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1. Introduction

The economics literature on efficiency has traditionally derived static technical efficiency
measures that ignore the adjustment of quasi-fixed inputs to their long-run levels and the time
interdependence of production decisions. Only recently have we witnessed important
contributions to the literature on dynamic efficiency modeling. In thisregard, it is noteworthy
that most of the advances have taken place in the framework of the nonparametric data
envelopment analysis (DEA). While Sengupta (1995) introduced the first order conditions of
the dynamic optimization problem into the DEA models, Nemoto and Goto (1999, 2003)
considered the stock of capital at the end of atime period as an additiona output within the
DEA model. Silva and Stefanou (2007) proposed nonparametric measures of dynamic
efficiency based on Silva and Stefanou’ s (2003) nonparametric dynamic dual cost approach to
production analysis. More recently, Silva and Oude Lansink (2009) have employed the
adjustment cost technology to generalize the static conditional input distance function
developed by Chambers et al. (1998) to a dynamic framework. The empirical application of
their proposal isillustrated using DEA methods.

While a number of parametric reduced-form approaches to dynamic efficiency
measurement have been proposed (Tsionas, 2006; Ahn and Sickles, 2000), structural
approaches have been very scarce. The paper by Rungsuriyawiboon and Stefanou (2007) is a
notable exception. These authors propose a shadow cost approach in the framework of the
dynamic duality model of intertemporal decision making to generate both allocative and
technical efficiency measures. In being based on the dynamic duality theory of intertemporal
decision making, the approach by these authors does not however specify nor estimate the
production technology. The proposal by Silva and Oude Lansink (2009) generates efficiency

measures based on the production technology. The duality between this function and the



optimal value function is developed and alocative efficiency measures are subsequently
derived. Silva and Oude Lansink’s (2009) method is of particular interest over previous
proposals of dynamic efficiency measurement, since the technology is specified as a
directional distance function. Directional distance functions are a more general and less
restrictive specification of technology than traditional specifications of the production
frontier. Our work contributes to previous literature by parametrically estimating the model
proposed by Silva and Oude Lansink (2009). As has been noted above, while nonparametric
methods have been shown to be an adequate methodology to measure dynamic efficiency,
structural parametric applications have been very scarce, making the analysis of this issue

necessary.

2. The dynamic directional distance function, the intertemporal optimization problem

and duality

Following Silva and Oude Lansink (2009), a directiona distance function is used to generate

farm-level dynamic technical inefficiency measures for al factors of production. Let y e SKK
represent a vector of outputs, xe Cﬁf denote a vector of variableinputs, K e 9{: the capital

stock vector, Ie E){f the vector of grossinvestments and L e R¢, avector of fixed inputs for
which no investments are allowed. The production input requirement set can be represented as
V(y:K,L)={(x,I):(x,I) can producey given K,L }. The input requirement set is assumed
to have the properties defined by Silva and Oude Lansink (2009), i.e., V(y:K,L)is a closed

and nonempty set, has alower bound, is positive monotonic in x , negative monotonicin I, is



a strictly convex set, output levels increase with the stock of capital and quasi-fixed inputs

and can be disposed of freely.
The input-oriented dynamic directional distance function D'(y,K,L,x,I;g ,g,) can be

defined as follows:

D'(y,K,L,x,I;g_,g,) = max{ﬂe R:(x-pg,.I+/0g e V(y:K,L)},

N F N F (1)
gxeg{++’ glegt++’(gx’gl)¢(0 0 )

if (x-pg,,I+pg )eV(y:K,L) forsome B, D'(y,K,L,x,I;g,,g,) = —, otherwise,

The distance function is a measure of the maximal translation of (x,I) in the direction

defined by the vector (g, ,g, ), that keeps the translated input combination inside 7 (y : K,L).
Since fg, is substracted from x and fg, isadded to I, the directional distance function is
defined by simultaneously contracting variable inputs and expanding gross investments. As
shown by Silva and Oude Lansink (2009), D'(y,K,L,x,I;g_,g,)>0 fully characterizes the
input requirement set V' (y:K,L), being thus an aternative primal representation of the

adjustment cost production technology.
The input-oriented dynamic directional distance function inherits the properties of the

static directional input function. These properties are:

D.1 If V(y:K,L) is strictly convex, then D'(y,K,L,x,I;g ,g,) is strictly concave with
respect to (x,I) given y, Kand L.

