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Abstract

Index insurance and probabilistic seasonal forecasts are becoming available in
developing countries to help farmers manage climate risks in production. Although these
tools are intimately related, work has not been done to formalize the connections between
them. We investigate the relationship between the risk management tools through a
model of input choice under uncertainty, forecasts, and insurance. While it is possible for
forecasts to undermine insurance, we find that when contracts are appropriately designed,
there are important synergies between forecasts, insurance, and effective input use. Used
together, these tools overcome barriers preventing the use of imperfect information in
production decision making.

Keywords: basisrisk, climate forecast, index insurance, input decisions, insurance, risk
management.



I ndex | nsurance, Probabilistic Climate For ecasts, and Production

Droughts and other climate-related risks have profound impacts on agricultural producers
around the world. * These effects are particularly important in developing countries,
where agriculture makes a significant contribution to gross domestic product (World
Bank 2001) and insurance markets are under-devel oped or nonexistent. Recently, index
insurance and probabilistic seasonal forecasts have become available to help farmers
manage climate risks in production. Although these tools are intimately related, work has
not been done to formalize the fundamental connections between them.?

It iswell known that households facing risk with few resources are likely to
remain poor or to be caught in poverty traps (see areview by Barnett, Barrett, and Skees
2007). Lack of assets and risk exposure may lead households to forego activities with
high returns, perpetuating their poverty. Credit constraints and nearly nonexistent
insurance markets are two (of many) important factors keeping households in traps.

Recently, innovative instruments to help farmers in devel oping countries manage
their risks have been proposed and strongly supported by international development
organizations, such as The World Bank. One avenue that is being intensely pursued is the
development of index-based insurance. This is sometimes bundled with micro-credit
since the decision to commit resources to production is often jointly determined by the
farmer and lender. An exampleisthe index insurance for groundnut and maize farmersin
Malawi (Hess and Syroka 2005).2 In this case, the insurance provides the risk protection
required for lenders to be willing to provide the credit farmers need to be able to adopt

yield- and quality-increasing seeds.



Work in the agricultural economics literature has examined the relationship
between insurance and input usage for both farm-level insurance (Ramaswami 1993,
Babcock and Hennessy 1996; Horowitz and Lichtenberg 1993; Smith and Goodwin
1996) and index insurance (Chambers and Quiggin 2000; Mahul 2001). In the United
States, the presence of yield insurance resulted in conflicting empirical results. Horowitz
and Lichtenberg estimated that farmers who purchased insurance increased nitrogen
applications, whereas both Babcock and Hennessy, and Smith and Goodwin found the
opposite. Ramaswami concludes (through a conceptual model) that the presence of
actuarialy fair multiple peril crop insurance will have an indeterminate effect on the use
of risk-increasing inputs.* For the case of index insurance (against climate risks), where
moral hazard issues are sidestepped, Mahul showed that insured farmers would use more
(less) risk-increasing (reducing) inputs than their uninsured counterparts. Chambers and
Quiggin analyzed the effects of area-yield insurance on farmers’ decisions regarding their
exposure to risk. Focusing on the relationship between insurance and input use, this
literature does not address interactions between insurance, climate forecast, and input
decisions.

Recent research has shown that seasonal climate is predictable in many regions of
the world (Goddard et al. 2001). For example, the EI Nifio Southern Oscillation (ENSO)
phenomenon has been linked to variations of seasonal precipitation in some regions
(Ropelewski and Halpert 1987). This predictability offers the potential to better manage
climatic uncertainty through contingent choices of production (Hansen 2002) and
insurance practices. Crop yields may therefore be affected distinctly by different ENSO

phases. Despite this observation, pricing and insurance coverage usually do not respond



to the ENSO information available. The financial soundness of the programs could be
threatened if buyers have the option to decide when to participate.

Weather index devel opers routinely acknowledge that climate forecasts may
undermine the financial soundness of a product by providing opportunities for inter-
temporal adverse selection. However, after expressing their concern, devel opers typically
assert that forecasts are still not a significant source of concern if contracts are sold afew
months in advance, when the skill of the forecast is till low (see, e.g., Hess and Syroka
2005; World Bank 2005). Opportunities for inter-temporal adverse selection in the
context of U.S. yield insurance and based on different forecasts of growing conditions for
the coming season have been explored by Luo, Skees, and Marchant (1994) and Ker and
McGowan (2000). The authors argue that there is enough early-season information to
allow inter-temporal adverse selection. In work focusing on the actuarial stability of
insurance products, insurance premiums that reflect forecast information have been
mentioned as a mechanism for keeping the programs sound (Skees, Hazell, and Miranda
1999), motivating the need for research connecting forecast information, production, and
insurance design.

