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Farmer Participation in Supermarket Channels, Production Technology and 

Technical Efficiency: The Case of Vegetable in Kenya 

Abstract 

Supermarkets are currently gaining ground in the agri-food systems of many developing 

countries. While recent research has analyzed income effects in the small farm sector, 

impacts on farming efficiency have hardly been studied. Productivity effects in previous 

studies are also estimated with respect to different frontiers. Using a survey of Kenyan 

vegetable growers and a meta-frontier approach, we control for self-selection using 

propensity score matching and show that participation in supermarket channels increases 

farm productivity by 35-38%. Effects on technical efficiency are, however, insignificant. 

Supermarket expansion therefore presents opportunities for realizing agricultural growth, 

thus enhancing poverty alleviation and rural development. 
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Domestic agri-food systems in many developing countries are experiencing increasing 

demand for high-value food products and a tendency towards supply chain modernization 

(Swinnen 2007). These changes are motivated by rapid urbanization and rising living 

standards. In addition to dietary diversification, the growing number of urban middle-

class consumers has preferences for higher levels of food quality, food safety, and 

convenience (Mergenthaler, Weinberger and Qaim 2009; Pingali, Khwaja and Meijer 

2007). To fulfill these requirements, modern food supply chains often adopt tighter 

vertical coordination, with super- and hypermarkets rapidly gaining importance (Neven 

and Reardon 2004; Reardon et al. 2003). Consequently, there are increasing opportunities 

for farmers to integrate into modern supply chains. 

Nevertheless, participation in modern supply chains comes with challenges. Food quality 

and safety standards demanded by high-value consumers are associated with 

informational uncertainties and higher transaction costs (Okello and Swinton 2006; 

Pingali, Khwaja and Meijer 2007). To minimize such costs, modern retailers often 

impose strict standards, which might potentially exclude resource-poor agricultural 

producers. However, there are potential gains to be realized by farmers who overcome 

these barriers to participate in modern supply chains (Hernandez, Reardon and Berdegue 

2007; Minten, Randrianarison and Swinnen 2007; Neven et al. 2009).  

Recent studies have analyzed the determinants of farmer participation in modern supply 

chains, including supermarket and export channels, and impacts on farm and household 

incomes (Hernandez, Reardon and Berdegue 2007; Neven et al. 2005; Wollni and Zeller 

2007). There are also studies that have looked into effects for more traditional markets, 

and spill-overs on land use and rural employment (Maertens and Swinnen 2009; Minten, 
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Randrianarison and Swinnen 2007; Schipmann and Qaim 2009). However, restructuring 

supply chains might also have impacts on technical efficiency and/or farm productivity.  

Compared to traditional farming and spot-market sales, producing high-value foods for 

modern supply chains often entails more sophisticated planning and timing of input 

application. Improvement in output demand and better output prices can also influence 

input demand leading to higher input intensity (Hayami and Ruttan 1985) as well as 

higher output supply. These dynamics could have important effects on farm technical 

efficiency. Furthermore, fulfilling supermarket standards for consistent supply may 

require use of alternative production technology involving modern irrigation equipment. 

The resulting market assurance may also encourage investment in such fixed farm capital 

(Jayne et al. 1997). In addition, food quality and food safety requirements can affect the 

choice of inputs. Linkage to high-value chains may also involve provision of special 

extension and other agricultural support services (Masakure and Henson 2005). Such 

support services may include provision of better quality seeds and information on use of 

alternative inputs. We hypothesize that these mechanisms could lead to change in 

production technology thus contributing to productivity improvements. If this is the case, 

modern supply chains could contribute to agricultural productivity gains with substantial 

effect on poverty reduction and rural development (Irz et al. 2001; WorldBank 2007).  

While some studies on supermarket effects have analyzed impacts on productivity, 

effects on technical efficiency have not been analyzed so far. Moreover, studies on 

productivity effects of supermarket participation employ approaches that do not measure 

productivity with respect to a common frontier. These studies also analyze individual 

factor productivity rather than overall farm productivity. This article applies a 
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decomposition approach involving group frontiers and a meta-production frontier to 

estimate comparable technical efficiency scores and productivity ratios measured relative 

to a common frontier. We also subject productivity and efficiency estimates from meta-

frontier analysis to statistical matching to account for self-selection. The study therefore 

contributes to the literature on emerging modern supply chains in developing countries 

and to the efficiency and productivity literature. 

The empirical analysis builds on a comprehensive cross-section survey of vegetable 

farmers in Central Kenya. Overall, the expansion of supermarkets in Sub-Saharan Africa 

is not yet as strong as in Asia and Latin America (Gulati et al. 2007; Reardon et al. 2003), 

but in Kenya supermarkets already account for 20% of food retailing in urban areas 

(Neven and Reardon 2004; Nyoro, Ariga and Ngugi 2007). While the focus of 

supermarkets is largely on processed foods, they are also gaining shares in fresh product 

markets. In Kenya, supermarkets accounted for about 4% of urban retailing in fresh fruits 

and vegetables in 2002, with a rapidly rising trend (Neven and Reardon 2004). 

Supermarket procurement strategies have already influenced the horticultural sector 

around the city of Nairobi, and this phenomenon is likely to spread geographically as 

market shares are growing. Hence, understanding the implications is of crucial relevance 

for rural development research and policy. 

The rest of this article is organized as follows. The next section presents an analytical 

framework and details of the econometric estimation procedures. This is followed by the 

section elaborating on the survey data and sample descriptive statistics. We then present 

and discuss the estimation results before giving some concluding remarks. 
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Analytical framework 

The analytical approach adopted in this study follows the concept of a meta-production 

function as an envelope of neoclassical production functions (Hayami and Ruttan 1985). 