D.2.D'(y,K,L,x-ag ,I1+ag;g,.g)= D'y, K,Lx,I;g ,8)-a, aeNR.



D.3. If outputs can be disposed of fredly,
y'2y= D'y, K Lx g, g)<D'(KLxLg,g).

D.4. If V(y:K,L) IS positive monotonic in X,
x'>x= D'(y,K,L,x',I;g_,g,) > D'(v,K,L,x,I;g_,g,).

D.5. If V(y:K,L) is negative monotonic in I,
I'si= D'(y,K,L,x,I';g_,g,) > D'(y,K,L,x,I;g_,g,).

D.6. If output Ilevels are increasing in the stock of capitd,
K'>K = D'(y,K',L,x,I;g_,g,) > D'(y,K,L,x,I;g_,g,).

D.7. If output levels are increasing in the stock of fixed inputs,

L'>L= D'(y,K,L',x,I;g_,g,) > D'(y,K,L,x,I;g,,g,) .
N 1 N
D.8. D'(y,K,L,x,I;ag,,0g,) >—D'(y,K,L,x,I;g_,g,), >0.
o

D.9. D'(y,K,L,x,I;g_,g,) iscontinuous with respect to (x,I), given K, L and y .

then

then

then

then

then

It is assumed that firms are intertemporally cost minimizing and thus they take their

decisions in accord with the following optimization problem:



W(y,K,L,w,c) = miln j e’ [w'x + c'K] dt
s.t. (2

K=1-6K

D'(y,K,L,x,I;g_,g,) >0

where we R”, isavariable input price vector, ce R!, isavector of capital rental prices, &

iIsadiagonal matrix containing depreciation rates and r isthe discount rate.
Chambers et al. (1998) establish duality between static directiona input distance

functions and the static cost function. Silva and Oude Lansink (2009) prove that
D'(y,K,L,x,I;g_,g,) isdua to W(y,K,L,w,c). Dynamic dudlity is based on the dynamic

input distance function properties defined above (see Silva and Oude Lansink, 2009 for
further detail). The Hamilton-Jacobi-Bellman (H-JB) equation corresponding to the

optimization program can be expressed as:

rW(y,K,L,w,c) = miln{w'x+c'K+ W, (v, K,L,w,c) (1-8K) + AD'(y,K,L,x,I:g,.g,)}  (3)

Where W, (y,K,L,w,c) is the first derivative of W (y,K,L,w,c¢) with respect to K and
A=W, (y,K,L,w,c)g, —w'g . From the H-JB equation in (3), the duality between

D'(y, K,L,x,I;g_,g,) and W(y,K,L,w,c) isgiven by the following optimization problems:

W (y,K,Lyw,c) = miln{w'x +c'K+W, (v, K, L,w,¢)'(1-8K) +
) . (4a)
7 (v, K, L,w,0)g, -w'g,)D'(v,K,L,x, I;g,.g,)}



w'x+c'K+7, (y,K,L,w,¢)'(I-0K) - W (y,K,L,w,¢)
w'g W (y,K,L,w,c)g,

Di(y,K,L,x,I;gx,gl)=min{ } (4b)

From the previous optimization problems, Silva and Oude Lansink (2009) derive a

dynamic inefficiency measurement. The dynamic cost inefficiency can be expressed as:

_ wWx+c'K+W, (y,K,L,w,c)' (I-0K) - rW(y,K,L,w,c) S
W'gx _Wk(Y9K9L’W1c)g1 - (5)
D'(y,K,L,x,I;g.g,)

or

OI' is the difference between the shadow cost of actual input choices and the minimum

shadow cost, normalized by the shadow value of the direction vector.
oI' > D'(y,K,L,x,I;g_,g,), being D'(y,K,L,x,I;g_,g,) ameasure of technical inefficiency

(TI') of both variable and quasi-fixed inputs. The difference between the dynamic cost and

technica inefficiencies yields the allocative inefficiency (A41° > 0):

ol' =D'(y,K,L,x,I;g_,g, )+ Al' (6)

In the next section, we present the empirical specification of both the directional distance

function and the minimum shadow cost function. Estimation methods are also discussed.