Work in agricultura and climate science has modeled the impact of probabilistic
climate forecasts on production decisions (e.g., Solow et al. 1998) but has, with few
exceptions (Mjelde, Thompson, and Nixon 1996; Cabrera, Letson, and Podesta 2005),
ignored the potential impact of insurance. The two exceptions just mentioned analyze the
impact of several government programs (including traditional yield insurance) on the

value of seasonal forecast information. Based on numerical simulations of specific



situations, these studies motivate the need for work that derives the fundamental
relationships underlying numerical findings.

Since the fundamental relationship between index insurance, input use, and
seasonal climate forecasts has not been addressed, we propose to fill this gap by
explicitly modeling input use and index insurance demand given probabilistic seasonal
climate forecasts. While seasonal climate forecasts, insurance contracts, and input use
choices can each be used to mitigate uncertainty and risk, they each play a different role,
and have potential synergies or unanticipated impacts when used together.

We investigate the fundamental relationship just described through the ssimplest
possible model of input choice under uncertainty, forecasts, and index insurance. The
model is highly stylized in order to represent in the most transparent way the fundamental
features. We derive optimal input and insurance demand as a function of forecast quality,
determine production changes with respect to the absence of forecast information and
insurance, and analyze how the different tools interact.

Wefind that if contracts are appropriately designed there are important synergies
between forecasts and insurance and effective input use. Insurance allows the farmer to
map a probabilistic forecast into a much more deterministic payout, allowing the farmer
to commit to production choices that take advantage of forecast information that is too
noisy to utilize without risk protection. With insurance, the farmer may be able to
intensify production in potentially good years and thus realize higher average payoffs.
We dso find that the presence of skillful probabilistic forecasts may affect the demand

for insurance as well as its effectiveness as arisk-reducing tool. If the value of production



decisions, insurance products, and forecasts is cal culated without addressing their
interactions, substantial benefits may be missed.

We begin by presenting the base framework that will be used throughout the article.
Probabilistic seasonal climate forecasts and index insurance with their well-known
impacts on production decisions and welfare are then introduced individually in this
framework in order to provide benchmarks for our findings. Next, we combine the
instruments (forecasts and insurance) and analyze their joint interactions with production
practices. The last section provides concluding remarks and proposes some avenues for
future research.

Preliminaries and Base M odd

Consider first a competitive farmer with asingle crop with yield (y) dependent on the

level of acontrollableinput (N, may be thought of as nitrogen, an improved seed, or the
level of technology used), a systemic weather shock (r , hereafter rainfall) affecting all

farmersin the area, and an idiosyncratic aggregate production shock (&) asfollows:
(1) y=f(Nr)+e.
A special case of this yield function was used by Mahul . It is assumed that

2
of (N,r) >0, and fNN(N,r):%so.Wemmefurtherthat

fy(N.r) =

f(N,r,)>f(N,r),and f,(N,r,)> fy(N,r) foral N.

The value of the random variables is learned after the input has been applied. In the
sectionsto follow, the systemic shock r isthe variable on which the forecast provides
information and on which the index insurance is written. For simplicity assume that

rainfall can take only two values, r, and r, (denoting high and low or good and poor



growing condition, respectively). The farmer knows that the climatological (historical)
probability of observing r =r, is o, . The expected value of the idiosyncratic shock,
which by definition is independent of the systemic shock, is assumed to be zero, and its
variance is given by o?. Both the price of the controllableinput ( p,, ) and of the output

( p) are assumed to be nonrandom, and the later priceis normalized to 1 without loss of
generality. Conditional on the idiosyncratic shock, and defining

7°(N,r)=f (N,r)- pyN, profits for the farmer are given by

@ | {EO(N,rh)+8 with  prob=a,
e = o
T

(N,r)+& with prob=¢
The farmer is assumed risk averse with a Bernoulli utility function given by u(yr) :
with u"(z)<0<u'(x). If thefarmer’s choice is on the level of theinput to apply, the
farmer’s problem is given by
(3) max El(7) = o,0(pf (N,1,)— pyN)+(1-,)0(pf (N,1;)— pyN),
where asin Mahul the indirect utility function (+) is 0(z°) = Eu(z°+¢) foral z°.

Kihlstrom, Romer, and Williams (1981) showed the indirect utility function isincreasing

and concavein z°. The first-order condition for this problemis

Cov(O'(fr°(N*,r)),n‘,3| (N*,r))
E(0'(=*(N".r)))

Noticing that the covariance term in the equation is negative (because of the

@E(0 (= (N"r))ms (Nr)) = +E(x3 (N'.r)) =0.

concavity of theindirect utility function), we infer that E(nﬁ (N*,r)) >0. The latter

implies that the farmer is engaging in self-insurance (Ehrlich and Becker 1972) and by



choosing the level of inputsin this fashion he is reducing the magnitude of the loss when
one occurs. In other words, the farmer would be under-applying (over-applying) inputsin
good (bad) rainfall years. Furthermore, since arisk-neutral farmer maximizes expected
profits by equating expected marginal profitsto zero, equation (4) indicates that the risk-
averse farmer applies less of the input than does a risk-neutral farmer.® That is, the input
under consideration isrisk increasing in the sense that arisk-averse farmer uses less of it
than does arisk-neutral farmer (Pope and Kramer 1979), giving up some expected profits
in order to reduce their variability. For future reference notice that, in the absence of

insurance or seasonal forecasts, the expected level, and variahility of profits are given by
(53) E(r)=E(E(r]e))=amm°(N".5,)+@-a,)x°(N",1)

and

(5b)Var () = E(Var (z]¢)) +Var (E(z[¢)) = @,(1- @) (7° (N".1,) - 2°(N".1 ) + 2.