The concept assumes all producers in an industry have potential access to the same 

technology despite operating under different group-specific production technologies. 

Following this concept, Battese, Rao and O'Donnell (2004) and O’Donnell, Rao and 

Battese (2008) have developed a meta-frontier (MF) model for estimating productivity 

differences between groups of producers and comparable technical efficiency scores.  

Group-specific frontiers and technical effects 

We define separate stochastic production frontiers (SPFs) for farmers in supermarket and 

traditional channels as follows: 

(1) , ;     1, 2, … ; 1,2 

Where  denotes vegetable output of the ith farm for the jth group;  denotes a vector 

of values of inputs used by the ith farm for the jth group;  denotes the parameter vector 

associated with the x-variables for the stochastic frontier for the jth group involved; the 

s are assumed to be identically and independently distributed as random variables, 

independent of the , which is a non-negative unobservable random error associated 

with technical efficiency of the ith farm for the jth group. If we assume a log-linear 

functional form (e.g., Cobb-Douglas or Translog) as in Battese,   Rao and O'Donnell 

(2004), the SPF can be written as: 

(2)  ,  
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Based on suitable distributional assumptions on the error terms u and v, input and output 

data for farms in the jth group can then be used to obtain maximum-likelihood (ML) 

estimates of the unknown parameters of the frontier defined by equation 2. Output- 

oriented technical efficiency (TE) estimates with respect to the group j frontier for the ith 

farm can also be computed from equation 2: 

(3)   

In order to model the relationship between TE and those variables which might exert an 

impact on the level of TE, we follow Wang and Schmidt (2002) and Alvarez et al. (2006) 

by specifying a model for the u random variables which fulfills the scaling property, i.e. 

where the fundamental shape of the distribution remains constant for all observations. 

Specifically, we apply a heteroscedastic frontier model, which assumes heteroscedasticity 

of the one-sided error term. This error term reflects factors under the farmer’s control, 

and since large farms have more factors under their control, the one-sided error term is 

likely subject to size-related heteroscedasticity (Caudill and Ford 1993). We therefore 

model inefficiency as follows: 

(4) exp 1  

In (4),  is a vector of farm-specific variables and size-related input use (including a 

constant), where  and  are allowed to overlap (Alvarez et al. 2006; Wang and 

Schmidt 2002). Besides allowing for functions of inputs in the inefficiency model, the 

scaling property of the heteroscedastic model enables direct interpretation of inefficiency 

coefficients as semi-elasticities (Wang and Schmidt 2002). After estimating the group 
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frontiers in equation 2, we perform a likelihood ratio (LR) test to verify if the 

technologies in the two market channels can be represented by a common technology. If 

the null hypothesis of a common technology is rejected, the estimation proceeds 

following the MF framework (Battese, Rao and O'Donnell 2004). 

Meta-frontier analysis 

Battese, Rao and O'Donnell (2004) define the MF as a deterministic parametric frontier 

of a specified functional form such that its values are no less than the deterministic part of 

the group-specific SPFs. Furthermore, the MF is assumed to be a smooth function and not 

a segmented envelope of group frontiers. The deterministic MF model for all farms in the 

supermarket and traditional channels can therefore be expressed as follows: 

(5) , ; 1, 2, … . , ∑  

In (5), denotes the vector of parameters of the MF function such that . for 

all i observations. These parameters can be obtained by minimizing the sum of absolute 

deviations (MAD) or the sum of the squared deviations of the distance between the MF 

and the jth group frontier evaluated at the observed input vector for a farm in the jth 

group. Estimating MF parameters therefore involves solving the following optimization 

problem:  

(6)  a min L1 ∑ ln , ln ,    

 min L2 ∑ ln , ~ ln ,   

 . .   ln , ln ,  for all i observations.        
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For this optimization problem, the is are treated as fixed so that the second term in the 

summation is constant with respect to the minimization. Hence, (6a) can be equivalently 

solved by minimizing the objective function , subject to the linear restriction of 

equation 6, where  is the row vector of means of elements of the x-vector for all 

observations in the dataset. Standard errors for the MF parameters can be derived by 

simulation as outlined in Battese, Rao and O'Donnell (2004). 

In terms of the estimated MF, the observed output of the ith farm, defined by the SPF for 

the jth group in equation 2 can alternatively be expressed as follows: 

(7) /~
/~  

Where the first term on the right hand side is the technical efficiency with respect to 

group frontiers (TE) and the second term is the meta-technology ratio (MTR) for the 

observation for the sample farm involved: 

(8) /~ /~ /  

MTR is a ratio of output for the frontier production function for the jth group relative to 

the potential output defined by the MF function, given the observed inputs (Battese, Rao 

and O'Donnell 2004), or as the second equality in (8) illustrates, the ratio between the 

efficiency estimate against the group frontier and the efficiency estimate against the MF 

( ). It lies between zero and one and captures productivity differences between the two 

technologies. Alternative, (7) can be rearranged to decompose  into the group TE 

estimate and MTR: 
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(9)  

Potential selection bias 

The MF approach above can reveal productivity and efficiency differences between 

farmers in supermarket and traditional channel. However, we cannot simply attribute 

these differences to participation in supermarket chains due to potential for selection bias 

- some of the unobserved factors determining participation in supermarket channels also 

influence farm efficiency and/or productivity. If participation in supermarket were 

randomized, the counterfactual situation would be observable, making it possible to 

derive causal inference. Unfortunately our data is cross-sectional, which rules out the 

possibility of observing counterfactual outcomes. The cross-sectional nature of our data 

also rules out possibility of addressing selection bias problem using panel data 

approaches. A conventional approach is to use the two-step estimation procedure 

developed by Heckman (1976), for which recent examples include Sipiläinen and 

Lansink (2005) and Solis, Bravo-Ureta and Quiroga (2007). However, this approach is 

less suitable for non-linear functions such as the stochastic frontier. To address selection 

bias, we therefore use matching techniques, which have also been used in the context of 

stochastic frontier analysis by Mayen, Balagtas and Alexander (2010). Unlike their study, 

however, we conduct matching after estimation to avoid losing useful information for 

construction of the frontiers – thus improving the precision of our  and MTR 

estimates.  

