%‘““‘“\N Ag Econ sxes
/‘ RESEARCH IN AGRICUITURAL & APPLIED ECONOMICS

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their
employer(s) is intended or implied.


https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/

Market-Based Instruments for the Optimal Control of Invasive Insect Species:
B. Tabaci in Arizona

Timothy J. Richards, Peter Ellsworth, Russ Tronstad and Steve Naranjo

Selected Paper prepared for presentation at the Agricultural & Applied Economics
Association 2010 AAEA, WAEA and CAES Joint Annual Meeting, Denver, CO, July 25-27,
2010.

" Richards is Morrison Professor in the Morrison School of Management and
Agribusiness, Arizona State University; Ellsworth is Professor in the Department of Entomology,
University of Arizona; Tronstad is Professor in the Department of Agricultural and Resource
Economics, University of Arizona, and Naranjo is Senior Research Scientist in the Agricultural
Research Service, USDA, Maricopa Agricultural Center. Contact author: Richards: 7171 E.
Sonoran Arroyo Mall, Peralta 335U, Mesa, AZ. 85212. Ph. 480-727-1488, FAX 480-323-2294,
email: trichards@asu.edu. Funding from ERS-PREISM grant no. 58700080123 is gratefully
acknowledged. Copyright 2010 by Timothy J. Richards. All rights reserved. Readers may make
verbatim copies of this document for non-commercial purposes by any means, provided that this
copyright notice appears on all such copies.



mailto:trichards@asu.edu.

Abstract:

Invasive insect species represent perhaps one of the most significant potential sources of
economic risk to U.S. agricultural production. Private control of invasive insect species is likely
to be insufficient due to negative externality and weaker-link public good problems. In this
study, we compare a system of Pigouvian taxes with tradable permits for invasive species
control. While the emissions control literature shows that taxes are preferred to permits under
cost uncertainty, invasive species control involves correlated cost and benefit uncertainty, so we
expect a quantity-based system to be preferred. Monte Carlo simulations of optimal steady-state
outcomes confirm our expectations.

keywords: externalities, invasive species, optimal control, permits, spatial-temporal model,
taxes.
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Market-Based Instruments for the Optimal Control of Invasive Insect Species:
B. Tabaci in Arizona

Introduction
Invasive insect species represent a significant economic risk to both the financial viability of
agricultural producers and to the sustainability of U.S. agriculture more generally. With the rapid
growth of international trade in agricultural commodities of all types, agricultural systems in the
U.S. are under constant threat that new species will be introduced, spread and thrive in an
environment lacking natural predators. Indeed, Pimentel, Zuniga and Morrison (2005) claim that
insects alone are responsible for losses amounting to 13% of total U.S. crop production, valued at
$33.0 billion.”™ According to these authors, 40% of all insects can be regarded as invasive.
Therefore, including the indirect costs associated with control, the total damage attributable to
invasive insect species in the U.S. is $13.5 billion in 2001 dollars.

In the absence of alternative institutional mechanisms, private market incentives to
control invasive species are likely to be insufficient from a social perspective for two reasons: (1)
control provides a positive externality to others (or a lack of control confers a negative
externality), and (2) pest-free environments are public goods (Knowler and Barbier, 2005;
Burnett, 2006). First, if one grower does not control his or her insects, others will experience
higher control costs. The fact that these external costs are not reflected in his or her decision
regarding the level of suppression means that each grower will invest in too little pest

management. Second, invasive species control is a weaker-link public good (Cornes, 1993) in

*k . . . . . .
Alien-invasive species include plants, mammals, birds, pathogens, insects and a number of other

organisms. In this research, we focus on insects that are uniquely harmful to agricultural crops. Our methods and
tools, however, are directly applicable to other forms of invasive species as well.
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that a grower is likely to appropriate some of the pest-reduction benefits from controlling insects
on his or her own land, but will not achieve ideal control if neighboring growers do not control as
well. In this study, therefore, we investigate two market-based institutional mechanisms for
invasive species control: a system of taxes on insect population numbers, and a marketable
permit system that allows each grower only a certain amount of infestation.

Invasive species management programs that involve direct government control are neither
practical, desirable nor efficient (Costanza and Perrings, 1990; Cornwell and Costanza, 1994).
Fortunately, there are a number of market-based options that have proven workable. First,
Knowler and Barbier (2005) argue that a system of Pigouvian taxes may be able to achieve the
optimal balance between controlling the damage from an invasive species and encouraging the
diversity benefits that follow from importing species that are not native to North America.
However, taxes are still regulatory in nature as they require a taxation authority to design,
administer and enforce their payment. Costanza and Perrings (1990) and Cornwell and Costanza
(1994) offer a system of performance bonds that provide for financial penalties if environmental
goals are not met. Shogren, Herriges, and Govindasamy (1993), however, point out that bonds
suffer from a number of practical limitations such as moral hazard, liquidity problems and
legality. Horan and Lupi (2005), on the other hand, describe a system of tradeable “risk permits”
written on the probability that any ship entering the Great Lakes is likely to import a species that
may ultimately become invasive. However, they show that the first-best system of permits will
not work because of the heterogeneity among ships in terms of their cost of avoiding the release
of a potentially invasive organism. In this study, we consider two of these options: a tax on adult

insects measured at a certain point in time on each farm, or a permit system that provides for



overwhelming penalties if the allowed population is breached. Growers, however, will be able to
trade permits such that those with lower control costs can sell permits to other, relatively high
control-cost growers.