Forecasts without I nsurance

Suppose now that a skillful probabilistic seasonal climate forecast is available before
decisions over the input are made. The forecast indicates the future state of the world
(high or low rainfall) for the coming season and an associated uncertainty given by the
probability that the forecast isincorrect. For example, if high levels of rainfall are

forecasted, there is probability Oy that rainfall is actually high and a complement

o, =1-w,, that reaized rainfall islow. A forecast is skillful if o

7
" hn > On and 0 > .

The extent to which o, departsfrom o, for i =1,h (the “skill” of the forecast) is

parameterized by s (with dw

(s)/as> 0) and is omitted unless specifically needed.

Assume that the forecast is unbiased; that is, the frequency with which a high rainfall



forecast isissued (m,) equalsthat of high rainfall years (m,) . We assume forecasts are
used at least partially by stakeholders. In other words, we assume that Oy reflects the

probability stakeholders assign to ahigh rainfall year after aforecast for awet year is
issued (Lybbert et al. 2007). This stakeholder-assigned probability need not coincide with
that assigned by the forecaster. However, a crucia assumption for the section in which
forecasts and insurance are combined is that insurers and farmers interpret the forecasts
as shifting the relative odds of good and bad years in the same fashion.

In this situation, the decision of the farmer will depend on the forecast received. If a

good year is forecasted, the decision of the farmer is

(6) max Ed(z°h) = @,,0(7° (N,1,))+ (1- @, )a(7° (N,1,))

and the first-order condition for this problem is

M 00 (7 (N5))2% (N + (1= e,,)0(7° (N5 )23 (N5 ) =0.

N™" isthe optimal amount of input application when agood year is forecasted. That
amount will depend on the skill of the forecast. Again we find that the farmer self-insures
against the uncertainty in the forecast. From equation (7), if the forecast has no skill (i.e.,

Dy, = w,) then the farmer will apply the same amount of inputs asif the forecast is not

available (compare with equation (4)). An analogous problem can be written for the case
inwhich alow rainfall year isforecasted.

In this framework, it is straightforward to show that as the forecast becomes more
skillful, the amount of inputs applied departs more from the decision without the forecast.

For the high rainfall case, aforecast of higher skill will be obtained when w,, increases.



By the implicit function theorem, and since the second-order conditions for a maximum
hold, we obtain

*h

oN
(8) Sgn( p

o ] = sgn(a'(fr"(N*“, rh))yrﬁ, (N, rh)—a(fr"(N*“, r ))nﬁ (N, )) >0.
hlh

Analogously, it can be shown that the amount of inputs applied when alow rainfall
forecast isissued islower than what is applied in the absence of aforecast, and that the
difference increases with the skill of the forecast. The skillful forecast is alowing farmers
to reduce the degree to which they self-insure. Increasing the skill of the forecast will
reduce the uncertainty and move the amount of input application toward what would be
optimal if the future state of the world was known. The ex ante amount of input applied
depends on the relative probabilities and on the skill of the forecast.

In this simple scenario without price effects (see Babcock 1990), the forecast

increases the farmer’s welfare. The welfare change from introducing a skillful forecast is

expressed in terms of the change in expected indirect utility as
©) AEQ(7°,s) =m EQ(x°|h)+(1-m,) Ed(z°|l ) - Ed(z°),
where s isthe skill of the forecast, E0(z°fi), i =1,h denotes the expected indirect

utility when a good or bad year is forecasted, respectively, and Ed(z°) isthe expected

indirect utility if the forecast is not available or is not used. Equation (9) is positive,
indicating that the skillful forecast improves the farmer’s welfare.®

I nsurance without a For ecast

Suppose now that instead of aforecast, insurance ( I ) isavailableto farmers, and they

must decide how much of it to buy at aprice = per unit. To allow the analysis to address

10



basis risk, we assume that the insurance is available for the systemic shock (r ) but not
for theidiosyncratic shock (& ). In this case, the objective function and first-order

conditions (at an interior solution) are

(10) hﬂqun(n) 0,0(7°(N, 1) -7 )+ (@-a@,)d(z° (N,§) + @-1)1 )