Matching involves pairing farmers in supermarket and traditional channels who are 

similar in terms of their observable characteristics in order to eliminate selection bias 
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(Dehejia and Wahba 2002). The impact variable of interest in the matching model is the 

expected treatment effect for the treated population, which can be expressed as follows: 

(10) 1 | 1 | 1  

Here,  is the average treatment effect for the treated (ATT),  denotes the value of 

outcome for supermarket suppliers and  denotes the value of the same for suppliers of 

traditional channels. Since the counterfactual [ | 1 ] is not observable, we use 

matching techniques to estimate this magnitude. Normally matching would be done on 

covariates that are correlated with selection into treatment and/or with the outcome 

variable. However, this can be challenging in the presence of a large set of covariates. 

Rosenbaum and Rubin (1983) therefore suggest matching on propensity scores to 

overcome the curse of “multidimensionality”. Our matching approach is therefore based 

on predicted propensity scores (PS).  

The PS is defined as the conditional probability that a producer participates in 

supermarket chain given covariates, Z [ ̂ 1| ] and is estimated using probit 

or logit function.   The predicted PS is then used to estimate ATT through a matching 

process as follows: 

(11) | 1 | 1,  

    | 1, | 0, ׀ 0  

There are various matching techniques, but the most common ones include nearest 

neighbor matching (NNM), kernel-based matching (KBM), stratified radius matching and 

Mahalanobis matching methods. In this study we apply the KBM and the NNM methods. 
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NNM involves pairing farmers in supermarket and traditional channels who are closest in 

terms of PS as matching partners.  

The KBM method on the other hand uses a weighted average of the outcome variable for 

all individuals in the control group (suppliers to traditional channels) to construct a 

counterfactual outcome. Observations that provide better matches are given more weight. 

The weighted average is compared to the outcome for the supermarket suppliers, and the 

difference provides an estimate for treatment effect for the treated case. A sample average 

over all supermarket suppliers then provides an estimate of ATT. In both the NNM and 

the KBM, only observation in the common support region - area where the PS of the 

treated unit is not higher than the maximum or less than the minimum PS of the control 

units, are used in the calculation of ATT. Furthermore, we adopt matching “with 

replacement” in the NNM method.  

To mimic the conditions of a randomized experiment, propensity score matching (PSM) 

assumes unconfoundedness or conditional independence assumption. This implies that 

once determinants of participation in supermarket channels are controlled for, 

supermarket participation is random and uncorrelated with the outcome variables 

(Wooldridge 2002). This is a rather strong assumption because systematic differences 

between farmers in the two channels may exits even after conditioning if selection is 

based on unmeasured characteristics (Smith and Todd 2005). Rosenbaum (2002) 

therefore suggests a bounding approach that evaluates how strongly unmeasured 

variables must influence the selection process to invalidate the implications of the 

matching process- thus providing a standard test for unconfoundedness. 
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Data collection and overview 

In this section, we first present details of farm household survey and then describe the 

data used in the study. 

Farm survey 

Data for this study was collected in 2008 from Kiambu District of Central Province in 

Kenya. Kiambu is located in relative proximity to Nairobi; even before the spread of 

supermarkets it has been one of the main vegetable-supplying areas for the capital city. 

Based on information from the district agricultural office, four of the main vegetable-

producing divisions were chosen. In these four divisions, 31 administrative locations 

were purposively selected, again using statistical information on vegetable production. 

Within the locations, vegetable farmers were sampled randomly. Since farmers that 

participate in supermarket channels are still the minority, we oversampled them using 

complete lists obtained from supermarkets and supermarket traders. In total, our sample 

comprises 402 farmers – 133 supermarket suppliers and 269 supplying vegetables to 

traditional markets. Using a structured questionnaire, these farmers were interviewed on 

vegetable production and marketing details, other farm and non-farm economic activities, 

as well as household and contextual characteristics. 

Both types of farmers produce vegetables in addition to maize, bananas, and a number of 

other crops. The main vegetables produced are leafy vegetables, including exotic ones 

such as spinach and kale, and indigenous ones such as amaranthus and black nightshade, 

among others.2 Figure 1 shows the different marketing channels for vegetables used by 

sample farmers. Some supermarket suppliers also sell vegetables in traditional spot 
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markets when they have excess supply. However, for analytical purposes, farmers that 

supply at least part of their vegetables to supermarkets are classified as supermarket 

suppliers. 

Insert figure 1 here 

Traditional markets sales are one-off transactions between farmers and retailers or 

consumers with neither promise for repeated transactions nor prior agreements on 

product delivery or price. Depending on the demand and supply situation, prices are 

subject to wide fluctuation. Farmers who are unable to supply directly to wholesale or 

retail markets sell their produce to traditional market traders who act as intermediaries. 

Such traders collect vegetables at the farm gate without any prior agreement. In contrast, 

supermarkets do have agreements with vegetable farmers regarding product price, 

physical quality and hygiene, and consistency and regularity in supply (Ngugi, Gitau and 

Nyoro 2007) Price agreements are made before delivery, and prices are relatively stable. 

