit	land 0.10	
 t = Percentage of working time devoted to the 	(0.1	
entrepreneurial activity	buyout checks -0.0	
• $T = $ Leisure time	payment option 0.2	
 U = Standard utility of wealth function 	(0.1	
• θ = Personal characteristics	educ 0.1	
	(0.1	
$EU(\pi_e S,\theta,t,T) = \int_{-\infty}^{\infty} U(\pi_e)f(\pi_e S,\theta,t,T)d\pi_e$	comp 0.0	
$J_{-\infty} = (n_e \sigma \sigma \sigma \sigma \sigma \sigma \sigma \sigma \sigma $	(0.1	.72
	internet 0.1	00
 Discrete choices 	(0.1	.44
whathar ar not to quit tobacco form	social group -0.1	.42
 whether or not to quit tobacco farm 	(0.1	.74
$U_i^* = U(\pi_{0i}(\theta_i, (1-t_i), T_i; u_i))$		
	Note: *p<0.1; **p<0.05	. *
	Note: p<0.1, p<0.05	<u> </u>
$U_i^* = X_{1i}\beta_1 + u_i$	Bivaria	
	b/se)
$(1 if II^* < FII(\pi . S. A. t. T.)$	quittobacco	_
$z_i = \begin{cases} 1 \text{ if } U_i^* \leq EU(\pi_{ei} S_i, \theta_i, t_i, T_i) \\ 0 \text{ if } U_i^* > EU(\pi_{ei} S_i, \theta_i, t_i, T_i) \end{cases}$	income1 -0.1	
$U_i^* = U(\pi_{ei} S_i, \theta_i, t_i, T_i)$	(0.2	
	incomo? 0.1	
	income2 -0.1 (0.1	
- whether or not to start new business	income2 -0.1 (0.1 income3 0.11	90
- whether or not to start new business	(0.1	90 1
- whether or not to start new business $EU_i^* = EU(\pi_{ei} S_i, \theta_i, t_i, T_i; \varepsilon_i)$	(0.1 income3 0.11	90 L1 09
	(0.1 income3 0.11 (0.2	90 11 09 23
	(0.1 income3 0.11 (0.2 land 0.12	90 11 09 23 51
$EU_i^* = EU(\pi_{ei} S_i, \theta_i, t_i, T_i; \varepsilon_i)$	(0.1 income3 0.11 (0.2 land 0.12 (0.1 buyout checks 0.00 (0.0	900 11 092 23 510 00
$EU_i^* = EU(\pi_{ei} S_i, \theta_i, t_i, T_i; \varepsilon_i)$	(0.1 income3 0.11 (0.2 land 0.12 (0.1 buyout checks 0.00 (0.0 payment option 0.32	900 11 092 23 511 00 000 29
$EU_i^* = EU(\pi_{ei} S_i, \theta_i, t_i, T_i; \varepsilon_i)$	(0.1 income3 0.11 (0.2 land 0.12 (0.1 buyout checks 0.00 (0.0	900 11 092 23 511 00 000 29
$EU_i^* = EU(\pi_{ei} S_i, \theta_i, t_i, T_i; \varepsilon_i)$ = $\int_0^\infty U(\pi_e) f(\pi_e S_i, \theta_i, t_i, T_i; \varepsilon_i) d\pi_e$	(0.1 income3 0.11 (0.2 land 0.12 (0.1 buyout checks 0.00 (0.0 payment option 0.32	900 11 092 23 511 00 29 04
$EU_i^* = EU(\pi_{ei} S_i, \theta_i, t_i, T_i; \varepsilon_i)$ = $\int_{-\infty}^{\infty} U(\pi_e) f(\pi_e S_i, \theta_i, t_i, T_i; \varepsilon_i) d\pi_e$	(0.1 income3 0.11 (0.2 land 0.12 (0.1 buyout checks 0.00 (0.0 payment option 0.32 (0.2	900 11 09 23 51 00 29 04 59
$EU_i^* = EU(\pi_{ei} S_i, \theta_i, t_i, T_i; \varepsilon_i)$ = $\int_0^\infty U(\pi_e) f(\pi_e S_i, \theta_i, t_i, T_i; \varepsilon_i) d\pi_e$	(0.1 income3 0.11 (0.2 land 0.12 (0.1 buyout checks 0.00 (0.0 payment option 0.32 (0.2 educ 0.25	900 11 092 23 510 00 29 04 59 62