There is a large literature that compares the efficiency of taxes and permits as alternative
means of externality control in the context of carbon pollution and greenhouse-gas (GHG)
accumulation. It is well understood that, under certainty, taxes and permits produce the same
outcome in terms of emission control (Baumol and Oates, 1988). However, Weitzman (1974)
shows that, under uncertain control costs, taxes are preferred when the marginal social benefit of
controlling emissions is relatively flat, and the marginal cost of abatement steep. However, a
quantity-based system of controls, such as a permit-based system, will be preferred if the
marginal social benefit curve is steep, and marginal control costs relatively constant.
Importantly, uncertainty regarding marginal benefits is irrelevant to the choice of instrument.
Hoel and Karp (2001, 2002), Pizer (2002), Newell and Pizer (2003), Karp and Zhang (2005)
extend this logic to the case of stock externality where regulation takes place in a dynamic
environment. These studies confirm the Weitzman intuition in analytical models of quadratic
abatement cost and multiplicative uncertainty and, moreover, show that a price-based policy
(taxes) is preferred in a welfare-metric sense over permits. In a static framework, Stavin (1996)
shows that correlated cost and benefit uncertainty reverses this result and leads to a preference for
a quantity-based system under realistic parameter assumptions. In this study, we extend the logic
of Stavin to the case of spatial-temporal uncertainty and also show that the Weitzman result is
reversed. In this case, a quantity-based system of regulation is preferred to a price-based system.

This outcome is fortuitous from a regulatory perspective, because a permit system is likely to be



both politically and administratively easier to implement than a system of taxes.

The objective of this study is to investigate whether taxes or permits is preferred for the
control of spatial-temporal externalities that arise in the management of invasive insect species.
We apply our model to a specific insect — Bemisia tabaci, or whitefly, in Arizona. Welfare
outcomes are compared under scenarios of only privately-optimal insect control, private control
with taxes, and private control with permits relative to a socially-optimal benchmark. We
compare steady-state solution paths and social welfare under both certainty and uncertainty to
determine whether the insights of Weitzman, Stavins, Hoel and Karp (2001, 2002) and Newell
and Pizer hold in a model of spatial-temporal insect movement and dispersion.

The paper is organized as follows. In the next section, we provide some background on
the object of our study — whitefly in Arizona. The second section describes an economic model
of optimal spatial-dynamic control of whitefly that incoporates the elements of market failure
described above. A third section outlines our empirical approach to parameterizing the optimal
control model, and the data required to generate equilibrium steady-state control paths. The data
used to estimate and simulate the optimization model is described in the fourth section, while the
fifth presents the findings of the empirical study and offers some practical implications for
invasive species management policy. The final section concludes and offers some suggestions

for future research in this area.

Background on Whitefly: Q-biotype B. tabaci

We focus on one of the most nefarious, invasive insect species in Arizona, the whitefly (Q-



biotype Bemisia tabaci). While the B-biotype B. tabaci is arguably not invasive, having been
identified as a significant economic pest at least since 1981 (Oliveira, Henneberry and Anderson,
2001), the Q-biotype was discovered in a commercial greenhouse in Tucson in only 2005
(Dennehy, et al., 2006).

Q-biotype B. tabaci is particularly troublesome due to its resistance to a number of
insecticides that have proven effective in controlling B-biotype. B. tabaci, in general, is a
uniquely harmful insect to either cotton or nursery crops. First, B. tabaci is polyphagous,
meaning that it feeds on many types of food so is able to move from host to host as cropping
cycles evolve (Watson, et al., 1992; Oliveira, et al., 2001). Second, the whitefly has proven to be
remarkably adaptable to poor host plant conditions through natural selection over only a few
generations (Basu, 1995) and travels rapidly from host to host, often over considerable distances
through commercial transportation or weather patterns (Ellsworth and Martinez-Carrillo, 2001).
Third, it is an important vector for a range of viruses that are known to be the source of several
common diseases in tomatoes, beans, cassava, and most important to Arizona, cotton and lettuce
(Watson, et al., 1992; Oliveira, et al., 2001). Fourth, Dittrich et al. (1990) document the ability
of B. tabaci to develop resistance to common insecticides and, indeed, to increase the rate of egg-
laying when under stress from insecticides. Finally, the destructive nature of B. tabaci can mean
the elimination of entire cropping systems once infestation occurs. Therefore, finding an

effective and efficient means of control is an economic imperative for Arizona agriculture.

Economic Model of Whitefly Control



In this section, we describe a spatial-temporal optimal control model of whitefly management
that focuses on the externalities caused by insect growth and migration. Invasive species control
is inherently spatial-temporal because two forms of externality are involved: (1) a dynamic
externality that arises due to population growth over time, and (2) a spatial externality that arises
due to migration. Unlike the case of pollution control, invasive species cause damage to both
farms that serve as hosts, and the growing community more generally. The externality arises due
to the fact that insects migrate from one farm to the next, so a level of control that may be
optimal from a private perspective is not likely to be optimal from the perspective of the
community as a whole.

Assume that there is one firm located at each location (s) in a grid structure in which
distances between firms are measured from centroid to centroid.”” From the firm’s perspective,

the optimization problem is written as:

v/ = Max f e P[(p, - ¢ )y(b,) - k(b,x)dt, Vs e€H, 1)
Xo 0

where V7 is the present value of the firm, p is the rate of discount, p, is the price of output, c,, is
the marginal cost of production, y is the yield, b, is the population of insects at location s and
time ¢, x,, is the level of control and £ is the control cost function. Control costs are convex in the
population level and control such that: k, >0, k. >0, k,, >0 k_ >0, and k,, <0. Equation (1) is

solved subject to the equation of motion for b, which is given below.

seokk
Clearly, this assumption is necessary to make the problem analytically tractable, but ignores border
issues, nearest-neighbor effects and the likelihood that insects are distributed more continuously over the relevant
geography than a grid structure would imply.



Solving the Planner’s Problem

The planner’s problem, on the other hand, is to maximize the value of production across all
locations, net of control and social damage costs, 17, by choosing control activity-levels at each
point in space and continuously over time according to:

VP = Max fe-PfE (@, - c,)y(®,) - DIND,(b,,b,,...bg)) - k(b,x)dt,  (2)
xst 0

s€B

where D is a “social damage function” that reflects the damage inflicted on others’ crops from
net dispersion (ND,) from location s to all other locations (Smith, Sanchirico and Wilen, 2009).
For simplicity, we assume the industry is comprised of # identical firms so we can aggregate the
solution to (1) to compare directly to the socially optimal solution. We assume that both the
firms and the regulator take output and input prices as parametric. All firms are located at
different points in a discrete space transcribed by the set of grid points 6.