3. Empirical specification

Following Chambers (2002) and Fare et al. (2005), the quadratic function is used as a
parametric specification for the directional distance function. The quadratic specification
offers the advantage that it can be easily restricted to satisfy property D.2., the so called

trandation property. If weset g . =1, i=1..,N, g, =1 j=1..,F, M =1 (i.e, weassume a

single-output firm) and add a time trend (¢), the distance function for the firm 4 can be

expressed as.

C F N F
D’i(y’K’L’X’I’t;l’l) :a+ayy+za14nl‘n +za1j]/ +zaxixi +zaKjKj +
=1 Jj=1 i=1 j=1

Za,y+= ZZamLL += Zz%ll += ZZaW XX, += ZZ%K/KK +
n—l n'=1 Jj=1j'=1 i=1 i'=1 J=1j'=1

C F C N (7)

Z%ﬂ +Zawﬂ +Zawyx +Zay1<,y1< LD I IR IED I W R
n=1 j=1 n=1 i=1

. J

)3

n=1

=1 j=

F

ap LK, +22a,m.1 X, +ZZalej.I K. +ZZaKMK X +at
=1

j=1 i=1 j=1 =1 j=1 i=1

Parameter restrictions that need to be imposed for the translation property to hold are:

F N FF F N F N
Sa,-3a, -1 S5 53 0, =0 Sa,-Sa, =0,
j=1 i=1 j=1 =1 j=1 =1 j=1 i=1
N F M N
—2 A+ 2y =0, =1 N 2y =D a5, =0, j =1 F; and
=1 = = i=1

Ay = Ay s Qe =4 a,.,and A = Ay -



Following Kumbhakar and Lovell (2000) and Fére et al. (2005), the dynamic quadratic
directiona input distance function can be estimated using stochastic estimation techniques.

The stochastic specification of the distance takes the following form:

0=D.(»,K,L,x,L;1,1) +¢, (8)

where €, =v, —u,, v, ~ N(0,67) and u, ~ N*(0,07). In order to estimate (8), the translation

property is used:

~a, =D, (y, K, L,x-¢,, I+ a,,t;1,1) +¢, 9)

Function D] (y,K,L,x-a,,I+¢,,;1,1) corresponds to the quadratic form in (7), with

o, added to gross investments and subtracted from variable input quantities. By choosing a
o, specific for each firm, variation on the left hand side of (9) is obtained. Following Fére et
al. (2005), ¢ ismade equal to Lt

Stochastic estimation is accomplished by maximum likelihood procedures. For a

sample of H observations, the logarithm of the likelihood function is defined as:

H H
L=n-Hino, +Zlnd>£—€”—/1*’}— 1 g (10)
h=1

2
o. 207 =

! Parameter estimates changed very little with the choice of a;, however.



y 1

Where 7 is a constant, ag=(05+af)1/2, A, =0,/c,, and @ is the standard normal

cumulative distribution function. Point estimates of each producer’ s technical inefficiency can

be derived as follows:

' —
P AU,
]

mm=1-2 L (11)

h

where X, and A are the vectors of explanatory variables and parameter estimates

respectively, TE, is a measure of dynamic technica efficiency, u, is replaced by its

q)(gh/le/o-g) _ghlg
1-®(g,4,/0,)

conditional expectation E(u, /e,)=0" , ¢ is the standard normal

probability distribution function and ¢? = 6262 /o2 .
Once the dynamic directional input distance function has been estimated and technical

efficiency point estimates derived, one can obtain the dynamic cost inefficiency model by

means of estimating the following cost frontier model, where a time trend has also been

added:
C, = rW(y,K,L,wz,c,z)—Wk(y,K,L,wz,c,t)f(—W,(y,K,L,wz,c,t)+§,, (12)
w'x+c¢'K . . . . .
where C, =———  is the observed long-run cost normalized by the variable input price
W