$EU_i^* = EU(\pi_{ei} S_i, \theta_i, t_i, T_i; \varepsilon_i)$ = $\int_{-\infty}^{\infty} U(\pi_e) f(\pi_e S_i, \theta_i, t_i, T_i; \varepsilon_i) d\pi_e$ $EU_i^* \cong X_{2i} \beta_2 + \varepsilon_i$	(0.1 income3 0.11 (0.2 land 0.12 (0.1 buyout checks 0.00 (0.0 payment option 0.32 (0.2 educ 0.25 (0.1 comp -0.0 (0.1	900 11 092 51 00 29 04 59 62 46 78
$EU_i^* = EU(\pi_{ei} S_i, \theta_i, t_i, T_i; \varepsilon_i)$ = $\int_{-\infty}^{\infty} U(\pi_e) f(\pi_e S_i, \theta_i, t_i, T_i; \varepsilon_i) d\pi_e$ $EU_i^* \cong X_{2i} \beta_2 + \varepsilon_i$	(0.1 income3 0.11 (0.2 land 0.12 (0.1 buyout checks 0.00 (0.0 payment option 0.32 (0.2 educ 0.25 (0.1 comp -0.0 (0.1 internet 0.06	900 11 09 23 51 00 29 04 59 62 46 78 51
$EU_i^* = EU(\pi_{ei} S_i, \theta_i, t_i, T_i; \varepsilon_i)$ = $\int_{-\infty}^{\infty} U(\pi_e) f(\pi_e S_i, \theta_i, t_i, T_i; \varepsilon_i) d\pi_e$ $EU_i^* \cong X_{2i} \beta_2 + \varepsilon_i$	(0.1 income3 0.11 (0.2 land 0.12 (0.1 buyout checks 0.00 (0.0 payment option 0.32 (0.2 educ 0.25 (0.1 comp -0.0 (0.1 internet 0.06	900 11 09 51 00 29 04 59 62 46 78 51 49
$EU_i^* = EU(\pi_{ei} S_i, \theta_i, t_i, T_i; \varepsilon_i)$ = $\int_{-\infty}^{\infty} U(\pi_e) f(\pi_e S_i, \theta_i, t_i, T_i; \varepsilon_i) d\pi_e$	(0.1 income3 0.11 (0.2 land 0.12 (0.1 buyout checks 0.00 (0.0 payment option 0.32 (0.2 educ 0.25 (0.1 comp -0.0 (0.1 internet 0.06 (0.1 comp 0.52	900 11 091 23 51 00 29 04 59 62 46 78 51 49 22*
$EU_i^* = EU(\pi_{ei} S_i, \theta_i, t_i, T_i; \varepsilon_i)$ $= \int_{-\infty}^{\infty} U(\pi_e) f(\pi_e S_i, \theta_i, t_i, T_i; \varepsilon_i) d\pi_e$ $EU_i^* \cong X_{2i} \beta_2 + \varepsilon_i$ $y_i = \begin{cases} 1 \text{ if } EU_i^* > U(\pi_{0i}(\theta_i, (1 - t_i), T_i)) \\ 0 \text{ if } EU_i^* \le U(\pi_{0i}(\theta_i, (1 - t_i), T_i)) \end{cases}$	(0.1 income3 0.11 (0.2 land 0.12 (0.1 buyout checks 0.00 (0.0 payment option 0.32 (0.2 educ 0.25 (0.1 comp -0.0 (0.1 internet 0.06 (0.1 social group 0.52 (0.1	900 11 09 23 51 00 29 04 59 62 46 78 51 49 22* 94
$EU_i^* = EU(\pi_{ei} S_i, \theta_i, t_i, T_i; \varepsilon_i)$ = $\int_{-\infty}^{\infty} U(\pi_e) f(\pi_e S_i, \theta_i, t_i, T_i; \varepsilon_i) d\pi_e$ $EU_i^* \cong X_{2i} \beta_2 + \varepsilon_i$	(0.1 income3 0.11 (0.2 land 0.12 (0.1 buyout checks 0.00 (0.0 payment option 0.32 (0.2 educ 0.25 (0.1 comp -0.0 (0.1 internet 0.06 (0.1 social group 0.52 (0.1	900 11 09 23 51 00 29 04 59 62 46 78 51 49 22* 39