Entomologists recognize that invasions of new pest populations tend to follow a three-
phase process: (1) arrival, (2) establishment and (3) spread (Hof, 1998; Leibhold et al., 1995).
Therefore, equation (1) is solved subject to spatial-temporal equations of motion that govern B.
tabaci growth and dispersion within the sample data set.

The equation of motion for insects at each point (on one farm) is relatively simple. Insect

numbers grow as a function of the existing population, less removals due to control activities:
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= gst(bst B xst’ (3)

where the specific form of the growth function, g_(b,), is specified below. The planner,

however, must also take into account the spatial externalities associated with movement from
one location to the next. The random nature of the spatial-temporal diffusion of B. tabaci is
described using a general diffusion model wherein the rate of population growth at a point
consists of an autonomous growth component, migration from other locations and planned
removals through control activities. The rate of diffusion, in turn, depends on the population at
the point, its distance from an initial point and the rate of diffusion so that the general form of the

state equation is written:

ob,, ®) P Gabst ®) Gazbst s
= + — - x = + - x )
a ¢ g St\ st a s a s st g SN st as 2 st ( )

where G is the diffusion coefficient that governs the rate of spatial movement. Equation (4) is
Fisher’s reaction-diffusion equation in general notation.

Consistent with the discrete nature of the space described in (2), we follow Sanchirico
and Wilen (2005) by assuming whitefly make discrete movements from one location to the next,
on the assumption that each grower is located at one point on the spatial grid defined by the set 6.
The change in population from one period to the next at each point in space, therefore, consists

of autonomous growth, net dispersal (in migration less out migration), and insect removals:
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ob
a:t - gst(bst) + N‘Ds(blt’ b2t’ e °bSt) = X (5)

where ND, is the net dispersal function. In Fisher’s equation, growth is governed by a
relationship that depends on the current population and the population relative to carrying

capacity:

gst (bst) = rs bst(l B bst/Ks)’ (6)

where 7, is the intrinsic growth rate, and K| is the carrying capacity of location s. Next, we
approximate the net dispersal function with an additive function that accounts for all in-migration

and out-migration such that:

S
ND,(b,,b,,...b) = zlj d.b,, (7
=

where d;; are coefficients that represent the movement from location ; to location s as a share of
the total population (Sanchirico and Wilen, 2005). Depending on the location in space, and time
since introduction, in-migration can either be positive or negative.

We then follow Hof and Bevers (2000) and calculate each of the d; elements using Fick’s
Law. Others, including Liebhold, et al.; Hof; Burnett, Kaiser and Roumasset, and Richards, et al.
(2009) combine Fick’s Law with an exponential growth component to arrive at a continuous-time
dispersion and growth model (Skellam, 1951). However, exponential growth for an insect

species on one plot of land is not realistic. Therefore, the dispersal coefficients are calculated
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using:

e -q%/4Gt
by =b, | ——|> ®)
24nGt

for an initial point in space and time (s,, #,) and an estimated diffusion rate, G, for each discrete
location during each time period. According to Fick’s Law, the spread of an invasive insect from
a starting point s, is normally distributed with a rate of dispersion given by G. Because the rate
of dispersion is host-dependent among polyphagous insects, we model the ability of B. tabaci to
transition between cotton seasons on hosts other than cotton by allowing G to depend on the host,
h (Smith, Sanchirico and Wilen) where the variable /4 is a qualitative indicator that essentially
allows the rate of dispersion to vary with the attributes of each location: G(4). Further, the
impact of varying crop location relative to a source of infestation is modeled through the variable
¢, which is a continuous measure of the distance of a population at point s from one at s,,.

Including the control activity, the equation of motion then becomes:

S
$-p,=rb,(l -b,/K)+Y db, -x, )
j=1

t s st 5 Jt

for each location s and time .

We first solve the problem from a planner’s perspective. Recall that by defining the
problem such that each discrete location in space is a “farm,” the planner’s problem internalizes
all of the spatial externalities implied by movement of insects from one location to the next.

Although highly stylized, this solution captures the nature of the externality that we wish to
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describe, and to control. We first solve the problem under certainty, assuming the net dispersal
amounts are known with certainty, and then move to a stochastic solution in which movement is
determined by random draws within the Fisher equation structure. We solve the planner’s
problem by apply Pontryagin’s maximum principle to the objective function above, on the
assumption that each location represents a different, but connected, sub-problem. That is, the
optimal population path and control policy will depend on the growers’ location in space.

The Hamiltonian for the planner’s problem at each location, s, is written as:

H(xst’ bst’)"st; 9) = (pt B cst)y (bst) B D(NDS) B k(bst’xst + )\‘st(gst(bst) + NDs B xst 4 (10)

in general notation where the arguments of the net dispersion function have been suppressed for
clarity, where A, is the costate variable associated with the insect population at each location, s,
and time period, . Assuming an interior solution, the first-order conditions to this problem are

given by the optimal choice of insect control:

oH _ , B
i an
the costate equation:
: ~ -0H _ /
hg =1k = b ~[@;-c)yy - E D'(ND,) - k, + A, (g, + NDy)], 12)
st J

where D’ is the incremental external damage associated with the movement of one insect from

location s to locations j, subscripts indicate partial differentiation at each location s and time
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period ¢, and the spatial-temporal constraint on insect growth at each location:

oH
e gb,) + ND(,) - x, (13)

in addition to the usual transversality and non-negativity constraints. These first order conditions
imply that the current value of any increment to future insect populations, at each location, must
be equal to the marginal cost of reducing the population by one insect and the marginal social

damage inflicted on the rest of the growing community associated with migration from location