1D N: 0,0'(z°(N,1,) -7l )7 (Nr)+(1 @,)0"(7° (N, 1) +(@-7)1 )7 (N,5,) =0

(#(Ni)=71) _(1-m)a-0)

N,r) +(1 7)l) o,

(12 . F
If the insurance is actuarialy fair (7 =1- @, ), one obtains the standard result that the
risk-averse farmer insures fully against the systematic risk; that is,

1" =7°(N",r,)=7°(N",r,) = f(N",r,)— f (N",r,). This result is analogous to
proposition 2 in Mahul (with independent risks), where the trigger for the insuranceis the
maximum value of the weather variable, and the slope of the indemnity function with
respect to the index equalsits marginal productivity (given an input decision). When the

farmer is ableto insure fully (against r ), equation (11) can be rewritten as

(13) 0'(z°(N, 1) =7l ) (@i (N.1,) + 1-@,)75 (N, 1)) =0.

The farmer will insure fully against the weather variable and adopt a risk-neutral attitude
toward the insurable event. Thus, even though the idiosyncratic risk impacts the overall
utility of the farmer, the choice of inputs will coincide with those of arisk-neutral
decisionmaker. The farmer’s expected level and variability of profits when actuarially
fair insuranceis available are given by

(14a) E(n,):coh(n"(N*',rh)—rl*)+(1—wh)(7z°(N*',r|)+(1-f)|*)=

a)hﬂo(N*' ,rh)+(1—a)h)7r°(N*' ,r,)
and

11



(14b) Var (m,) = E(Var (m, |¢)) +Var (E(z, |¢))=o?.
Since insured farmers will replicate the risk-neutral expected profit-maximizing

solution, expected profits and output increase in the presence of actuarialy fair insurance
relative to the uninsured case (i.e., E(,)> E(x)). Although profit variability is

reduced, equation (14b) indicates that some basis risk remains for farmers even when
they are fully insured against the systemic shock. The effectiveness of theinsurancein
reducing risksis, as expected, dependent on the relative contribution of the systemic and
idiosyncratic shocks to profit variability. Under the assumption that the insuranceis
actuarialy fair, and in the absence of price effects (areais assumed small, relative to
world production), al the welfare gains are captured by the farmer.

In reality, and since insurers have to cover administrative expenses and obtain
reasonabl e returns, the premium rate will be above the actuarially fair rate, and the degree
to which farmers decrease the amount of insurance purchased is determined by their risk
preferences. However, it can be shown, that for any given amount of insurance
purchased, the amount of the input applied is higher than the optimal choicein the
absence of insurance, even when the premium is not actuarially fair. To see this, subtract
eguation (4) from equation (11) for an arbitrary amount of insurance purchased (1 ), and

plug in the optimal solution for equation (4).° After rearranging, this yields
O (N,rh)[l:l'(ﬂo(N*,rh)—ﬂ )—l]'(ﬂ"(N*,rh))}

(15) +oy 7 (N,r,)[l]'(no(N*,rl)H —7l )—0'(n°(N*,r|))]>o,

12



implying that the farmer should increase the amount of inputs applied to maximize
expected utility. Hence, the introduction of insurance will result in a supply expansion in
thismodel, even if it is priced higher than actuarially fair.

Combining the Forecast with Insurance

The impacts of the interaction between forecasts and insurance depend critically on the
timing of the forecast information, insurance, and input decisions. To illustrate clearly the
fundamental features of each situation, in this section we address several different timing
constraints. We begin with afarmer who has little flexibility, who must commit to
exogenously determined production practices prior to the forecast information and
insurance decision. We then model afarmer who isflexible in production decisions but
must commit to an insurance purchase prior to the forecast availability. Finally, we
address the most flexible case in which afarmer simultaneously makes insurance and
production decisions after the forecast becomes available.

Effects of a Skillful Forecast on I nsurance Purchases with Fixed N

In this section, we consider afarmer who is constrained to commit to production
decisions before forecasts and insurance become available. For the particular casein
which there is no forecast skill available prior to the insurance purchase decision, the

problem for the farmer is
(16) mlaxEu(fr )=@,0(z°(N,1,) =71 )+ (1= @,)a(z° (N1, )+ (1-2)1 ),
and the necessary condition for an interior solution is

(17) —0,0'(7°(N,1,) =71 )7+ (1-@,)0'(7° (N, ) + (1-7) 1 )(1-7) =0.

13



Thisisaparticular case of the situation encountered in the previous section. If the
premium rate is actuarialy fair, the farmer will again insure fully against systemic risk,
setting |" =7z°(N,r,)—7°(N,r).