Payments are usually only once a week or every two weeks. All agreements are verbal 

with no written contract. Some farmers also supply supermarkets through special traders. 

Based on similar verbal agreements, these traders again maintain regular contacts with 

farmers, in order to be able to supply supermarkets in a timely and consistent way. Strict 

supply requirements by supermarkets have led to specialization among traders. 

Consequently supermarket traders tend to exclusively supply modern retail outlets.3 

Descriptive statistics 

Table 1 compares selected variables between supermarket and spot market suppliers in 

our sample. On average, farmers supplying supermarkets own more land.4 They are also 
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better educated and have significantly higher farm, non-farm, and per capita household 

incomes. While supermarket suppliers have an annual mean per capita income of 167 

thousand Kenyan shillings (Ksh) (2230 US dollars), average per capita incomes among 

spot market suppliers are only around 77 thousand Ksh (1025 US dollars). Supermarket 

farmers have a larger share of their land under vegetables, which is an indication of their 

higher degree of specialization. In addition, significantly larger proportions of 

supermarket suppliers use advanced irrigation technology such as drip irrigation and 

sprinklers,5 and have their own means of transportation. This gives them an advantage in 

terms of meeting supermarket requirements for consistency and regularity in supply. Yet 

there are no significant differences between the two groups in terms of access to a 

reliable water source, the share of the vegetable area under irrigation, and experience in 

vegetable farming.  

Insert table 1 here 

In the lower panel of table 1 we present plot level variables related to vegetable 

production. The two groups show significant differences in the value of output per acre: 

vegetable farmers in supermarket channels have significantly higher sales revenues per 

acre, which is due to both higher yields and higher prices. With respect to inputs, the 

groups differ in terms of fertilizer, farmyard manure, and labor use. Famers in 

supermarket channels use significantly more purchased farmyard manure and hired labor. 

However, they use significantly less fertilizer and family labor. The two groups of 

farmers also show significant differences in terms of source and cost of seeds. These 

differences are an indication of differences in quality of seeds used. The comparisons 

suggest that production practices and technologies differ considerably. Whether these 
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differences also affect productivity and technical efficiency, as we have hypothesized, 

will be analyzed in the next section. 

Results and discussion 

The analysis begins with the estimation of groups-specific SPFs and technical effects. We 

then proceed to the meta-frontier analysis and estimate technology gap ratios and 

technical efficiency with respect to the MF.  

Group-specific technology and technical effects 

We analyze technical effects using group-specific SPFs. Our dependent variable in the 

frontier analysis is the value of vegetable production, which is preferred in our case due 

to non-comparability of quantity measurements. Furthermore we also expect quality 

differences which are appropriately captured using value of output. Before discussing our 

results we carry out standard tests for choice of functional forms and justification for the 

inefficiency approach. These results are shown in table 2. In both supermarket and 

traditional channel sub-samples, the likelihood ratio test rejects the more restrictive 

Cobb-Douglas functional form in favor of the more flexible translog model. Additional 

tests also confirm presence of inefficiency effects in both sub-samples. 

Insert table 2 here 

Results for the group frontiers are shown in table 3. Following Battese (1997), we correct 

for zero values of inputs by including dummies for input use and interactions between 

these dummies and the continuous input variables. Furthermore, the continuous input 
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variables are mean corrected log log , so that the estimated coefficients of the 

first order terms can be interpreted directly as production elasticities at the sample mean.  

Insert table 3 here 

The value of vegetable output for supermarket suppliers is significantly affected by 

pesticides, farmyard manure, labor and plot size. Labor has the highest elasticity of 0.31 

indicating that a 1% increase in labor quantity would lead to a 0.31% increase in value of 

vegetable output. Value of vegetable output for traditional channels is, however, 

insignificantly affected by labor. This is most likely due to larger share of the redundant 

family labor among traditional channel suppliers. Farmyard manure has the least effect 

on the value of vegetable output for supermarket suppliers. An increase in manure use by 

1% yields a 0.1% increase in value of vegetable output. The effect is, however, much 

higher for farmers in traditional channels. This confirms observation in table 1 that 

traditional channel farmers use significantly less farmyard manure. Similarly, plot size 

has higher positive and significant effect on value of output for farmers in traditional 

channels. Expenditure on seeds also affects vegetable output significantly but only for 

supermarket suppliers. This is probably due use of better quality seeds as revealed by 

higher expenditure on seeds by supermarket suppliers. A larger proportion of 

supermarket suppliers also obtain seeds from formal seed outlets – another indication of 

superior seed quality. Fertilizer has a positive and significant effect on value of output for 

farmers in traditional channels but is insignificant for supermarket farmers. Use of 

irrigation technology also has positive and significant effect on value of output for 

farmers in traditional channels. The differences in response of value of output to 
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respective variables are indicative of potential differences in technology which we 

explore later.  

With regards to efficiency effects, farmyard manure, labor, gender differences and 

experience in vegetable farming are shown to play significant roles. Use of farmyard 

manure by supermarket suppliers increases technical efficiency. On the other hand, 

increasing use of labor as well as increasing share of family labor reduces technical 

efficiency among supermarket farmers. Vegetable producers in supermarket channels 

would therefore benefit from reduced use of labor, more so the use of family labor. For 

farmers in traditional channels, increasing use of labor improves farm efficiency. Yet 

increasing share of family labor has insignificant effect on technical efficiency. Technical 

efficiency improvements due to labor use by these farmers are therefore likely to come 

from increasing use of hired labor, which as shown in table 1, are significantly lower for 

this group of farmers.  Experience in vegetable farming also increases efficiency of spot 

market farmers. Finally, female suppliers of supermarket channels are shown to be more 

technically efficient. 