Wy, W(y,K,L,&,i,t) is the optimum cost where all input prices have been normalized
W W

with respect to w;, Wk(y,K,L,&,i,t) and Wt(y,K,L,&,i,t) are its first derivatives

W W W W



with respect to K and ¢ respectively, & =7, +6,, 7, ~N(0,0}), and &, ~ N*(0,03). The
cost inefficiency term ¢, corresponds to the numerator in (5). It is thus a non-normalized
overal efficiency measure. By normalizing all input prices with respect to w,, W(.) is

specified as:

W(»,K,Lw,,¢,))=b,+b y+b,, 2+qu—+z ne +ZbLn \

n=1

1 1 1EGE
> yyy2+§bwzwz£ J +222bw S84 2 ZZbkjijK += ZZbLanLn +

j=1 =1 w; Wy j=1j*=1 =L n'=1 (13)

) F
bmzy +Zb}ij_+zbvk]yK +zb1LnyL +zbw2q C_+wa2kj&Kj+

1 1 n=1 1™ j= 1
C
2 bzt WZL WIS +ZZ% ’L S K L e
n=1 j=1j'=1 Jj=1 n=1 j=1 n=1

b

Kikj*

=b

bLnLn' = bLn'Ln ’ and b

ket k/ g

Symmetry restrictions b .. =b

go' g'g?

are imposed so

as to make the model more tractable.

Given the distributional assumptions made for y, and o, , the log likelihood function

corresponding to the stochastic cost frontier can be expressed as follows:

Lza)-HIn0'5+ilnCI{§hﬂ§J— . Zifi (14)

2
=1 O 20'5 =1

: / : :
where @ is aconstant, o, = (aj +0; )1 “and A = ag/ay . Point estimates of each producer’s

overal inefficiency can be generated as follows:

10



X, 'B w, ¢
ol =|1-—“"h= W, (»,K,L,~2, = ¢ 15
h { Xh'B-i-é‘h }/|:W2 k(y Wl Wl )j| ( )

where X, and B are the vectors of explanatory variables and parameter estimates

'

respectively, OE, :% is a measure of overall efficiency, o, is replaced by its
h h

0(&d/o:) A
1-0(~§, 4 [o;) o

conditional expectation E(8,/¢,)=0" and o’ =0%0’/0%.

Once the dynamic cost and technical efficiency measures are generated, one can estimate

allocative efficiency through (6).

4. Empirical application

Our empirical application focuses on a sample of specialized dairy farms in Holland. Farm-
level data are obtained from the European Commission’s Farm Accountancy Data Network
(FADN) and cover the period 1995-2005. To ensure that milk output is the main farm output,
we select those farms whose milk sales represent at least 80% of total farm income. The
dataset is an unbalanced panel that contains 2,614 observations on 639 farms that, on average,
stay in the sample during 4 years.

In order to keep the vector of parameters to estimate to a manageable size, we
distinguish one output, two variable inputs, two quasi-fixed inputs and two fixed inputs.

Output () is defined as afarm'’s total output and includes livestock and livestock products,
crops and crop products and other output. The two variable inputs are variable costs other

than feed (x,) and feed expenses (x,). Variable x, is thus an aggregate input that includes

11



veterinary expenses, energy, contract work, crop-specific costs and other variable input costs.
Breeding livestock is considered as a quasi-fixed input (K, ). Machinery and buildings, also
defined as quasi-fixed inputs, are aggregated into K,. Variables y, x,, x,, K, and K, are
measured at constant 1995 prices. Total utilized agricultural area (Z,), measured in hectares,
and total labor input (L, ), which is mainly composed of family labor and measured in annual
working units (AWU), are assumed to be fixed inputs.