If skillful seasonal forecasts are rel eased before the closing date for the insurance
purchase, the premium rates must be modified to reflect the climate information available
for the insurance to be financialy sustainable. If premium rates do not reflect the
information, and buyers have the ability to process the forecast, the latter will insure at
higher (lower) rates when a bad (good) year is forecasted, undermining the financial
soundness of the product. Hence, if the insurance decision is made after the forecast is
available, the problem is state contingent. When a good year is forecasted, the actuarialy

fair rate becomes lower (from 7 = @ to 7, = ¢9,) and the farmer’s problem and first-

order condition (for an interior solution) are

(18)  max Ea(7°|h)= a)h‘hﬂ(ﬂ" (N,h) -7l )+ (- a)h‘h)fj(ﬂ" (N,,)+(@-7)1)

(19) Gl(ﬂo(N,rh)—Tl|) 3 w'\h (1—11).

lfl'(ﬂo(N,r,)+(1—rl)l) Oy Ty

Sincethe insuranceis actuarialy fair, the farmer will insure fully against the
systemic risk setting |” =7z°(N,r,)—z°(N,r,) =7, — = . Further, if inputs cannot be

changed, the insurance purchase depends neither on whether the forecast isfor a good or
bad year nor on its skill. Hence, if abad year is forecasted, and the premium rates reflect

it (defining 7, = @y > @ > 7,), ah analogous problem can be solved and the farmer will

insure fully against the systemic risk.

14



When aforecast for agood year isissued, profits equal 7,|e = ) 7, (zp — 77 ) + ¢,
across realizations of the insured variable and thus E(r,) =z, -, (7 — ) and
Var (,)=o?. If the forecast is for apoor year, profitsequal 7, |¢ =z — 7, (7y —7) +&
across realization of r, expected profitsare E(x;) = 7y — 7,7 — ), and Var (z, ) = o7
Since the forecast is unbiased and the insurance is actuarially fair we have
E(z’|¢) = o + Q- o)) + &, and E(7) = o0 + (1-,) 7).

Notice that expected profits change across realizations of the forecast. The difference
isgivenby E(r,)-E(r)=(z,—1,) (nﬁ —~ 7r,°) . Since the insurance is actuarialy fair,
7, =, and 7, = @, indicating that as the skill of the forecast increases, so does the
difference in expected profits across forecasts. The resulting profit variability is
(20) Var (7[ ) =E (Var (7 |5)) +Var ( E(x’ |5)) =w,(1-w,) [(72 -7,) (ﬂ,? —n’ )T +o?.

Equation (20) indicates that the existence of a skillful forecast that isissued before
purchases of the insurance are made increases the variability of profits when compared to

the no-forecast situation. In the absence of the forecast (or when the forecast has no skill),

we have 7 =7, =7, and thusthe farmer will only face the idiosyncratic risk (compare
with equation (14b)). As a skillful forecast isintroduced, the difference 7, —z, increases,
undermining the effectiveness of the insurance to provide protection against the insurable
risk. Inthe limit, with a perfect forecast, we have 7, = ¢y, = 0 and 7, = @, =1 yielding

the same variance of profits as the uninsured case (equation (5b)) for afixed N.
In summary, since the forecast is assumed to be unbiased and available to both

parties, the ex ante expected profit in this scenario equals the amount that would occur in

15



the absence of aforecast.’ If theinsurance is actuarialy fair, the risk-neutral insurance
company is indifferent between the pre/post forecast contracts, aslong as the prices
reflect the information available. However, the farmer’s expected profit varies across
forecasts and the variability of that profit increases when the forecast is available. In this
case in which the farmer does not modify production practices in response to the forecast,
pricing the insurance using the information will reduce the utility of the farmer because
of the greater exposure to risk. Hence, the presence of aforecast undermines the
effectiveness of the insurance as arisk-mitigation mechanism in this situation and
reduces welfare.

Effects of a Skillful Forecast on Production Decisions with Pre-Purchased I nsurance
We previously analyzed the effect of insurance on input decisions when no skillful
forecasts are available. Now we analyze how farmers change their production practicesin
response to forecast information, after they have already committed to afixed level of
insurance.™* In this situation, the farmer’s problem and first-order conditions for a

forecast for a good crop season are given by

(21)  mex Ed(7°|h) = 0,,0(7° (N, 1,) =71 )+ (1= @, )0(7° (N, ) + (1-1)1 )

(22) a)h‘hl]'(ﬂo(N,rh)—rll)ﬂ,‘j(N,rh)+(1—a)h‘h)l]'(ﬂ°(N,r,)+(1—1'1)I)ﬂ‘,j(N,rl):O.

In the absence of insurance, we showed (equation (8)) that a skillful forecast for a
good year will increase the input level used by the farmer (relative to climatology or no-
skill forecast). Equation (22) can be used to show that when insurance is introduced, the

farmer will increase input usage further. Using the implicit function theorem, we obtain

*h

(23) sgn[aN

() () a0 ) (7)) 0

16



where 7% =7°(N™",r,)—7,] and 7% =z°(N"",1, )+ (1-7,)| . Hence, insurance

increases input applications beyond the raise indicated by the forecast alone. The
insurance allows the farmer to take more risk in the presence of forecast uncertainty,
increasing input levels. When a good year is forecast, both instruments provide incentives
for the farmer to apply an amount of inputs more similar to what would be applied if it
were known with certainty that a good year was coming.