Meta-technology ratio and technical efficiency with respect to meta-frontier 

Differential effects of variables exhibited by group frontiers in the previous section are 

indicative of differences in production technology by farmers in the two market channels. 

These differences are confirmed by results of the likelihood ratio test shown in the last 

row of table 2. Test results confirm our earlier hypothesis of technological differences 

between farmers in the two channels. The next task is therefore to investigate if these 

differences could lead to productivity differences. We therefore proceed with the MF 
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analysis as outlined in the analytical framework. Using parameter estimates from the 

group frontiers, both a linear and a quadratic programming optimization model specified 

in equation 6 is solved for the entire sample. Since the group frontiers favor the use of 

translog model, the meta-frontier is also specified as a translog function. Estimation of 

group frontiers and the meta-frontier were done using Ox version 6.10 (see Doornik, 

2007). Parameter estimates for the two meta-frontier and the simulated standard errors 

are shown in table 4. Since we find only minor differences between the two meta-

frontiers, the following discussion is based on the results obtained by minimizing the 

absolute sum of deviations as in equation (6a). 

Insert table 4 here 

Results show positive and significant effects of fertilizer, farmyard manure and plot size 

on the value of vegetable output. Use of advanced irrigation technology also leads to 

positive increase in the value of output. The parameters of the MF are also used in the 

estimation of MTR and technical efficiency with respect to the MF as shown in equations 

8 and 9 respectively. A summary of these two measures is shown in table 5 alongside 

scores for technical efficiency with respect to group frontiers. The group-specific scores 

of technical efficiency, however, cannot be compared across groups since they are 

estimated with respect to different frontiers. It seems more appropriate to compare the 

efficiency scores with respect to the common MF across the two groups. 

Insert table 5 here 

As can be seen from table 5, farmers in supermarket and traditional channels show 

significant differences in MTR and technical efficiency with respect to MF. On average 
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supermarket farmers exhibit a productivity level that is 18 percentage points (33%) 

higher than farmers in traditional channels. Given the technology potentially available to 

all vegetable farms in Kiambu district, supermarket farmers produce 72% of potential 

output which is way above the 54% of the potential output produced by farmers in 

traditional channels on average. In both cases, however, the group frontiers are tangent to 

the meta-frontier since the maximum value of technology gap ratio is achieved. 

Nevertheless as figure 2(a) illustrates, more supermarket famers achieve the maximum 

MTR as compared to farmers in traditional channels. 

Insert figure 2 here 

With regards to technical efficiency measured relative to the meta-frontier, supermarket 

farmers have higher technical efficiency on average. Relatively more farmers in 

supermarket channels also score higher levels of technical efficiency. Indeed there are 

relatively more supermarket farmers who score more than 80% level of technical 

efficiency as can be seen in figure 2(b).  

Productivity and efficiency effect of participation in supermarket channels 

In order to establish if the estimated differences in technical efficiency and technology 

gap ratio can be attributed to farmer participation in supermarket channels, we carry out 

treatment effect analysis using matching technique as outlined in the analytical 

framework. The matching process begins by estimation of propensity scores using a 

probit model. Results of the propensity score model shown in table 6 indicate that the age 

of the farmer, education level and use of advanced irrigation technology positively 

determine participation in supermarket channels.  
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Insert table 6 here 

Predicted propensity scores from the probit model are used in subsequent steps to 

estimate productivity and efficiency effects of supermarket participation. We use the 

KBM and NNM methods and impose the common support condition on the matching 

process to ensure proper matching. Common support condition ensures that matching is 

only done in the region of common support. The matching procedure was conducted in 

STATA software following steps by Leuven and Sianesi (2003). Distributions of PS and 

the region of common support are shown in figure 4. The distributions reveal the 

significance of proper matching and the need for imposing common support condition in 

order to avoid bad matches.  

Insert figure 4 here 

In table 7 we present the average treatment effects estimated by KBM and NNM 

methods. Both methods reveal significant effects of supermarket participation on 

productivity. The results suggest that participation in supermarket chains leads to 19-20 

percentage point (35% - 38%) improvement in productivity, thus confirming our main 

research hypothesis. These gains are higher for supermarket farmers with middle range of 

productivity scores as can be seen from figure 3. Participation in supermarket chains, 

however, does not have significant effect on technical efficiency. 

Insert figure 3 here 

We therefore conclude that participation in supermarket channels leads to substantial 

productivity gains for Kenyan vegetable farmers. The findings are particularly important 
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given the role of agriculture in the Kenyan economy and the recent expansion of 

supermarkets in the country. Modernization of food supply chains in Kenya thus present 

great potential for agricultural development and a crucial opportunity to enhance poverty 

reduction in the country. 

Insert table 7 here 

Assessing validity of the matching assumptions 

Despite the relative ability of matching techniques in addressing potential selection bias, 

the estimates are only valid subject to two conditions - balancing in covariates and 

unconfoundedness (Caliendo and Kopeinig 2008; Dehejia and Wahba 2002). The 

objective of estimating the PS used in matching is to balance the distribution of variables 

relevant to the matching process rather than obtaining precise selection into treatment. 

Balancing tests are therefore necessary after matching to determine if matching process 

has reduced bias by eliminating differences in covariates. We evaluate balancing 

condition and bias reduction following suggestions by Rosenbaum and Rubin (1985). 