Since output and input prices are unavailable from FADN, country-level price indices
are taken from Eurostat’s New Cronos Dataset. Netputs measured in monetary values are
defined as implicit quantity indices by computing the ratio of value to its corresponding
Torngvist price index. Depreciation rates considered for buildings, machinery and breeding
livestock are 3%, 10% and 25% respectively. The interest rate () is defined as the average,
over the period 1995-2005, of the annual interest rate for 10 years maturity government
bonds (Eurostat) and is equal to 4.97%. Following previous research, we assume that the
current price of a quasi-fixed input can be derived as the discounted sum of the future rents on
the depreciated asset (Epstein and Denny, 1983; Pietola and Myers, 2000). Based on this
assumption, the rental cost price of capital isdefined as ¢, = (r +6,)z,, where J, isthe quasi-
fixed asset depreciation rate and z, is the quasi-fixed asset price (defined as a Tornqvist price
index).

With M =1 C=2, F=2 and N =2 the parameter-restricted input distance function

can be expressed as:

12



Di(y,K,L,x,L,£;1,1) = ata y+a Li+a,Ly+a,(L+x)+a,(L+x,)+a,(-L+1,)

1 1 1
-l +a, K, +a,,K, +§ayyy2 +§aLlL1Li +ap 0L, +§aL2L2L§ +

I2 2 12 2 [2 I2
+axm(?1+%l+llxlj+ax2x2(32 %2+1 X, |[+a,, —£+?2+x1x2+11x1+1 x,

I? [2 1?2 J? I 2
alel[ é"'?‘llxl"'lxlj"'a/hz(é ?2+le2—12)€2 +a,| — 5 L+, _E + 16

1 1
EaKlKlKlz + g, K K "'Eakzszz2 + ay12(_y11 +yl,)+ ayxl(yll +yx,) + a2 (L, + yx,) +

a0 VK + a0, 0K, + Ay (LK, + LK)+ a0, (LK, + LK) +a,,,(—1,K, +1,K,)+
gy (LK + K xp) +ap (LK +Kox) +ag, (LK + Kox,) +ag, (LK, + K x,)

a, yLi+a, L, +a,,, (Ll + L) +a, (L1 + L) +a,,,(—L1,+ L,1,)+

a, (L +Lx)+a,, (LI +Lx,)+a,,,(LL+L,x)+a,, (LI +Lx,)+

A Ky + Qi Lo Ky + a0y LK + a5, LK +at

and the cost frontier function to be estimated is:

2 2
C=r{by+b,y+b,—2+b,tb, 2 +b,L+b,L +;b‘yy + 1 [WZJ +%bc1£1(c_1] +

2 w2w2
Wl Wl Wl Wl Wl

¢ C
152
bcch .

2
1 c, 1 2 1 )
+= chcZ — | t3 bLlLlLl + bLlLZLlLZ + _bLZLZL +b w2y 2+b cly L+b c‘2y
wow, 2 w, 2 2 w, w, w,
2 G Wy G W, W, G C
byLlyLl +b LZyL + bw2cl D90y —=—=+D ==L +b,—=Ly+byy —Li+by =L +
1 W W W 1 1 Wi 1

cl G
by,—L,+b, ,—=L,+
Wl Wi

b (rK,— K1) +b,,(rK,— K2) + bkllel(% K, - K1)+
r L] r L] r L] L]
boiy» {Kl(EKZ -K2)+ KZ(EKl —Kl)} +bk2k2K2(EK2 -K>) +bykly(rKl -Ki)+

boy (K = K 2) + b,y ~2 (K, = K1) b,y —2 (rK, = K 2) + bygpy ~ (K, = K1) +
Wi W Wi
bkm{ (rK sz+i(r1<l—klj}wmi(ﬂg — K2)+ b, L (K, — K1)+
Wi W W
L] L] L] (17)
b oLy (rKy = K1) ++b, 5, L (1K, — K2) + by, L, (1K, — K2) + b, (rt 1) + é:h
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5. Results

Table 1 provides descriptive statistics for the variables used in the analysis. Farms' total

output quantity index ( y ) has an average of amost 200 thousand per year. The mean quantity
index representing total variable expenses (x, and x,) is below 90 thousand, with feed

expenses contributing 40% to this quantity. The observed long-run cost represents almost

70% of total output. The breeding livestock quantity index (X,) is, on average, amost 69

thousand. While breeding livestock gross investments are substantial (7;), net investments

(I.<1) represent only 0.25% of K, which is due to the milk quota system regulating EU’s

dairy sector and limiting this sector’s growth. While the milk quota places a strong cap on the
growth of the dairy herd, it does not prevent modernization of dairy holdings that, on average,
have net investments in machinery and buildings of amost 7% per year.