For purposes of this paper, we are interested only in the characteristics of the steady-state
solution and the welfare implications of the implied long-run industry equilibrium. The optimal

steady-state solution for the number of whitefly at location s and time ¢ is:
by = (K,/r)(x, - ,E db, -d, - 1), (14)

while the optimal solution for the amount of whitefly control at each location and point in time is

given by:

xq = k)@, - ¢y, = X D'NDy) - ky + k(r,(1 - by/K) -
J
rs(bst/Ks) +8 + E d.sy) + kxb(rsbst(l B bst/Ks) + E dsjbst) (15)
J*s

J
= (k) (v, - ¢,)y, - Y. D'(ND)) - k, + k(g, + ND, + 8) + k(g + ND),
J

where the x and b subscripts refer to partial differentiation with respect to insect control and

population levels, respectively. Solving for the steady-state value of the costate variable gives:
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Ay = U@, - ¢)vy ~ ky - X D'ND), + k(r,(1 - b,/K) -

J
r(b /K) +d +38) - gkx@s) (16)
= (I8, - ¢, — ky - X D'(ODy), - kg, + ND, + &) - X k,d)
Jj J*s

These three sets of equations (3S equations) are solved simultaneously for the optimal
whitefly population (b,,), management policy (x,,) and value of the costate variable (4,). Because
we include net dispersals in this solution, however, it describes the social optimal solution and
not the one expected to be generated by the private market. Again, assuming there is one grower
located at each point, s, on the grid, he or she will not take into account the externality associated

with insect movement to other locations.

Solving the Firm’s Problem

Clearly, the solutions to the firm’s and the planner’s problems above differ to the extent that the
former does not take into account the externality created by the spatial migration of insects from
one property to the next. Each grower only controls insects until the marginal value of damage
inflicted on his or her own crops is equal to the marginal cost of control, including future growth
on the grower’s own land. However, other growers are negatively impacted to the extent that
some of the population growth native to a grower’s own fields ultimately migrates to others’
fields according to the net dispersal function. In this section, we show that grower-specific taxes
on the external damage caused by this migration can provide sufficient incentives for an optimal

amount of control, as can a direct limit on insect population that is managed through a system of
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marketable permits. In this case, the permit price in equilibrium will be equal to the optimal
Pigouvian tax levied on insect numbers above an allowable threshold. In the simplest case, the
equivalency of taxes and permits shown by Baumol and Oates and a number of others holds
exactly.

Several studies (Weitzman; Roberts and Spence, 1976; Adar and Griffin, 1976; Yohe,
1977) show, however, that this is no longer the case when there is uncertainty regarding the cost
of pollution reduction and that benefit uncertainty is irrelevant. Moreover, with uncertainty if the
slope of the marginal social benefit function is relatively flat or if the slope of the marginal-
abatement cost function is relatively steep, then price-based policies will be preferred. If the
opposite is true, then permit, or quantity-based policies will be more effective and efficient. The
intuition is straightforward. If the benefit function is relatively flat, then errors in estimating the
marginal cost function will cause only small deviations from the optimal solution if a policy is
used that fixes the marginal social damage level. On the other hand, if permits fix the amount of
effluent and the realization of the cost function is far different from that expected when the
policy was put in place, then the deviation in the resulting marginal social damage will be large.

More recent research extends this reasoning to a dynamic context. These studies show
that there are many reasons why taxes and permits are not equivalent in the control of stock
externalities (Requate, 1998; Hoel and Karp, 2001, 2002; Karp and Zhang; Newell and Pizer, and
others). It is well understood that in the case of stock externalities (pollution accumulates over
time so that emissions during each time period add to the stock of pollution, and it is the stock of
pollution that causes the damage) taxes and permits will not be equivalent as taxes are assumed

to be fixed over time and permit prices can vary as the cost of abatement (control) changes.
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Further, in a static environment Stavins shows that correlated uncertainty between benefits and
costs creates a preference for quantity-based regulation. It is our hypothesis that a similar
variance outcome arises when the externality is spatial and taxes (the first-best solution) are
levied on a grower-by-grower basis. In this case, taxes are assumed to be location-specific and
fixed in a spatial sense. This fixes the marginal social damage for each location. In a permit
system, however, the allowable insect count is fixed for each location and permit prices are
allowed to vary, thus allowing the marginal social damage to depend on production and
infestation conditions at each location. Permits will be traded within each period to remove any
arbitrage possibilities and thus equate the marginal social damage across locations. Permit
trading, therefore, results in a more efficient outcome for the community as a whole and, we
expect, greater social welfare relative to a system of taxation.

We first compare the socially-optimal solution above to the privately-optimal solution
with a system of taxes. Because the externality arises due to net dispersions from each farm, we
modify the social problem such that the social damage function is no longer part of the objective
function. The optimal solution under a location-specific (first-best) tax regime is found by
including a tax on net dispersals (ND,(b,,)) in the objective function introduced above. With this

change, we write the current value Hamiltonian as:

H(xst’ bst’ )“st; 9) = (pt B cst)y (bst) B k(bst’xst + TstNDs + )\’st(gst + NDs B xst)’ (17)

where 1, is the Pigouvian tax for location s at time ¢. The first-order conditions are modified to

include the new costate equation:

17



. -0H
Ay = rhy = == = oL, )y, ~ ky ~ T ND, + hy(g, + NDI, (18)

st

so the optimal solution for the steady-state control level by a private firm facing tax rate t,,

becomes:

xs: = (l/kxb)((pt B cst)yb B kb B T.s't]\U)lv + kx(gb + NDb + 8) + kxb(gst + NDst)’ (19)

again simplifying notation. Analogous changes to the optimal steady-state for insect population
numbers and co-state values are obvious so are not reported here. Comparing the socially

optimal solution to the solution with tax, the optimal tax is simply: T, =k_ , in the first-best
st

solution as the marginal damage of an insect that moves from one location to the next is simply
the marginal cost of controlling that insect once it arrives at its destination.