In aforecast for abad year, the problem is analogous to the difference that the

forecast reduces input use. However, as in the case when the high forecast isissued, the
farmer will increase the amount of inputs because of insurance (i.e., oN %I >0), asthe

farmer can utilize insurance instead of managing risk through reduced input use. This has
the effect of dampening the reaction to an imperfect low rainfall forecast, allowing the
farmer to profit when the low rainfall forecast iswrong.

Choice of Both Insurance and Input Purchasesin the Presence of a Skillful Forecast
To analyze the full interaction between the risk management tools and production
decisions, we now allow farmersto choose both the level of the controllable input and the
insurance purchase after observing the skillful forecast. The sequencein thiscaseisas
follows. First, the forecast is delivered. Farmers choose their insurance and production
practices next. Finally, the systemic and idiosyncratic shocks are observed. Since the
forecast is released before farmers make their decisions, we have a state contingent

problem. The objective and first-order conditions when a good year is forecasted are

(249 maxEl(n°h)=,,0(z° (N,1,) =7l )+ (1= ey,)0(z° (N,5) +(1-2)1 )

(25) N: a)h‘hl]'(n"(N,rh)—rll )ﬂﬁ(N,rh)-i-(l—a)h‘h)li'(ﬂ"(N,rl)+(1—1'1)I )% (N,1) =0

17



(26) I:—a)h‘hl]'(ﬂ"(N,rh)—Tll )Tl+(l—a)h‘h)0'(7r°(N,r|)+(1—Tl)| )@-r,)=0.
Sincetheinsuranceis actuarialy fair, we know that

1" =7 (N )= (N5 )= £ (N1, )= f (N™,1,). Using this result, the first-order

conditions evaluated at the optimum are written

@0 N 02 (N"5) =50 ) (@urn (N5 + (L= oy)m (N ) =0

28) I a)h‘h(l—a)h‘h)(l]'(ﬂo(N,rl)+(1—T1)I )-0'(7°(Nr,) -7, )) =0

Equation (27) indicates that in the presence of a state-dependent, actuarially fair
insurance, the risk-neutral solution is replicated. Although the existence of the
idiosyncratic risk imposes utility penalties, the presence of market insurance eliminated
the incentive for farmers to self-insure against the possibility of errorsin the forecast.

Thus, the amount of inputs applied will maximize expected profits. To investigate how

the farmer’s decisions are affected by the skill of the forecast, we need to sign 5'%@ ,
hih

and 5N%w . For the effect of the forecast skill on the insurance purchase decision,
hh

comparative statics on the system given by (27) and (28) indicate that

o . . ON™"
29 ——=(f (N"r )= f (N"r))—.
(29) o, (fu (N5 ) = fu (N1 v,
Since we assumed that the margina productivity of N ishigher in good years,
increasing the skill of the forecast will move input applications and insurance purchases

in the same direction. The effect of the skill of the forecast on the optimal nitrogen

application is given by
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o ZN*h B E(a"(x |h))E(ONwhh (= |h)) )
D

1 [(@n@-o) (a7(7° (N.R) + @-2)1 ) @-7) + 07(7° (N,5,) ~ 2l )7,))

(e () =) (2 (N ) - ()

where H is the determinant of the Hessian of the problem (positive by second-order
sufficient conditions (SOSC) for a maximum). E(O "(7' |h)) is negative by SOSC. The

*h

>0

second term in the numerator is positive by technology assumptions, and thus p
,

hh
*h
ol

6a)h‘h

and

> 0. Analogous analysis and previous results indicate that the farmer will

purchase less insurance and use less inputs when the forecast indicates the growing
conditions are likely to be poor (see the appendix).

The previous comparative statics exercise reveal s that, counter to intuition, when the
skillful forecast indicates agood (poor) year islikely, the farmer will purchase more
(less) of an insurance of actuarially fair price. The expected change in overal insurance
purchases brought about by aforecast of increasing skill depends on the relative
adjustment induced by each kind of forecast (good versus poor growing conditions) and
the natural frequency of each event. However, this indicates that despite reducing
uncertainty about future growing conditions, it is plausible that more skillful forecasts
induce more insurance purchases.

In the case in which the farmer can both purchase forecast-priced insurance and

adjust input use after the forecast is available, the basic relationship between the forecast
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and insurance becomes clear: instead of the insurance protecting the farmer from climate
risk, it protects the farmer from forecast error.