Table 2 provides parameter estimates of the directional distance function. Almost 70%
of the parameters are statistically significant. As expected, the first derivatives of the
directional distance function (table 3), suggest that the distance increases with an increase in
variable, quasi-fixed and fixed inputs, while it decreases with an increase in output and
investment demand. In other words, dynamic technical inefficiencies worsen when a farm
requires more input to produce the same amount of output and gross investment, and improve
when output and gross investment grow, keeping input use constant.

First derivatives are computed at the data means and Monte Carlo Bootstrapping
technigques are used to generate their variances. We utilize 500 pseudo-samples of the same
size as the original sample, drawn with replacement. We then estimate both the distance and

the cost function and derive their first derivatives (calculated at constant values, i.e., at the

14



means of the variables from the original sample). Replicated estimates of these derivatives are
then used to derive their variance-covariance matrix.”

The Luenberger productivity change indicator (PC) (Chambers, 2002) is computed
and decomposed into the efficiency changes (EC) and the technical efficiency change (TC)
indicators. Results suggest a decline in productivity over the period of analysis (the PC has a
mean value of -0.11), which can be attributed to a decline in the efficiency (EC = -0.21), not
fully compensated by a positive technical change component (TC = 0.10). The progressive
transformation of the Common Agricultural Policy (CAP) from a policy mainly based on
price supports, to a policy based on (partially and fully) decoupled payments may explain a
progressive reduction of the incentive of farmers to operate efficiently (Serraet al., 2008).

Estimation of the cost frontier model is presented in table 4. More than half of

parameter estimates are statistically significant. Compatible with economic theory, the first

derivatives of function C,(.) show that the cost increases with normalized variable (&) and
W

quasi-fixed input prices (<X and <2 ), while it decreases with the capital stock (table 5).

w; wy
Dynamic technical, allocative and overall inefficiency estimates are presented in table
6. The average cost inefficiency (OI,) over the period studied is 0.12, involving the
possibility to produce the same amount of output with long-run cost savings on the order of
12%. Cost inefficiency is mainly due to technical inefficiency (77,) which is on the order of

0.11 and which suggests that there is scope for an 11% cost reduction through a more efficient

use of inputs.

2 |t is noteworthy that our non-parametric bootstrap approach is robust to misspecification issues, including

heteroskedasticity.
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Our dynamic technical inefficiency scores are compatible though not directly
comparable with static measures generated by previous research. Reinhard, Lovell and
Thjissen (1999) assess, among other issues, technical efficiency of a sample of Dutch dairy
farms through a production frontier and obtain average inefficiency values of amost 0.11.
Using a shadow cost system approach, Reinhard and Thjissen (2000) derive, also for a sample
of Dutch dairy farms, technical inefficiency scores on the order of 0.15. Kumbhakar et al.
(2007) obtain inefficiency scores of 0.13 for a sample of Spanish dairy farms based on a
nonparametric stochastic frontier. Sipildinen and Oude Lansink (2005) use a stochastic
frontier distance function and derive dlightly higher inefficiency measures (0.17) for a sample
of Finnish dairy farms.

Allocative inefficiency derived by our analysis (47,), with an average score of 0.01,

shows little scope for cost reduction through an improved input mix given market prices. This
indicates that Dutch dairy farmers are long-run cost minimizers. While we find alocative
inefficiency to represent only around 9% of overall inefficiency, Silva and Oude Lansink
(2009) find a deficient allocation of inputs relative to their market prices to generate 22% of
overal inefficiency for a sample of Dutch glasshouse horticulture firms. Their allocative
inefficiencies are on the order of 0.1. However, Reinhard and Thjissen (2000) find much

lower allocative inefficiencies (below 0.5) for a sample of Dutch dairy farms.
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6. Concluding remarks

The economics literature on efficiency measurement has traditionally ignored the adjustment
of quasi-fixed inputs to their long-run equilibrium and time interdependence of production
decisions. Recent proposals of dynamic efficiency measurement have been mainly developed
in the framework of the nonparametric DEA, being the parametric approaches very scarce.