Next, we compare the solution with taxes to one that places a quantitative restriction on
the number of whitefly at each location, and allows growers to trade permits. In this case,
growers can either control insects that would migrate from their farm to the next, or they could

buy permits to allow more insects to remain on their land. Assuming that the location-specific

limit on insects is given by Nf)st the Hamiltonian above is replaced by:

H (xst’bst’)\‘st’nst;e) = (pt B cst)y (bst) B k(bst’xst +

7\‘st(gst + NDst B xst) + 7Il:st(]vj)st - N Dst)’ (20)

where 7, is the multiplier associated with the insect restriction, or the marginal value of obtaining
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one more license for whitefly. Solving this problem for the optimal amount of whitefly control,

we find that the costate equation now includes:

. -oH
)"st B 8)“st - W B _[(pt - cst)yb B kb + )“st(gb + NDb) - nstNDb]’ (21)

st

which yields a steady-state solution for the control variable:

xs: = (1/ kxb) ((pt B cst)y b kb B nstNDb + kx(gb + NDb + 8) + kxb(gst + NDst)' (22)

The equivalence between taxes and permits is apparent from comparing (22) and (19) and noting

that =7, in equilibrium.

Despite this equivalency result, it is not clear whether the similarity of the steady-state
solutions means that they provide the same welfare results when we explicitly account for the
uncertainty inherent in the spatial-temporal movement of insects. In Newell and Pizer and Hoel
and Karp (2001, 2002), uncertainty in stock regulation is introduced through the cost of control.
This is reasonable in the case of effluent regulation as the amount of production is under
managerial control and, presumably, they are aware of the relationship between output and
effluent from their plant. Uncertainty is attributed to regulators’ imperfect knowledge regarding
this relationship and is thus understandable.

In the invasive species case, however, the nature of the externality is fundamentally
different. Namely, both the benefit and cost of control depend on the biology of insect
movement, so both are inherently uncertain. First, the arrival time of an invasive insect is never

known with certainty. Typically, this type of a priori uncertainty is modeled using a hazard
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function approach in which the probability of arrival rises the longer the particular area has been
insect-free. Second, once arrival occurs movement involves both dynamic and spatial
uncertainty. The diffusion model developed above captures this uncertainty directly and
implicitly as the insect population at any given location is known only up to the normal
probability distribution that characterizes the Fisher equation.

Consequently, while the uncertainty in Weitzman, Hoel and Karp (2001, 2002), Karp and
Zhang and Newell and Pizer derives from the cost of pollution abatement, the uncertainty in the
current model comes from both the cost of control and the movement of insects from one
location to the next. As long as insects arrive and move according to biological growth
processes, problems of invasive species management will always be subject to a significant
amount of uncertainty — uncertainty that affects both the benefit and the cost of regulation.
Moreover, the impact of population uncertainty on the cost and benefit side is likely to be
correlated so the analysis of Stavins applies to the invasive species problem, but in a spatial-
temporal, rather than static, context. For this reason, we consider the welfare effects of taxes and
permits when whitefly dispersion is subject to correlated uncertainty, conditional on their having
already arrived.”™

Rather than derive an analytical expression for the welfare effects of uncertainty under
taxes or permits as in Stavins, because of the complexity of our solution above, we create a

welfare differential metric similar to Weitzman and Newell and Pizer and simulate expected

""" Whereas Kim et al. (2006) consider the probability of arrival as another source of uncertainty, adding

this to the uncertainty of dispersion is beyond the scope of the current research and is a fruitful topic for future
research in this area. Further, another source of uncertainty is not likely to change our conclusions in a qualitative
way.
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values using numerical Monte Carlo techniques. Essentially, their “net benefit” measure
compares the present value of the economic surplus generated from a first-best, socially optimal
solution to that resulting from the regulated outcome under a location-specific tax regime and a
location-specific system of tradable permits. The net benefit comparison in the current

application is given by:

Ast =E [N Bst, tad E [N B st,permit] ° (24)

where E [ ] is the expectation operator, taken over the assumed distribution of uncertainty
governing net dispersion.

In comparing welfare outcomes, we assume the output market is perfectly competitive, so
all welfare effects are captured by producer’s surplus. In this regard, the benefit function in each
regime is given by the objective function described above — the maximum total surplus to society
over the cost of producing cotton and controlling whitefly spread. Once optimal values for x and
b are found, we substitute back into the specification for V" to find the maximum welfare

associated with the social solution, and each of the regulated firm solutions.

Empirical Model of Whitefly Diffusion and Optimal Control

The data used to estimate the diffusion equation is experimental B. tabaci data from field
insecticide-trials conducted by ARS researchers (Naranjo, Chu and Henneberry, 1996; Naranjo et
al., 1998) in Brawley, CA. These data represent two-years (each of 13 week durations) of insect

counts, yield measurement, and whitefly control experimentation (see Richards, et al., 2009 for a
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detailed description). These data are summarized in table 1. Because the grid cells in the
experimental plot were adjacent to each other in a 5x5 design, insects had the opportunity to
move from cell to cell, and interact with insects in other locations as if each grid location was an
individual farm. To simplify the spatial-dynamic model, we estimate the diffusion process for all
25 cells, but use the dispersion parameters from only the upper-left nine cells of the entire matrix.
Although simplified, the estimation and optimization procedure is still very complex as the 3x3
structure consists of 81 distinct interaction parameters that must be estimated.

[table 1 in here]

With this data, and the objective of finding optimal control solutions across a set of
geographically-contiguous locations, we parameterize each component of the optimal control
model described above. We pool the data from each spatial location, s, over all 13 weeks, and
both years, and estimate the equation of motion using a location-fixed effects procedure.

Because observed control activities are endogenous, we estimate the constraint equation using a
an instrumental variables procedure (2SLS) where the set of instruments includes the time of
year, weather and lagged endogenous variables. The control variable, however, does not measure
removals directly, but is a count variable that indicates the number of applications of a particular
insecticide. Therefore, in the econometric model we estimate the apparent amount of control as a
function of the number of insecticide applications, interactions between applications and
population levels, cooling degree days (CDD), rainfall and a binary variable for the year 1994.
Further, we define the change in insect population in discrete terms as the current population less
that observed last period.