The farmer is able to remove uncertainty from forecast error and improve utility by
operating at the expected profit-maximizing input level instead of self-insuring with less
aggressive changesin input. When agood year is forecast, the farmer can intensify to the
expected profit-maximizing level, and when abad year is forecast the farmer can prevent
losses through the efficient level of input reduction while still maintaining inputs at a
level that maximizes expected profits by taking into account the chance that a good year
may still occur. Ex ante expected profits and the variability of these profits when both

insurance and forecast are allowed to interact with the farmer’s input decisions are given

by

(314) E(z") =, (7°(N",1) =7l ")+ (1=, ) (z° (N1, ) = 7,1 ")
and

(31b) Var (z°) = o, (1-,) (E(m )~ E(x ) +0?,

where we used the assumptions that the insurance is actuarially fair, and that the forecast
isunbiased (M, =, ). E (/) denotes expected profitsfor an i =h,| forecast. The

actuarialy fair insurance will lead farmers to maximize expected profits, and the skill of
the forecast allows farmers to make better-informed decisions. Thus, expected profits
increase when both the insurance and a skillful forecast are available. However, the
introduction of aforecast comes at the cost of increasing profit variability. If the forecast
has no skill, we showed before that the farmer will not adjust input usage, and thus

expected profits are invariant to the information released. In this situation, the insurance
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is able to remove the systemic risk (first term in equation (31Db)). If the skill of the
forecast creates a wedge between expected profits obtained under different forecasts, the
ex ante variance of profitsincreases and the effectiveness of the insurance to manage
variability isreduced. Counter to intuition, the variability of profits when both risk
management tools are available can be higher than when noneis available. This can be
seen by comparing equations (31b) and (5b). Whenever expected profits under different
forecasts differ more than the profit difference in the base case, variability will be
increased.

In this case, with a perfect forecast, there is no role for insurance, while insuranceis
completely relied upon when the forecast has no skill. The difference is that the forecast
directly allows improved input application that leads to increased yields and increased
profits, while the insurance does not directly increase profits, but allows the farmer to
behave less conservatively. Thus, with insurance and aforecast, the farmer can have
increased variability because of the potential to produce morein good years. However, to
the extent that bad years are perfectly forecast, the farmer must face the full brunt of the
drought, albeit with full information for optimal input use.

Since insurance plays different roles when priced using climatology or the forecast, it
isworthwhile to offer both pre-and post-forecast policies, pre-forecast to protect against
climatology and post-forecast to protect against forecast error. The relative value of the
pre- versus post-forecast depends on the skill of the forecast and the farmer’s flexibility
in making changes in order to use effectively the forecast information in production to

increase profitsin good years and reduce damages in bad years.
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Conclusions
The failure of the development of commercially viable traditional crop insurance
products and innovations in financial markets has fed arenewed interest in the search for
aternatives to help farmers in devel oping countries manage their risk exposure. Salient
among these is the proposal of severa index insurance schemes against weather events
(World Bank 2005). Among the basic tenets are that the presence of insurance alows
farmersto intensify their operations and invest in higher returns but in riskier activities.
Thisistouted as key in helping farmers in developing countries escape poverty traps.
A substantial effort has been devoted to the study of the interaction between
insurance (in particular traditional yield insurance) and input decisions. Work has also
explored the relationship between climate forecasts and input usage. Since previous
literature has said little about the interaction between insurance, in particular index
insurance, and climate forecasts, we have formalized and studied the basic relationship
between forecasts, insurance, and production decisions through a theoretical model.
Understanding this relationship is becoming increasingly important, as climate
scientists have made remarkable progress at forecasting rainfall and temperature
deviations from long-term seasonal averages monthsin advance. Further, improved
models and techniques are appearing at an accelerated pace, increasing the number of
situations in which forecasts and insurance interact in the real world. As such, the
interactions between the two risk management instruments (climate forecast and index

insurance) need to be better understood in order to take advantage of emerging
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opportunities and/or avoid situations with the capacity to threaten the effectiveness and
survival of existing index insurance mechanismsto aleviate poverty.

Insurance (in the absence of moral hazard effects) will induce farmers to use more of
arisk-increasing input. The presence of a skillful probabilistic climate forecast may result
in anet increase or decrease of inputs used. When a good year is forecasted, both the
forecast and insurance act to increase the amount of inputs applied. If abad year is
forecasted, the forecast induces farmers to reduce inputs while the insurance allows the
farmersto maintain inputs at higher levels than without insurance. Additionally, we find
that if an actuarially fair insurance is available, and the farmer’s profits are not
sufficiently responsive to the input mix, the introduction of a climate forecast harms the
farmer if the premiums reflect the forecast (even if they are actuarially fair). Hence, a
necessary condition for farmersto prefer a state-contingent, commercialy viable
insurance product is that farmers can increase their profits by taking the forecast
information into account. Perhaps surprisingly, we find that forecast information may
induce farmers to buy more insurance even asit reduces risk. The intuition is that the
forecast may widen the wedge between optimized profits among states of the world.