Table 8 show indicators of matching quality for the matching model. Results in the fifth 

column reveal substantial reduction of bias through matching. The pseudo R2 and p-value 

of the likelihood ratio tests before and after matching are also presented in table 8. The 

joint significance of regressors is rejected after matching while it is not rejected before 

matching. This is evidence of non-systematic difference in the distribution of covariates 

between farmers in supermarket and traditional channels after matching. 

Insert table 8 here 
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We also test for unconfoundedness by evaluating the sensitivity of ATT estimates to 

hidden bias, the results of which are also presented in table 7. Since sensitivity of 

insignificant effects are not meaningful, Rosenbaum bounds are only calculated for 

treatment effects that are significantly different from zero (Hujer, Caliendo and Thomsen 

2004). The critical values of  for MTR is 2.25 – 3.00 (KBM) and 2.12 – 2.20 (NNM). 

These values imply that at the level of =2.12, the causal inference of significant impact 

of supermarket participation on productivity would have to be viewed critically. In other 

words, if individuals that have same Z-vector differ in their odds of participation in 

supermarket channels by 112%, the significance of supermarket effect on farm 

productivity may be questionable. Our results of productivity effects of supermarket 

participation are therefore quite robust to unobserved heterogeneity.   

Conclusion 

Agri-food systems in many developing countries are currently undergoing a 

transformation towards modern high-value supply chains, with supermarkets and their 

procurement systems gaining in importance. Recent research has studied what types of 

farmers participate in such high-value supply chains and what the impacts are in terms of 

farm and household income. Our research contributes to this literature through analysis of 

productivity and technical efficiency effects. 

Using primary survey data of vegetable growers in Kenya, we show that participation in 

supermarket channels has a positive impact on farm productivity. First we show evidence 

of differences in technology between farmers in supermarket and traditional channels. 

We then use meta-frontier analysis to estimate comparable productivity and efficiency 
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scores. Finally we control for self-selection through statistical matching and show that 

participation in supermarket channels improves farm productivity by 35-38%. We thus 

also contribute to the efficiency and productivity literature by applying matching 

techniques to address problems of selection bias, more so in the meta-frontier framework. 

Analyses of group-specific frontiers also show that use of farmyard manure improves 

technical efficiency of farmers in supermarket channels. Increasing use of labor, 

however, reduces efficiency of supermarket suppliers. Farmers in traditional channels, on 

the other hand would benefit from increased use of labor, particularly hired ones. Holding 

other factors constant, however, participation in supermarket channels has insignificant 

effect on farm efficiency. 

Kenya is only one example where supermarkets and other high-value market 

developments are transforming agricultural supply chains in developing countries. 

Therefore, this research has wider policy implications. Understanding the implications of 

the agri-food system transformation is crucial, as supermarket developments gradually 

spread to a wider geographical area. Our results suggest that high-value chains can 

contribute to agricultural productivity gains and agricultural growth thus enhancing 

poverty reduction and rural development. This does not preclude the possibility that the 

long-term impact of the transformation of the agri-food system in Kenya might also entail 

problems for agricultural producers, e.g. because of market power which highly 

concentrated supermarket value chains could exert against small producers. However, 

since this transformation in favor of a larger role of supermarkets seems to take place in 

any case, it is particularly important to reap the potential benefits from the process as 
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soon as possible, and to develop a framework in which smallholders can profit from 

having access to supermarket value chains as much as possible. 

 

 

 

 

 

 

                                                            
1 An alternative functional form; σ exp  assumes no intercept so that the overall scale is set by 

a constant σ. Equivalently, we can eliminate the overall constant (σ) if we add an intercept to  (Wang 

and Schmidt 2002). We use this latter option. 

2 Recently, African indigenous vegetables have received renewed attention from upper and middle income 

consumers (Ngugi, Gitau and Nyoro 2007). 

3 Initially, supermarkets in Kenya purchased fresh vegetables in traditional wholesale markets, which can 

still be observed today. However, meanwhile supermarkets have diversified their procurement to include 

contracted farmers and traders, in order to ensure price stability and consistency in quality and supply. 

4 The mean farm size in Kenya is 6.7 acres (Jayne et al. 2003), but this also includes large plantations. In 

terms of per capita incomes, households in Kiambu are slightly richer than those in most other rural 

districts of the country. The rural poverty rate in Kiambu was 22% in the early 2000s (Ndeng'e et al. 2003). 

5 We use the term “advanced irrigation technology” to differentiate from those farmers that only use very 

simple tools like watering cans. More sophisticated techniques, such as drip irrigation, are rare in the 

Kenyan small farm sector. 
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Table 1:  Summary Statistics 

Variables Supermarket   SD Spot market  SD 
 (133)  (269)         
Household and farm characteristics 

Total area owned (acres) 2.692** 5.607 1.870 2.485 
Total vegetable area cultivated (acres) 1.168*** 1.457 0.697 0.992 
Share of vegetable area (%) 68.8* 31.9 62.8 32.5 
Access to reliable water source (%) 19.5 39.8 21.6  41.2 
Use of advanced irrigation technology (%) 52.6*** 50.1 35.3 47.9 
Share of vegetable area irrigated (%) 76.7 38.7 77.0 39.1 
Age of operator (years) 47 12 49 15 
Education of operator (years of schooling) 10.3*** 3.14 8.72 4.05 
Vegetable farming experience (years) 14.01 11.73 15.18 12.14 
Own means of transportation (%) 24.06*** 42.91 8.92 28.56 
Total farm income (Ksh) 283,944*** 379,823 156,022 189,333 
Non-farm income (Ksh) 151,589*** 235,460 59,115 134,945 
Household income per capita (Ksh)  167,155*** 251,363 76,839 93,710 
Plot level variables for vegetables 