$EU_i^* = EU(\pi_{ei} S_i, \theta_i, t_i, T_i; \varepsilon_i)$ $= \int_{-\infty}^{\infty} U(\pi_e) f(\pi_e S_i, \theta_i, t_i, T_i; \varepsilon_i) d\pi_e$ $EU_i^* \cong X_{2i}\beta_2 + \varepsilon_i$ $y_i = \begin{cases} 1 \text{ if } EU_i^* > U(\pi_{0i}(\theta_i, (1 - t_i), T_i)) \\ 0 \text{ if } EU_i^* \le U(\pi_{0i}(\theta_i, (1 - t_i), T_i)) \end{cases}$ • Factors affecting entrepreneurial	(0.1 income3 0.11 (0.2 land 0.12 (0.1 buyout checks 0.00 (0.0 payment option 0.32 (0.2 educ 0.25 educ 0.25 (0.1 comp -0.0 (0.1 internet 0.06 (0.1 social group 0.52 (0.1	900 11 09 23 51 00 29 04 59 62 46 78 51 49 49 22* 39 61 39 61
$EU_i^* = EU(\pi_{ei} S_i, \theta_i, t_i, T_i; \varepsilon_i)$ $= \int_{-\infty}^{\infty} U(\pi_e) f(\pi_e S_i, \theta_i, t_i, T_i; \varepsilon_i) d\pi_e$ $EU_i^* \cong X_{2i}\beta_2 + \varepsilon_i$ $y_i = \begin{cases} 1 \text{ if } EU_i^* > U(\pi_{0i}(\theta_i, (1 - t_i), T_i)) \\ 0 \text{ if } EU_i^* \le U(\pi_{0i}(\theta_i, (1 - t_i), T_i)) \end{cases}$ • Factors affecting entrepreneurial technology adoption by farmers	(0.1 income3 0.11 (0.2 land 0.12 (0.1 buyout checks 0.00 payment option 0.32 (0.2 educ 0.25 (0.1 comp -0.0 (0.1 internet 0.06 (0.1 social group 0.52 (0.1 know people 0.03	900 11 09 23 51 00 29 04 59 62 46 78 51 49 22* 39 61 39 61 03
$EU_i^* = EU(\pi_{ei} S_i, \theta_i, t_i, T_i; \varepsilon_i)$ $= \int_{-\infty}^{\infty} U(\pi_e) f(\pi_e S_i, \theta_i, t_i, T_i; \varepsilon_i) d\pi_e$ $EU_i^* \cong X_{2i}\beta_2 + \varepsilon_i$ $y_i = \begin{cases} 1 \text{ if } EU_i^* > U(\pi_{0i}(\theta_i, (1 - t_i), T_i)) \\ 0 \text{ if } EU_i^* \le U(\pi_{0i}(\theta_i, (1 - t_i), T_i)) \end{cases}$ • Factors affecting entrepreneurial	(0.1 income3 0.11 (0.2 land 0.12 (0.1 buyout checks 0.00 payment option 0.32 (0.2 educ 0.29 (0.1 comp -0.0 (0.1 internet 0.06 (0.1 social group 0.52 (0.1 know people 0.03 (0.1	90 10 10 23 51 00 29 04 59 62 46 78 51 49 22* 94 39 61 03 78
$EU_i^* = EU(\pi_{ei} S_i, \theta_i, t_i, T_i; \varepsilon_i)$ $= \int_{-\infty}^{\infty} U(\pi_e) f(\pi_e S_i, \theta_i, t_i, T_i; \varepsilon_i) d\pi_e$ $EU_i^* \cong X_{2i}\beta_2 + \varepsilon_i$ $y_i = \begin{cases} 1 \text{ if } EU_i^* > U(\pi_{0i}(\theta_i, (1 - t_i), T_i)) \\ 0 \text{ if } EU_i^* \le U(\pi_{0i}(\theta_i, (1 - t_i), T_i)) \end{cases}$ • Factors affecting entrepreneurial technology adoption by farmers	(0.1 income3 0.11 (0.2 land 0.12 (0.1 buyout checks 0.00 payment option 0.32 (0.0 payment option 0.32 (0.1 comp -0.0 (0.1 internet 0.06 (0.1 social group 0.52 (0.1 know people 0.03 (0.1 urban -0.1 (0.1	90 10 23 51 00 29 04 59 62 46 78 51 49 62 46 78 51 00 29 61 03 78 26* 86