Note, however, that to obtain estimates of the growth parameter from Fisher’s equation,

22



we first need estimates of the dispersion coefficients that define the amount of population growth
due to in-migration less out-migration. Consequently, we estimate the constraint equation using
a two-step procedure, first estimating the dispersion coefficients using Fick’s Law and non-linear
least squares in a first step and then, using the estimates of d;, estimating the growth parameter,
the location fixed-effects and parameters of the control function in a second stage. More

formally, the estimation equation is given by:

s
bs,t B bs,t—l = rsbs,t(l B bs,t/Ks) + E dsjbj,t T Xgps (25)
j=1
where d; are estimated using Fick’s Law as:
In(d, ) = ln(bso,to) - (1/D)g?/4t - In(2\/xD1), (26)

and the only parameter to be estimated is the rate of diffusion, D, from location j at distance ¢g. In
these data, the dispersion is smaller the further away from the origin, but the gap declines with
time as insects are able to reach the further distances. Because control costs are determined by
the marginal effect of control activities on insect numbers, the elements of 4() are estimated
through equation (25) from the control function described above.

We then use the parameters estimated from (25) and (26) to populate the spatial-temporal
optimal control model (all parameter definitions are summarized in table 2). Because insect
movements are inherently random, the nine equations in nine unknowns are solved using Monte
Carlo simulation with 1,000 draws from a standard normal distribution. Our primary interest lies

in characterizing the steady-state solutions, so we calculate the solution for each location, and
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compare welfare results by summing over all nine grid locations. In the next section, we
summarize these results, following the econometric model of whitefly dispersion.

[table 2 in here]

Results and Discussion

In this section, we present and discuss the econometric estimates of the spatial-temporal whitefly
dispersion model, and the optimization results obtained from the optimal control procedure.
Parametric estimates of the Fisher Equation model are presented first, and then the optimization
results, beginning with the base-case scenario and then the comparative dynamic exercise used to
test the core hypotheses of the paper, namely, the underlying conditions that influence the
preference for taxes versus quotas in regulating insect dispersion externalities.

In temporal econometric models, the nature of time is well understood. However, in
spatial models, or spatial-temporal models, it is important to understand the specific context of
space under study. In table 3, we provide a description of the grid-structure of the experimental
farm-community used in this study in terms of the distances between each cell. In table 4, we
focus on the nine grid-locations that form the basis of the optimization model and show the
dispersion rates, normalized across each row, between each pair of locations. From this table, it
should be clear how the dimension of the problem expands with the complexity of the geography
involved. These dispersion rates are calculated using the parametric estimates shown in table 5.
The estimates in table 5, in turn, result from estimating Fisher’s Equation and Fick’s Law under

the assumptions described above. Although we estimate this model using a location-fixed-
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effects procedure, we do not show the location effects here as there are a number of parameters in
the full model.”™™™

Recall that control costs are inferred from the control function estimated as part of
equation (25). The results in table 5 show that the control function is quadratic in the number of
insecticide applications, and that the marginal effectiveness of control increases in the insect
population, both as expected. Further, insect numbers fall with the number of cooling-degree
days (warmer temperatures reduce population levels), but are unaffected by either rainfall or the
yearly fixed effect. Using the assumption that marginal cost must equal marginal value in
equilibrium, marginal control costs are calculated by multiplying the marginal product of control
by the per-insect impact on gross margins (marginal yield times margin per pound by table 1).
With the objective function and equations of motion thus parameterized, we then solve both the
socially- and privately-optimal problems using Monte Carlo simulation.

[tables 3, 4, and 5 in here]

The optimal steady-state control and whitefly population values for each location are
shown in table 6 below in the socially-optimal solution relative to the privately-optimal result. In
each case, the difference between the privately and socially optimal solutions is considerable — on
average the privately-optimal control amount is 24.02% larger than the socially-optimal amount
and the population level 54.41% greater. Moreover, recall that the metric for infestation levels is
number of adults per leaf, so aggregated to an entire field these values imply large absolute

numbers of insects. Further, the difference in objective function values implied by these

ok skokk
Because of the large number of cells in this, and any real-world application of this procedure, it was

necessary to assume the movement parameters are constant across locations. This assumption could easily be
relaxed with more detailed agronomic data on the conditions prevailing at each location.

25



differences is significant in an economic sense — the socially-optimal solution generates 8.32%
more surplus than the private-optimal solution. However, relative to the number of adults in the
sample data, both the privately and socially-optimal results show considerably lower infestation
levels, suggesting that the market fails in some other important way that the model is not
capturing. With these benchmark results, it remains to be seen which policy tool is able to
restore the socially-optimal result in the most efficient way.

[table 6 in here]

To show the effect of using either policy tool on whitefly control strategies, we first
consider the certainty case, where the policymaker is omniscient and is able to know exactly the
amount of net dispersion from each cell to the others. In either case, however, it is a simple
matter to design an optimal policy that restores the first-best result so this solution is of little
interest. Under uncertainty, however, each of these tools is expected to generate different control
paths, and different levels of aggregate welfare. These differences are of interest to policymakers
and are shown in table 7. Based on 1,000 random draws for each dispersion coefficient, the
expected present value cotton production is fully 45.8% higher under a quantity-based permit
system relative to a price-based tax system. Further, a simple t-test of the difference in mean
values between the two easily rejects the null hypothesis of equality at a 5% level. Clearly,
therefore, permits are preferred in this case. This result, however, is exactly the opposite to that
found by Hoel and Karp (2001, 2002) and Newell and Pizer and Karp and Zhang and supports
Stavins’ conclusions. In designing stock-externality control programs, policymakers need to
understand the source of uncertainty — whether it derives from the demand side or the supply side

and the correlation between the two — as much as they need to know that uncertainty matters.
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[table 7 in here]

As in any policy-design problem, policymakers also need to know the parameters
governing the slopes of the marginal social benefit and cost curves as welfare calculations are
critically dependent upon them. In table 8, we show the effect of varying the slope of the
marginal damage (marginal benefit) and marginal cost functions. In the upper panel, causing the
slope of the damage function to rise from $2.5 / insect to $6.5 / insect causes the optimal value of
cotton production, net of damage costs, to rise by 66.2% under a system of taxes, but to fall by
1.5% under a system of permits. Thus, steeper marginal social benefits favors taxes, and not
permits. On the other hand, causing the slope of the marginal control-cost function to rise from
$0.05 / insect to $0.15 / insect — a range that brackets the estimated value — causes the net benefit
to rise by 84.3% under taxes, but 195.3% under permits. Therefore, steeper marginal costs favor
a system of permits relative to taxes. Both of these results are, again, opposite to that found in
the GHG regulation literature.