Up to date, Rungsuriyawiboon and Stefanou (2007) constitutes the only published
structural parametric approach to dynamic efficiency measurement. Our anaysis contributes
to the literature by parametrically estimating the model proposed by Silva and Oude Lansink
(2009), which generates dynamic efficiency measures based on a directional distance function
and the duality between this function and the optimal value function. We propose an
econometric estimation of the overall, technical and allocative efficiency measures proposed
by these authors.

The empirical applicability of this proposal is illustrated by assessing dynamic
efficiencies for a sample of Dutch dairy farms observed over the period 1995-2005. Dynamic
efficiency ratings are compatible with static ratings derived by previous research. Average
dynamic cost inefficiency indicates the possibility to accomplish long-run cost savings on the
order of 12%. These cost savings are to be mainly achieved through a reduction in input use.
An improved input mix given market prices offers, on the contrary, little scope for cost

reduction.
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Table 1. Descriptive statistics for the variables used in the analysis

. Standard
Variable Mean o
deviation

y Total output (index) 199,665.76 115,708.47

C Observed long-run cost (index) 137,006.94  75,100.78

K, Breeding livestock (index) 68,747.85 39,215.14

K, Buildings and machinery (index) 204,077.17 141,387.32

L Land (hectares) 44.73 24.18

L, Labour (AWU) 1.71 0.64

X, Variable inputs, except feed (index) 52,075.09 28,278.93

X, Feed (index) 3451388 21,574.47
Gross investments in  breeding

I _ _ 17,358.42  13,565.17
livestock (index)
Gross investments in machinery and

I, o . 24,754.31  53,066.53
buildings (index)

. Net investments in breeding livestock

K1 _ 171.46 7,115.17
(index)

. Net investments in machinery and

Ko o . 13,851.36  49,641.54
buildings (index)

p Output price (index) 0.99 0.04
Variable inputs' price (excluding feed

w, _ puts’ price J ) 1.16 0.11
(index)

W, Feed price (index) 0.99 0.04

) Breeding livestock rental price (index) 0.27 0.02
Machinery and buildings rental price

c, 0.12 0.01

(index)




Table 2. Directiona distance function parameter estimates

Parameter Estimate Standard Error  Parameter Estimate Standard Error
a -4.85E-02** 2.39E-02 a, 2.28E-02 7.90E-02
a, -1.02E+00** S.71E-02 ay, -6.53E-03 6.60E-02
a, 3.70E-01** 4.80E-02 a4, -2.28E-02 2.45E-02
a;, -1.31E-01** 4.84E-02 a5y, 2.61E-02 3.02E-02
a, 3.87E-01** 3.33E-02  a,,» -1.84E-02 3.03E-02
a,, 5.49E-01** 3.67E-02 ag,,, -4.73E-02 7.43E-02
a, -1.72E-02** 8.63E-03 ay,, -8.60E-02* 4.51E-02
a, -6.28E-02 6.90E-02 ay,., 2.08E-02 3.93E-02
a,, 4.96E-02* 3.01E-02 day,, 1.94E-01** 7.49E-02
a,, 5.48E-01** 1.55E-01 a,;, 1.40E-01* 7.97E-02
a5 1.01E-01* 548E-02 a,, -1.99E-01** 7.65E-02
a0 -1.56E-01** 4.76E-02 a,y, -2.63E-01** 2.35E-02
a0 -4.83E-02 S.77E-02 a,,, -1.37E-01** 3.55E-02
a.qq -3.50E-01** 445E-02 a;,), 2.65E-01** 2.37E-02
a,,., -1.13E-01* 6.24E-02 a;q, -2.94E-01** 4.78E-02
aq., 2.23E-01** 3.92E-02 a;,,, -1.03E-01** 4.95E-02
a5 1.27E-02* 5.94E-03 a;,4 4.24E-01** 5.30E-02
a0 1.18E-01** 3.95E-02 a,,,, -2.92E-02 5.85E-02
ap 4.50E-03 4.79E-03  a;yxq -1.54E-01** 7.85E-02
ikt -2.36E-01* 1.25E-01 a5, 2.60E-01** 8.17E-02
i 1.69E-02 513E-02 a,q, 1.34E-02 3.53E-02
Ay oxr -3.85E-03 2.25E-02  a, . 1.93E-02 3.68E-02
(O -1.35E-02 1.19E-02 a, 7.32E-02** 6.44E-03
A, 1.03E-01* 6.19E-02 o, 1.97E-01** 8.15E-03
a -2.18E-01** 7.85E-02 A4 1.53E+00** 2.12E-01