Since insurance priced using climatological probabilities protects against the climate
and insurance priced on forecast probabilities protects against forecast error, farmer
preferences for climatological- versus forecast-based insurance mirror the value of the
forecast information in production. It islikely that both products could be useful,
particularly when farms are heterogeneous, especialy in the rates at which they are
willing to trade expected levels by variability in profits. Insurance demand for pre- and

post-forecast products may allow market valuations of forecast information. Insurance
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prices may communicate forecast information when farmers do not have direct access to
the forecast. Studies exploring the potential of insurance prices as aggregators of forecast
information would be valuable.

Finally, implementation of forecast-contingent insurance policies will require non-
trivial innovation, as current insurance regulations and financing methodol ogies are not
necessarily well suited to quickly fluctuating premiums, value at risk, and market size.
Because an insurance policy typically does not include the option for resale at a market
price, the pricing of information cannot directly rely on market movements. For
insurance, it islikely that information pricing will be explicitly engineered into the
products offered. Future work addressing these issues may be worthwhile.

Since insurance providers must typically reinsure their risks, the forecast-dependent
price fluctuations of global weather derivative markets will lead to variationsin
reinsurance costs that must somehow be managed. Retail products that adjust based on
the forecast could be one alternative that insurers have to address this problem. Future
work will need to address both the technical issues of appropriately transating forecast
information into an unbiased insurance as well as the financial and implementation issues
of how to build a product that can be marketed and financed by an insurance company,
that meets the demands of clients, and that falls within the alowable legal framework of
insurance. One ENSO-based strategy might be to charge a non-varying premium for a
base liability calculated for an unfavorable ENSO phase and to increase the liability
covered at no cost when the forecast is favorable. These changes might be financed by

the insurer through purchases of ENSO derivatives or related products.
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Footnotes

! Since thereisalarge body of literature on the role of risk in agriculture (see, e.g., Just
and Pope 2002; Moschini and Hennessy 2001) it is worthwhile to note that there are
several sources of risk that are relevant from the farm’ers perspective, including
production, price, technological, and policy uncertainties. Since our focusis on climate
risks, a case of production uncertainty, we will assume that prices are non-random.

2|t is particularly important to understand this relationship in the case of index insurance
because insurance does not include an option common to weather derivatives, the option
to perform repeatedly marginal transactions in a dynamic market. Therefore, instead of
relying on market-based updates for optimal use of information, mechanisms to
incorporate the information must be built directly into the contracts.

% Another well-known exampleis the Indian experience with rainfall insurance. A
program by The World Bank in collaboration with a microfinance institution (BASIX)
and an insurance company (ICICI Lombard), served 230 farmers in 2003 and expanded
rapidly to serve over 20,000 farmers by 2004 (World Bank 2005).

* Moral hazard effects would induce an insured farmer to use less of the input work in the
opposite direction than the risk reduction effect.

® The function used by Mahul is y=g(N)r+h(N)+e¢.

® The same result for the case of two controllable inputs was obtained by Ratti and Ullah
(1976), using additional assumptions on the elasticity of the marginal product curve of

the factors. Mjelde, Thompson, and Nixon’s numerical simulations results yielded risk-

averse producers using less nitrogen than risk-neutral farmers.
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" A perfect forecast would entail , =1 for i =1,h.

8 A proof is available from the authors upon request.

® Thus, we are subtracting zero from equation (11).

¥ To seethis, notethat Ex" =m, (7 —7,1")+(1-m,) (77 — 7,1 ") =g = 1" (M7, + Mz, .

Using the assumption that the forecast is unbiased, Ex” = o,z + (1- o, )7 .
1 This may be the case when farmers can only buy a fixed amount of insurance or no

insuranceis available at all.
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Appendix

Proof of: a1 /e, <0 and ON" /o, < 0. The objective function and associated first-
order conditions for afarmer when a forecast for poor growing conditions isissued are
(A1) max Ea(z°[l)= (1~ a)l“)l](ﬂo(N,rh)—le )+a)|“l](7r°(N,r| )+(1-7,)1)

(A2 N:0'(z°(N"r)-7,0" )((1— o)y (N".5)+@,% (N5 )) =0
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o
rou
S|

o
—_
Z
2
:_ﬁ
~—~—
|
(\]
N
s
~—
D
Il
o

ol ol oN™
0y, N da

Comparative statics indicate that . Since

(fu(N",r)=fu(N",1))>0, then sgn(a1” /6@, ) = son(eN™ /oe, ) . Using

(A4) %ﬂ:—Hl(E(O"(ﬂ*“))0'(ﬂ°(N,rh)—rzl*')( fu (N5) = f (N5, ))) <0,

Il
we conclude that the farmer will optimally reduce input and insurance purchases when

poor growing conditions are forecasted with any skill.
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