Credit constraint, Location factors • Factors affecting entrepreneurial decision - Economic factors, Human capital, Social network, Distance and geography, Tenure, Demographic factors

rho	0.19
	(0.09
Ν	692
Note: *p<0.1; **p<0	.05; *

Results

Bivariate Probit (Outcome equation)			
b/se		b/se	
0.484**	know people	0.290*	
(0.2201)		(0.1573)	
0.033	urban	0.104	
(0.1742)		(0.1563)	
0.108	distance	0.107	
(0.2009)		(0.2035)	
0.163	rent	-0.068	
(0.1270)		(0.1628)	
-0.000	age1	0.402*	
(0.0000)		(0.2324)	
0.288	age2	0.464**	
(0.1947)		(0.1863)	
0.123	age3	0.260	
(0.1423)		(0.1935)	
0.064	white	-0.525**	
(0.1727)		(0.2237)	
0.100	death	0.313**	
(0.1443)		(0.1261)	
-0.142	divorce	0.214	
(0.1743)		(0.2048)	
	constant	-1.650***	
		(0.3137)	
0.05; ***p<0.01		·	
ivariate Probit (Sele	ction equation)		
	ction equation)		
		b/se	
b/se		b/se	
b/se	2001		
b/se -0.161	age1	0.028	
b/se -0.161 (0.2504)		0.028 (0.2508)	
b/se -0.161 (0.2504) -0.122	age1 age2	0.028 (0.2508) -0.185	
-0.161 (0.2504) -0.122 (0.1908)	age2	0.028 (0.2508) -0.185 (0.1951)	
-0.161 (0.2504) -0.122 (0.1908) 0.111		0.028 (0.2508) -0.185 (0.1951) -0.026	
-0.161 (0.2504) -0.122 (0.1908) 0.111 (0.2095)	age2 age3	0.028 (0.2508) -0.185 (0.1951) -0.026 (0.1916)	
<pre>b/se -0.161 (0.2504) -0.122 (0.1908) 0.111 (0.2095) 0.123</pre>	age2	0.028 (0.2508) -0.185 (0.1951) -0.026 (0.1916) 0.166	
b/se -0.161 (0.2504) -0.122 (0.1908) 0.111 (0.2095) 0.123 (0.1516)	age2 age3 white	0.028 (0.2508) -0.185 (0.1951) -0.026 (0.1916) 0.166 (0.3036)	
b/se -0.161 (0.2504) -0.122 (0.1908) 0.111 (0.2095) 0.123 (0.1516) 0.000	age2 age3	0.028 (0.2508) -0.185 (0.1951) -0.026 (0.1916) 0.166 (0.3036) 0.181	
b/se -0.161 (0.2504) -0.122 (0.1908) 0.111 (0.2095) 0.123 (0.1516) 0.000 (0.0000)	age2 age3 white death	0.028 (0.2508) -0.185 (0.1951) -0.026 (0.1916) 0.166 (0.3036) 0.181 (0.1391)	
b/se -0.161 (0.2504) -0.122 (0.1908) 0.111 (0.2095) 0.123 (0.1516) 0.000 (0.0000) 0.329	age2 age3 white	0.028 (0.2508) -0.185 (0.1951) -0.026 (0.1916) 0.166 (0.3036) 0.181 (0.1391) 0.241	
b/se -0.161 (0.2504) -0.122 (0.1908) 0.111 (0.2095) 0.123 (0.1516) 0.000 (0.0000)	age2 age3 white death	0.028 (0.2508) -0.185 (0.1951) -0.026 (0.1916) 0.166 (0.3036) 0.181 (0.1391)	
b/se -0.161 (0.2504) -0.122 (0.1908) 0.111 (0.2095) 0.123 (0.1516) 0.000 (0.0000) 0.329	age2 age3 white death divorce	0.028 (0.2508) -0.185 (0.1951) -0.026 (0.1916) 0.166 (0.3036) 0.181 (0.1391) 0.241	
<pre>b/se -0.161 (0.2504) -0.122 (0.1908) 0.111 (0.2095) 0.123 (0.1516) 0.000 (0.0000) 0.329 (0.2042)</pre>	age2 age3 white death divorce business	0.028 (0.2508) -0.185 (0.1951) -0.026 (0.1916) 0.166 (0.3036) 0.181 (0.1391) 0.241 (0.2252)	