£

Note: *(**) denotes statistical significance at the 10(5%) level
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Table 3. Properties of the directional distance function

Variable Mean Standard deviation
3 Di(.)/dy -7.41E-01 2.46E-02
d Dj(.)/ol, ~1.20E-01 1.19E-02
d Dj(.)/o1, ~1.24E-02 6.50E-03
3 Dj(.)/ox, 4.75E-01 1.61E-02
9 Dj(.)/ox, 3.92E-01 1.71E-02
oD (.)/oK, 9.20E-02 2.94E-02
d D (.)/oK, 6.50E-03 1.11E-02
3 D;()/oL, 5.20E-02 2.07E-02
3 D;(.)/oL, 1.34E-03 1.44E-02
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Table 4. Cost function parameter estimates

Parameter Estimate Standard Error  Parameter Estimate Standard Error
by 2.76E+00 1.49E+01 Do 3.27E+00 3.39E+00
b, 5.74E+00 4.70E+00 .o -1.36E+00 2.36E+00
b,y -6.04E+01** 1.30E+01 De2r2 -1.35E+00 2.92E+00
by -3.91E+00 9.13E+00 D -1.76E-03 1.44E-03
b, 2.67E+01** 9.30E+00 br2 3.64E-03 1.98E-02
by 3.40E+00 4.25E+00 bun -7.83E-04** 3.85E-04
by, -6.22E+00* 3.67E+00 Dz -3.80E-04 2.75E-04
b, 2 59E+00* 1.59E+00  Diaiz -7.77E-03** 1.58E-03
b, o2 1.30E+02** 3.03E+01 D 1.71E-03** 6.01E-04
b 8.61E+01** 2.62E+01 Dz 1.25E-02** 4.37E-03
Do 2.53E+00 6.14E+00 Dou1 1.78E-03* 1.08E-03
bpea -2.88E+01** 8.59E+00 Duaiz 2.09E-02 1.47E-02
by 1.76E+00* 9.93E-01 bis -8.99E-04 1.04E-03
by 1.18E+00 8.64E-01 Diza 5.62E-04 1.13E-03
biara 6.78E-01 1.04E+00  Dizco -4.37E-02%* 1.70E-02
b,z 2.19E+01** 3.84E+00 b -5.26E-04 3.40E-04
by -7.15E+00** 3.60E+00 Diao 3.07E-04 3.18E-04
b2 -4,32E+00 4.35E+00 bios -1.14E-03 2.96E-03
b -3.25E+00** 1.18E+00 Diar2 9.58E-03** 4.40E-03
by, 1.00E+00 9.76E-01 b, -8.23E-01 6.95E-01
b2 -8.00E+01** 244E+01 O 1.93E-01** 6.81E-03
b, 3.47E+00 7.65E+00 % 1.69E+00* * 1.96E-01
b1 -1.27E+01** 3.75E+00

b,212 6.58E+00* * 3.30E+00

b 6.73E+00** 3.36E+00

Note: *(**) denotes statistical significance at the 10(5%) level
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Table 5. Properties of the cost function

Variable Mean Standard deviation
dC(.)/9K, -1.43E-03 2.40E-02
dC()/0K, -4.19E-03 2.24E-02
d C(.)/ow, 4.37E-01 1.25E-01
d C(.)/0¢, 1.61E-01 5.49E-02
dC(.)/dc, 1.16E-01 4.09E-02
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Table 6. Efficiency ratings

Variable Mean Standard deviation
T 0.892 0.105
O 0.882 0.091
K 0.107 0.105
Ol 0.117 0.094
Ay 0.010 0.097
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