Sales revenue per acre (Ksh/acre) 499,005*** 400,508 370,865 335,877 
Dummy for farming of exotic vegetables (%) 76*** 43 88 32 
Seed cost (Ksh/acre) 6,823.60* 9,485.90 5,490.80 6,105.70 
Seed from formal channels (%) 65*** 48 45 50 
Fertilizer use (kg/acre) 362.56**  548.76 494.21   640.19 
Pesticide use (ml/acre) 2,251.22  4,083.44 2,745.51  4,382.22 
Purchased manure use (kg/acre) 15,926**  28,107 11,108  19,329 
Own manure use (kg/acre) 5,550  15,693 6,107  14,473 
Hired labour use (labour days/acre) 215.36**  296.29 164.28          276.98 
Family labour use (labour days/acre) 307***   395 489   632 
Total labour use (labour days/acre) 522** 472 653 734 
*, **, *** Mean differences between supermarket and spot market suppliers are significant at the 10%, 5%, and 1% 

levels, respectively. 

Note: 1 US dollar = 75 Ksh. 
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Table 2:  Hypothesis Testing for Stochastic Production Frontier Model 

Null hypothesis   Statistics  Critical Conclusion 
Choice of functional form: 0   
Supermarket model 84.34 32.67 Translog is appropriate 
Spot market model 39.18 32.67 Translog is appropriate 
No inefficiency a: 0 
Supermarket model 83.73 14.07 Stochastic frontier appropriate 
Spot market model 15.91 14.07 Stochastic frontier appropriate 
No technical effects: … . .  0  
Supermarket model 23.48 15.51 Inefficiency model appropriate 
Spot market model 15.96 15.51 Inefficiency model appropriate 
Test for same technology 149.12 48.60 MF is appropriate 
a This test is subject to 9 restrictions; 0 and … . .  0. This results into a mixed  distribution with 

an upper bound of 16.27 at  0.05 or 14.07 at 0.1  for 9 restrictions (Kodde and Palm 1986).  
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Table 3:  Parameter Estimates of the Stochastic Production Frontier (Translog Model) 

 Supermarket Spot market 
 Coefficient SE Coefficient SE 

Production frontier model: Dependent variable is log value of output 
Dummy for use of fertilizer -0.101 0.083 -0.264** 0.134 
Dummy for use of pesticide 0.371*** 0.075 -0.295* 0.169 
Dummy for use of manure -0.584 0.366 -0.394** 0.198 
log seed cost 0.116*** 0.033 0.004 0.065 
log fertilizer  0.066 0.050 0.333*** 0.069 
log pesticide  0.164*** 0.043 0.055 0.073 
log manure  0.101*** 0.022 0.299** 0.146 
log labor  0.311*** 0.058 0.009 0.114 
log plot size  0.165** 0.073 0.256*** 0.074 
0.5 × (log seed cost)2 0.129*** 0.022 -0.037 0.080 
0.5 × (log fertilizer)2 0.153*** 0.054 0.151 0.098 
0.5 × (log pesticide)2 0.140** 0.068 0.075 0.062 
0.5 × (log manure)2 -0.282*** 0.023 0.105 0.094 
0.5 × (log labour)2 -0.507*** 0.054 0.215 0.147 
0.5 × (log plot size)2 0.023 0.060 -0.025 0.127 
Advanced irrigation technology (dummy) -0.027 0.033 0.176* 0.094 
Githunguri & Lower Lari regiona (dummy) -0.361*** 0.138 -0.359* 0.194 
Kikuyu/Westland regiona (dummy) 0.710*** 0.199 -0.174 0.180 
Limuru regiona (dummy) 0.402 0.299 -0.346* 0.183 
Exotic vegetable (dummy) 0.520*** 0.057 0.290** 0.144 
Constant  0.036 0.178 0.143 0.231 
Inefficiency model     
Experience in vegetable farming (years) 0.004 0.005 -0.014** 0.007 
Gender of operator (male dummy) 0.896*** 0.301 -0.230 0.222 
Education of operator (years) -0.014 0.019 -0.030 0.021 
Access to agricultural extension (dummy) -0.055 0.159 0.230 0.167 
Share of vegetable area 0.210  0.245 -0.222 0.234 
log manure -0.298** 0.117 0.272 0.171 

log labour 0.379** 0.153 -0.517*** 0.115 
Share of family labour 0.522*** 0.163 0.133 0.200 
Constant -1.320*** 0.343 -0.155 0.366 
Number of observations 133 265 
Log likelihood -71.527 -237.470 
*, **, *** Significant at the 10%, 5%, and 1% levels, respectively. 
a The reference region is Lari. 

Note: Interaction terms were included in estimation, but are not shown here for reasons of space. 
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Table 4: Parameter Estimates for the Meta-frontier 