[table 8 in here]

This raises the obvious question, therefore, of which scenario is likely to prevail? Unlike
the GHG literature, where the difference in social value between taxes and permits was found to
be an order-of-magnitude different, the values in this case are sufficiently close, and sufficiently
sensitive to variation in the key parameters, that extreme variation in one curve or the other could
reverse our conclusions. However, in the case at hand, and in the neighborhood of infestation
levels that growers will realistically allow to occur, an additional insect is not likely to increase
the amount of damage over what has already been done. On the other hand, Q-biotype whitefly

promise to be sufficiently difficult to kill that the incremental cost — perhaps an additional

27



treatment per season — could be substantial.

Conclusions and Implications

The Q-biotype whitefly promises to be one of the most important invasive insect species to
agriculture in the U.S. southwest, should it be allowed to spread. Government control efforts are
not likely to be forthcoming, however, so this study investigates preferred institutional
arrangements for addressing externality issues that prevent a system of private control from being
fully efficient. Similar policy tools proposed for the control of GHG emissions find that a price-
based system (taxes) is preferred to a quantity-based system (permits). However, these findings
are based on the assumption that regulators are uncertain over the slope of the cost-of-control
function, and that the benefits of control are irrelevant. If uncertainty arises on both sides of the
equation, however, regulator preferences are likely to change to a quantity-based system of
regulation. In the invasive species case, uncertainty is endemic to both the benefit and cost side
as the growth and diffusion of insects from one farm to another are driven by biological
processes.

We construct a spatial-temporal model of optimal insect control to investigate which
policy tool is preferred. Under realistic parameter assumptions, and opposite to the conclusions
of the GHG regulation literature, we find that a system of permits is preferred to a system of
taxes. Moreover, we show that a steeper marginal social damage function favors the use of taxes,
while a steeper control-cost function favors permits. Again, this result is opposite to previous

results that assume only cost-based uncertainty. Based on the evidence provided by negotiations
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on climate change legislation in the U.S., this outcome is fortunate for insect regulators because
permit-based systems of control are evidently more politically-acceptable than tax-based systems.

Our findings are likely to generalize beyond the invasive species case. Indeed, in the
GHG regulation literature, uncertainty was assumed to lie on the cost side because it is highly
plausible that regulators will not know the state of technology faced by polluters. However,
given the unsettled science on this issue, uncertainty in the GHG case could just as easily come
from mis-estimates of marginal social damage as well. Similar debates will arise in other forms
of externality regulation, from water pollution to SO, control, even to the case of whether to
force citizens to immunize themselves against influenza in the case of a threatened pandemic. In
each of these cases, a similar analysis to that conducted here will have to be carried out.

As in the climate-change regulation case, however, there are many institutional details
that would need to be resolved. Because the taxes and / or permits in our model are location-
specific, the data-gathering effort required to implement any regulatory system would be difficult
and costly. Nonetheless, most growers monitor insect infestations through either pheremone trap
or sweep technologies anyway, so the burden of an additional requirement may be small.
Advances monitoring technology, which would surely arise in the face of increased regulation,
would likely reduce the cost of more intensive on-farm insect monitoring practices.

On the technology issue, future research in this area is necessary to investigate the relative
incentives to develop innovative insect-control technologies if either a system of taxes or permits
is put in place. Does a system of permits favor either chemical or biological control? Would
growers instead have incentives to develop better management technologies in order to conserve

permits? Are the assumptions used by Requate (1998) in answering these questions for the
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emissions case similarly critical to the invasive species example? Each of these questions is a

potential avenue for future research.
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Table 1. B. tabaci Summary Data: Brawley, CA. Field Experiments

Variable' N Mean Std. Dev. Min. Max
Treatment (#) 975 3.000 1.414 1.000 5.000
Eggs (#/cm?) 975 6.830 11.270 0.030 104.540
Nymphs (#/cm?) 975 1.486 2.715 0.000 25.970
Adults (#/leaf) 975 12.793 27.720 0.000 241.000
Temp. Max. (°F) 975 100.720 10.470 73.000 115.000
Temp. Min. (°F) 975 67.564 10.140 47.000 82.000
CDD (°F) 975 19.538 9.642 0.000 34.000
Rain (in.) 975 0.002 0.016 0.000 0.100
CCDD (°F) 975 1216.500 853.100 116.000 3017.000
CRain (in.) 975 1.644 0.294 1.300 1.960
Yield (kg/ha) 50 1553.000 394.220 660.000 2380.000

! Variables are as follows: Treatment is the number of insecticide applications per season, "Eggs" is the number of
eggs per cm?, "Nymphs" are immature insects per cm?, "Adults" are adult insects per leaf, "Temp. Max." is
maximum daily temperature in ~{o}F, "Temp. Min." is minimum daily temperature, CDD is cooling degree days (H
- 65"{0}F), "Rain" is amount of rain received, in inches, on one day, "CCDD" is the cumulative number of CCDs
over thesample period, and "CRain" is the cumulative rainfall over the sample period.
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Table 2. Parameters Required for Whitefly Simulation Model

Variables: Units Source Value

1. State Variable: b, #/ leaf Endogenous

2. Control Variable: x,, #/ leaf Endogenous

3. Costate Variable: 4, $ / insect Endogenous

Parameters:

1. K, = carrying capacity #/ leaf Estimate from MAC data  241.0

2. r, = growth rate, #/ leaf Estimate from MAC data  0.0823

3. d,; = dispersal, #/ leaf Estimate from MAC data  See below.