b/se -0.161 (0.2504) -0.122 (0.1908) 0.111 (0.2095) 0.123 (0.1516) 0.000 (0.0000) 0.329 (0.2042) 0.259	age2 age3 white death divorce business	0.028 (0.2508) -0.185 (0.1951) -0.026 (0.1916) 0.166 (0.3036) 0.181 (0.1391) 0.241 (0.2252) -0.516***	
b/se -0.161 (0.2504) -0.122 (0.1908) 0.111 (0.2095) 0.123 (0.1516) 0.000 (0.0000) 0.329 (0.2042) 0.259 (0.1621)	age2 age3 white death divorce business climate	0.028 (0.2508) -0.185 (0.1951) -0.026 (0.1916) 0.166 (0.3036) 0.181 (0.1391) 0.241 (0.2252) -0.516*** (0.1400)	
b/se -0.161 (0.2504) -0.122 (0.1908) 0.111 (0.2095) 0.123 (0.1516) 0.000 (0.0000) 0.329 (0.2042) 0.259 (0.1621) -0.046	age2 age3 white death divorce business climate	0.028 (0.2508) -0.185 (0.1951) -0.026 (0.1916) 0.166 (0.3036) 0.181 (0.3036) 0.181 (0.1391) 0.241 (0.2252) -0.516*** (0.1400) -0.001	
<pre>b/se -0.161 (0.2504) -0.122 (0.1908) 0.111 (0.2095) 0.123 (0.1516) 0.000 (0.0000) 0.329 (0.2042) 0.259 (0.1621) -0.046 (0.1783)</pre>	age2 age3 white death divorce business climate tobacco acres	0.028 (0.2508) -0.185 (0.1951) -0.026 (0.1916) 0.166 (0.3036) 0.181 (0.1391) 0.241 (0.1391) 0.241 (0.2252) -0.516*** (0.1400) -0.001 (0.0032)	
b/se -0.161 (0.2504) -0.122 (0.1908) 0.111 (0.2095) 0.123 (0.1516) 0.000 (0.0000) 0.329 (0.2042) 0.259 (0.1621) -0.046 (0.1783) 0.061	age2 age3 white death divorce business climate tobacco acres	0.028 (0.2508) -0.185 (0.1951) -0.026 (0.1916) 0.166 (0.3036) 0.181 (0.3036) 0.181 (0.1391) 0.241 (0.2252) -0.516*** (0.1400) -0.001 (0.0032) -0.000	
b/se -0.161 (0.2504) -0.122 (0.1908) 0.111 (0.2095) 0.123 (0.1516) 0.000 (0.0000) 0.329 (0.2042) 0.259 (0.1621) -0.046 (0.1783) 0.061 (0.1490)	age2 age3 white death divorce business climate tobacco acres	0.028 (0.2508) -0.185 (0.1951) -0.026 (0.1916) 0.166 (0.3036) 0.181 (0.1391) 0.241 (0.2252) -0.516*** (0.1400) -0.001 (0.0032) -0.000 (0.0000)	
b/se -0.161 (0.2504) -0.122 (0.1908) 0.111 (0.2095) 0.123 (0.1516) 0.000 (0.0000) 0.329 (0.2042) 0.259 (0.2042) 0.259 (0.1621) -0.046 (0.1783) 0.061 (0.1490) 0.522***	age2 age3 white death divorce business climate tobacco acres	0.028 (0.2508) -0.185 (0.1951) -0.026 (0.1916) 0.166 (0.3036) 0.181 (0.1391) 0.241 (0.2252) -0.516*** (0.1400) -0.001 (0.0032) -0.000 (0.0000) 0.292*	
b/se -0.161 (0.2504) -0.122 (0.1908) 0.111 (0.2095) 0.123 (0.1516) 0.000 (0.0000) 0.329 (0.2042) 0.259 (0.1621) -0.046 (0.1783) 0.061 (0.1490) 0.522*** (0.1946)	age2 age3 white death divorce business climate tobacco acres tobacco sell hay	0.028 (0.2508) -0.185 (0.1951) -0.026 (0.1916) 0.166 (0.3036) 0.181 (0.1391) 0.241 (0.2252) -0.516*** (0.1400) -0.001 (0.0032) -0.000 (0.0000) 0.292* (0.1748)	