Variable Coefficient 
estimate L1 

SE Coefficient 
estimate L2 

SE 

Dependent variable is log value of output 
Dummy for use of fertilizer -0.186 0.094 -0.198 0.086 
Dummy for use of pesticide 0.289** 0.114 0.249** 0.100 
Dummy for use of farmyard manure -0.447 0.193 -0.485 0.175 
log seed cost  0.064 0.064 0.080 0.061 
log fertilizer  0.189*** 0.07 0.160*** 0.056 
log pesticide  0.031 0.063 0.032 0.057 
log manure 0.316*** 0.082 0.290*** 0.079 
log labor 0.114 0.093 0.142* 0.085 
log plot size 0.230*** 0.08 0.218*** 0.076 
0.5 × (log seed cost)2  0.217*** 0.06 0.216*** 0.053 
0.5 × (log fertilizer)2  0.176** 0.079 0.144** 0.063 
0.5 × (log pesticide)2  0.122* 0.07 0.088 0.066 
0.5 × (log manure)2 0.14* 0.081 0.091 0.07 
0.5 × (log labour)2 0.052 0.146 0.013 0.14 
0.5 × (log plot size)2 0.004 0.091 -0.037 0.081 
log seed cost × log fertilizer  0.157** 0.076 0.139** 0.071 
log seed cost × log pesticides -0.128 0.043 -0.115 0.038 
log seed cost × log manure -0.012 0.055 -0.007 0.051 
log seed cost × log labour -0.065 0.068 -0.061 0.064 
log seed cost × log plot size -0.157 0.062 -0.136 0.054 
log fertilizer × log pesticide -0.033 0.051 -0.017 0.039 
log fertilizer × log manure -0.118 0.054 -0.131 0.047 
log fertilizer × log labour 0.046 0.064 0.07 0.057 
log fertilizer × log plot size  -0.146 0.064 -0.147 0.058 
log pesticide × log manure 0.011 0.066 0.023 0.06 
log pesticide × log labour 0.028 0.068 0.028 0.06 
log pesticide × log plot size -0.01 0.064 -0.017 0.053 
log manure × log labour -0.112 0.094 -0.092 0.088 
log manure × log plot size 0.133* 0.07 0.133** 0.062 
log labor × log plot size 0.051 0.086 0.055 0.078 
Advanced irrigation technology (dummy) 0.092 0.057 0.113* 0.058 
Githunguri & Lower Lari region a (dummy) -0.265 0.183 -0.276 0.185 
Kikuyu/Westland region a (dummy) 0.619*** 0.201 0.51** 0.204 
Limuru region a (dummy) -0.238 0.219 -0.291 0.222 
Exotic vegetable  0.378*** 0.093 0.358*** 0.083 
Constant 0.372 0.233 0.517** 0.233 
Number of observations 398 
*, **, *** Significant at the 10%, 5%, and 1% levels, respectively. 
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a The reference region is Lari. 

Table 5: Meta-technology Ratio (MTR) and Technical Efficiency for Group SPFs and Meta-

frontier 

Supermarket suppliers Traditional channel suppliers 
Group TE MTR Meta-frontier TE Group TE MTR Meta-frontier TE 

Mean 0.61 0.72*** 0.42 * 0.70 0.54 0.37 

Minimum 0.09 0.16 0.07 0.12 0.07 0.01 
Maximum 0.99 1.00 0.99 0.91 1.00 0.86 
Std. deviation 0.30 0.24 0.19 0.17 0.24 0.24  

*, **, *** Significant at the 10%, 5%, and 1% levels, respectively. 

Table 6: Propensity Score for Participation in Supermarket Channels (Probit Estimates) 

 Coefficient SE 
Variables    
Education of operator (years) 0.180** 0.075 
Education of operator squared (years) -0.008* 0.010 
Own means of transportation (dummy) 0.433** 0.201 
Age of operator (years) -0.008 0.006 
Household labour endowment (no. of people) -0.035 0.062 
Share of family labor -0.515** 0.210 
Off farm employment (dummy) 0.276* 0.142 
Use of advanced irrigation equipment (dummy) 0.296** 0.148 
Household access to electricity (dummy) 0.196 0.185 
Lari region (dummy) -0.738* 0.424 
Githunguri and Lower Lari region (dummy) 0.584*** 0.188 
Constant -1.151** 0.539 
Number of observations 398 
Pseudo R-squared 0.126 
Log likelihood -221.532 

       *, **, *** Significant at the 10%, 5%, and 1% levels, respectively. 
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Table 7: Average Treatment Effects and Results of Sensitivity Analysis 

Matching  
algorithm 

Outcome ATT 
Critical level  
of hidden 
bias ( ) 

Number  
of 
treated 

Number 
of 
control 

Kernel-based 
matching 

Meta-technology 
ratio  

0.19*** (6.75) 2.25 – 3.00 129 207 

 
Meta-frontier TE 0.04 (1.62) 

 
129 207 

Nearest neighbor 
matching 

Meta-technology 
ratio  

0.20*** (5.70) 2.12 – 2.20 129 207 

Meta-frontier TE 0.05 (1.64)  129 207 

 

Table 8: Indicators of Covariate Balancing, Before and After Matching 

Matching 
algorithm 

Outcome 
Median absolute bias 

% bias 
reduction 

Pseudo R2 p-value of LR 
Before 
matching 

After 
matching 

Unmatched Matched Unmatched Matched 

Kernel-
based 
matching 

Meta-
technology 
ratio 

34.18 4.26 87.54 0.126 0.027 0.000 0.354 

Meta-frontier 
TE 

34.18 4.26 87.54 0.126 0.027 0.000 0.354 

Nearest 
neighbor 
matching 

Meta-
technology 
ratio 

34.13 8.20 75.97 0.114 0.031 0.000 0.142 

Meta-frontier 
TE 

34.13 8.20 75.97 0.114 0.031 0.000 0.142 
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Figure 1:  Vegetable marketing channels among Kenyan sample farmers 
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Figure 2: Distribution of meta-technology ratios and meta-frontier technical efficiency according to market channels 
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Figure 3: Cumulative distribution of meta-technology ratio (MTR) and meta-frontier TE by market channel – adjusted for selection bias. 
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Note: On support refer to observations in respective categories that find suitable matches, while off support indicate observations that do not find suitable 

matches. 

Figure 4: Propensity score distribution and common support for propensity score estimation.  
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