4. p, = cotton price, $/kg. AZ Ag. Statistics $1.32 / kg.

5. ¢,, = marginal cost, $/kg. U of A Farm Budgets $0.70 / kg.

6. y, = marginal damage kg. / Ha. AZ Ag. Statistics 4.656 kg / Ha

7. k (b, x,) = control cost $ / Ha. Estimate from MAC data
$ / Ha. k, $37.37 +0.101 b
$ / Ha. k, -$1.73+0.101 x
$ / Ha. k. $0.101 /Ha

8. 0 = discount rate % Federal Reserve 0.05

Note: Marginal damage estimate taken from Richards, et al. (2006). Infestation intensity is commonly measured
using sampling methods on a per-leaf basis. Control cost function estimated in yield units (kg / Ha) and
multiplied by the assumed grower margin.
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Table 3. Distances Between Cells of Experimental Plot, in Index Measure

Cell Column Address
1 2 3 4 5

1 0.000 0.100 0.200 0.300 0.400

2 ]0.143 0.000 0.143 0.286 0.429

ie(;ldl;"s? 30333 0.167 0.000 0.167 0.333

4 0.429 0.286 0.143 0.000 0.143

5 0.400 0.300 0.200 0.100 0.000

Table 4. Normalized Dispersion Rates after Imposing Adding-Up Condition

(Row,Co) (1,1) (1,20 @13 @D 22 &3 G (G2 33
1) 0.000 1.444  0.780 1.444 1.169 0.623 0.780 0.623 0.229
1,2) 1.143 0.000 1.143 0.868 1.143 0.868 0.322 0.479 0.322
1,3) 0.376 1.041  0.000 0.219 0.765 1.041 -0.174 0.219 0.376
2,1 1.143 0.868 0.322 0.000 1.143 0.479 1.143 0.868 0.322
2,2) 0.536 0.811 0.536 0.811 0.000 0.811 0.536 0.811 0.536
2,3) -0.123 0.423  0.698 0.034 0.698 0.000  -0.123 0.423 0.698
3,1 0.376 0.219 -0.174 1.041 0.765 0.219 0.000 1.041 0.376
3,2) -0.123 0.034 -0.123 0.423 0.698 0.423 0.698 0.000 0.698
3,3) -0.634  -0.240 -0.083  -0.240 0.306 0.581 -0.083 0.581 0.000

Note: Own-dispersion is not defined in this model. The nine cells represented here are drawn from a larger 25 x 25

matrix of dispersion rates throughout the entire sample plot.
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Table S. Estimates of Whitefly Diffusion Model: Fisher’s Equation / Fick’s Law

First-Stage Estimates of Diffusion Parameters

Parameter Definition Estimate t-ratio
D Diffusion Rate 166.281* 9.034
LLF -2,134.553

Second-Stage Estimate of Growth Model Parameters

Parameter Estimate t-ratio
r Growth Rate 0.087* 6.518
b,, Population 13.347* 3.948
b.q. Population*Distance -0.664 -0.549
X, Control Level 2.239 1.859
b.x,, Population*Control 0.211%* 11.096
x,’ Control® -0.673* -2.876
CDD Cooling Degree Days -0.305* -4.039
RAIN Rainfall 44.975 1.189
DY4 1994 Binary 1.759 1.442
LLF -4,031.347

Note: Estimates in this table obtained with the ARS experimental data using a two-stage procedure. Plot-specific
effects in the growth model are available from the authors. Significance at a 5.0% level is indicated by a single
asterisk.
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Table 6. Steady-State Solution to Spatial-Temporal Control Problem: Socially versus
Privately Optimal Control and Population Levels: Baseline Assumptions

Social Optimal Private Optimal
Location (Row, Col) Control Level Population Control Level Population
a1 4.000 6.687 4.960 10.095
1,2) 3.876 6.366 4.800 9.759
(1,3) 3.420 5.814 4.240 8.900
2,1 3.875 6.363 4.799 9.757
2,2) 3.694 6.005 4.575 9.371
2,3) 3.045 5.382 3.784 8.381
3,1 3.381 5.779 4.200 8.863
3,2) 3.042 5.378 3.782 8.377
3,3 0.862 4.247 1.599 6.820
Objective Function: $69,674.391 $64,321.862

Note: Solutions are means of Monte Carlo simulation with 1,000 draws from normal distribution under base-case

parameter assumptions. Optimal population and control levels are measured in adult insects per leaf.
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Table 7. Comparison of Welfare Under Taxes vs Permits: Baseline Assumptions

V, o, Min. Max. t-ratio
Tax 688.330 110.960 387.920 958.750 -40.957
Permits 1,003.700 201.780 608.440 1,399.400

Note: Solutions are means of Monte Carlo simulation with 1,000 draws from normal distribution under base-case
parameter assumptions.

Table 8. Comparative Dynamics: Effect of Marginal Damage / Marginal Cost Variation

Taxes Permits

A V, o, V, o, t-ratio
2.500 527.060 55.640 1,532.200 533.420
3.500 634.580 71.420 1,533.600 531.170
4.656 742.380 89.451 1,524.900 478.570
5.500 809.530 102.530 1,510.700 440.180
6.500 876.010 118.060 1,483.800 396.410

k, V, o, V, o, t-ratio
0.050 533.000 71.672 913.490 280.580
0.075 636.200 79.920 1,151.300 358.270
0.101 742.380 89.451 1,524.900 478.570
0.125 855.170 96.269 2,016.300 639.640
0.150 982.360 100.940 2,697.700 865.820

Note: Solutions are means of Monte Carlo simulation with 1,000 draws from normal distribution. Base-case
parameter assumptions are in italics.
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