<pre>b/se -0.161 (0.2504) -0.122 (0.1908) 0.111 (0.2095) 0.123 (0.1516) 0.000 (0.0000) 0.329 (0.2042) 0.259 (0.1621) -0.046 (0.1783) 0.061 (0.1783) 0.061 (0.1490) 0.522*** (0.1946) 0.039</pre>	age2 age3 white death divorce business climate tobacco acres tobacco sell hay	0.028 (0.2508) -0.185 (0.1951) -0.026 (0.1916) 0.166 (0.3036) 0.181 (0.1391) 0.241 (0.2252) -0.516*** (0.1400) -0.001 (0.0032) -0.001 (0.0032) -0.000 (0.0000) 0.292* (0.1748) 0.556***	
b/se -0.161 (0.2504) -0.122 (0.1908) 0.111 (0.2095) 0.123 (0.1516) 0.000 (0.0000) 0.329 (0.2042) 0.259 (0.1621) -0.046 (0.1783) 0.061 (0.1783) 0.061 (0.1490) 0.522*** (0.1946) 0.039 (0.1614)	age2 age3 white death divorce business climate tobacco acres tobacco sell hay beef	0.028 (0.2508) -0.185 (0.1951) -0.026 (0.1916) 0.166 (0.3036) 0.181 (0.1391) 0.241 (0.2252) -0.516*** (0.1400) -0.001 (0.0032) -0.001 (0.0032) -0.000 (0.0000) 0.292* (0.1748) 0.556*** (0.1799)	
b/se -0.161 (0.2504) -0.122 (0.1908) 0.111 (0.2095) 0.123 (0.1516) 0.000 (0.0000) 0.329 (0.2042) 0.259 (0.1621) -0.046 (0.1783) 0.061 (0.1783) 0.061 (0.1490) 0.522*** (0.1946) 0.039 (0.1614) -0.103	age2 age3 white death divorce business climate tobacco acres tobacco sell hay beef	0.028 (0.2508) -0.185 (0.1951) -0.026 (0.1916) 0.166 (0.3036) 0.181 (0.1391) 0.241 (0.2252) -0.516*** (0.1400) -0.001 (0.0032) -0.001 (0.0032) -0.000 (0.0000) 0.292* (0.1748) 0.556*** (0.1799) 0.146	
b/se -0.161 (0.2504) -0.122 (0.1908) 0.111 (0.2095) 0.123 (0.1516) 0.000 (0.0000) 0.329 (0.2042) 0.259 (0.1621) -0.046 (0.1783) 0.061 (0.1783) 0.061 (0.1783) 0.061 (0.1946) 0.039 (0.1614) -0.103 (0.1781)	age2 age3 white death divorce business climate tobacco acres tobacco sell hay beef horses	0.028 (0.2508) -0.185 (0.1951) -0.026 (0.1916) 0.166 (0.3036) 0.181 (0.1391) 0.241 (0.2252) -0.516*** (0.1400) -0.001 (0.0032) -0.001 (0.0032) -0.000 (0.0000) 0.292* (0.1748) 0.556*** (0.1799) 0.146 (0.1780)	
b/se -0.161 (0.2504) -0.122 (0.1908) 0.111 (0.2095) 0.123 (0.1516) 0.000 (0.0000) 0.329 (0.2042) 0.259 (0.1621) -0.046 (0.1783) 0.061 (0.1783) 0.061 (0.1490) 0.522*** (0.1946) 0.039 (0.1614) -0.103 (0.1781) 0.626**	age2 age3 white death divorce business climate tobacco acres tobacco sell hay beef horses	0.028 (0.2508) -0.185 (0.1951) -0.026 (0.1916) 0.166 (0.3036) 0.181 (0.1391) 0.241 (0.2252) -0.516*** (0.1400) -0.001 (0.0032) -0.001 (0.0032) -0.000 (0.0000) 0.292* (0.1748) 0.556*** (0.1799) 0.146 (0.1780) -0.112	
b/se -0.161 (0.2504) -0.122 (0.1908) 0.111 (0.2095) 0.123 (0.1516) 0.000 (0.0000) 0.329 (0.2042) 0.259 (0.1621) -0.046 (0.1783) 0.061 (0.1783) 0.061 (0.1490) 0.522*** (0.1946) 0.039 (0.1614) -0.103 (0.1781) 0.626** (0.2862)	age2 age3 white death divorce business climate tobacco acres tobacco sell hay beef horses veget	0.028 (0.2508) -0.185 (0.1951) -0.026 (0.1916) 0.166 (0.3036) 0.181 (0.1391) 0.241 (0.2252) -0.516*** (0.1400) -0.001 (0.0032) -0.001 (0.0032) -0.000 (0.0000) 0.292* (0.1748) 0.556*** (0.1799) 0.146 (0.1780) -0.112 (0.2078)	
b/se -0.161 (0.2504) -0.122 (0.1908) 0.111 (0.2095) 0.123 (0.1516) 0.000 (0.0000) 0.329 (0.2042) 0.259 (0.1621) -0.046 (0.1783) 0.061 (0.1783) 0.061 (0.1490) 0.522*** (0.1946) 0.039 (0.1614) -0.103 (0.1781) 0.626** (0.2862) 0.090	age2 age3 white death divorce business climate tobacco acres tobacco sell hay beef horses veget	0.028 (0.2508) -0.185 (0.1951) -0.026 (0.1916) 0.166 (0.3036) 0.181 (0.1391) 0.241 (0.2252) -0.516*** (0.1400) -0.001 (0.0032) -0.000 (0.0000) 0.292* (0.1748) 0.556*** (0.1799) 0.146 (0.1780) -0.112 (0.2078) 0.084	
b/se -0.161 (0.2504) -0.122 (0.1908) 0.111 (0.2095) 0.123 (0.1516) 0.000 (0.0000) 0.329 (0.2042) 0.259 (0.1621) -0.046 (0.1783) 0.061 (0.1783) 0.061 (0.1490) 0.522*** (0.1946) 0.039 (0.1614) -0.103 (0.1781) 0.626** (0.2862) 0.090	age2 age3 white death divorce business climate tobacco acres tobacco sell hay beef horses veget yeget	0.028 (0.2508) -0.185 (0.1951) -0.026 (0.1916) 0.166 (0.3036) 0.181 (0.1391) 0.241 (0.2252) -0.516*** (0.1400) -0.001 (0.0032) -0.000 (0.0000) 0.292* (0.1748) 0.556*** (0.1799) 0.146 (0.1799) 0.146 (0.1790) -0.112 (0.2078) 0.084 (0.1344)	
b/se -0.161 (0.2504) -0.122 (0.1908) 0.111 (0.2095) 0.123 (0.1516) 0.000 (0.0000) 0.329 (0.2042) 0.259 (0.1621) -0.046 (0.1783) 0.061 (0.1783) 0.061 (0.1490) 0.522*** (0.1946) 0.039 (0.1614) -0.103 (0.1781) 0.626** (0.2862) 0.090	age2 age3 white death divorce business climate tobacco acres tobacco sell hay beef horses veget yeget	0.028 (0.2508) -0.185 (0.1951) -0.026 (0.1916) 0.166 (0.3036) 0.181 (0.1391) 0.241 (0.2252) -0.516*** (0.1400) -0.001 (0.0032) -0.000 (0.0000) 0.292* (0.1748) 0.556*** (0.1799) 0.146 (0.1780) -0.112 (0.2078) 0.084 (0.1344) -3.218***	

Conclusions • Tobacco farmers are more likely to start Know others who started their •Under 54 years of age •Experienced a recent death in hypothesis as farmers with low income are entrepreneurs) appears to have no impact. References • Hansen, E. L. (1995). "Entrepreneurial network Entrepreneurship: Theory and Practice 19(4): 7-• Teece, D. J. (1987). Profiting from technological

their own business if:

- •Low Income
- own business
- •White
- the household.

• The finding supports the "push" pushed into starting a new business. • Learning by doing is supported. Other social connections (with non-

and new organization growth."

19.

innovation: Implication for integration, collaboration, licensing, and public policy. The <u>competitive challenge</u>. D. J. Teece. Cambridge, MA, Ballinger Publishing: 185-219.

975)

***p<0.01