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Conservation Tillage, Pesticide Use and Biotech Crops in the U.S.A. 
 

The environmental impact of conservation tillage (including no-till, ridge-till, and mulch-till) is 

well documented. By leaving substantial amounts of crop residue (at least 30 percent) covering 

the soil surface after planting, conservation tillage reduces soil erosion by wind and water, 

increases water retention, and reduces soil degradation and water and chemical runoff. In 

addition, conservation tillage reduces the carbon footprint of agriculture. 

On the other hand, conservation tillage may increase pesticide usage, as farmers 

compensate for less tillage. As Fuglie (1999) notes, if pesticide use increases with conservation 

tillage, the environmental gains from reduced soil erosion may be offset by increased reliance on 

pesticides, which are a source of concern for their potential harm to human health and the 

environment. However, while studies of conservation tillage have clearly demonstrated 

significant environmental benefits from reduced soil erosion, much less is known about 

environmental costs and benefits from changes in pesticide use due to conservation tillage. 

The use of conservation tillage practices was facilitated by the availability, since the 

1980s, of postemergent herbicides that could be applied over a crop during the growing season.  

No-till had particularly benefited because weeds could be controlled after crop growth without 

tilling the soil.  The use of herbicide-tolerant (HT) crops (particularly HT soybeans) has helped 

the continuation of that trend since it often allows a more effective and less costly weed control 

regime than using other post-emergent herbicides (Carpenter and Gianessi, 1999).  By 

facilitating the use of conservation tillage (no-till in particular) the adoption of herbicide-tolerant 

crops may indirectly benefit the environment in the form of reduced soil losses and runoff.  

However, despite finding a strong association between the adoption of conservation tillage and 

the adoption of herbicide tolerant crops, a causal relationship has been difficult to demonstrate. 



2 
 

  

Adoption of conservation tillage by U.S. soybean growers has risen from about 30 

percent from 1996 to 63 percent in 2006 (figure 1) while no-till (the most beneficial of the 

conservation till modes) has grown even more rapidly. Conservation tillage in corn fields has 

been a practice representing approximately a third of the corn acres in 1990 reaching about 40 

percent in 2006.  

U.S. farmers have adopted genetically engineered (GE) crops widely since their 

introduction in 1996. Soybeans and cotton genetically engineered with herbicide-tolerant traits 

have been the most widely and rapidly adopted GE crops in the U.S., followed by insect-resistant 

cotton and corn (Fernandez-Cornejo, 2009).   

Herbicide-tolerant (HT) crops, developed to survive application of specific herbicides 

that previously would have destroyed the crop along with the targeted weeds, provide farmers 

with a broader variety of options for effective weed control. Based on USDA survey data, 

adoption of HT soybeans went from 17 percent of U.S. soybean acreage in 1997 to 68 percent in 

2001 and 91 percent in 2007 (figure 2) and 2009. Plantings of HT cotton expanded from about 

10 percent of U.S. acreage in 1997 to 56 percent in 2001 and 71 percent in 2009. The adoption of 

HT corn, which had been slower in previous years, has accelerated, reaching 68 percent of U.S. 

corn acreage in 2009. 

Insect-resistant crops containing the gene from the soil bacterium Bt (Bacillus 

thuringiensis) have been available for corn and cotton since 1996. These bacteria produce a 

protein that is toxic to specific insects, protecting the plant over its entire life. Plantings of Bt 

corn grew from about 8 percent of U.S. corn acreage in 1997 to 26 percent in 1999, then fell to 

19 percent in 2000 and 2001, before climbing to 29 percent in 2003 and 63 percent in 2009. The 

increases in acreage share in recent years may be largely due to the commercial introduction in 
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2003/04 of a new Bt corn variety that is resistant to the corn rootworm, a pest that may be more 

destructive to corn yield than the European corn borer, which was previously the only pest 

targeted by Bt corn. Plantings of Bt cotton expanded more rapidly, from 15 percent of U.S. 

cotton acreage in 1997 to 37 percent in 2001 and 65 percent in 2009. 

This paper presents the first part of an ongoing project whose objective is to present a 

long term relationship between conservation tillage, adoption of GE crops and pesticide use for 

major crops in the United States. In addition, the project aims to provide some innovative tests 

on causality using a panel data set.  This paper presents preliminary results for soybeans. 

 

Pesticide Use, GE Crops, and Conservation Tillage 

Several studies have attempted to establish whether the adoption of conservation tillage and GE 

crops affects pesticide use.1 The results depend on the period studied, type of data used, the 

different approaches to measuring pesticide use, and various statistical procedures.  While the 

results of cross-section studies are informative, these findings are affected by the specific 

conditions prevailing on the year of the study and may not be representative of the overall 

situation. On the other hand, many time-series studies have econometric problems  

Most previous studies found that adoption of GE crops is associated with lower pesticide 

use or lower pesticide toxicity.  However, while pesticide use rates (in terms of active ingredient) 

are often lower for adopters of GE crops than for non adopters, some studies suggest that 

herbicide use on HT soybeans may be slightly higher than herbicide use on conventionally 

                                                 
1 The term pesticide use in this paper includes herbicides and insecticides. 
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grown soybeans in the U.S. (Fernandez-Cornejo and Caswell, 2004; Fernandez-Cornejo and 

McBride, 2002).2  

The evidence on the effect of tillage on herbicide use is mixed. Results tend to depend on 

the type of conservation tillage used, the location, weather, soil type, endemic weed problems, 

and the metric used to measure pesticide use.  In addition, a USDA (1998) report citing Fawcett 

(1987) observes that herbicide use may decrease with conservation tillage after a few years of 

adoption: “when a farmer uses conservation tillage, dormant weed seeds in the soil will no longer 

be transferred to the germination zone near the soil surface by tillage. Consequently, as annual 

weeds are controlled, the overall weed problem may decrease after a few years when fields are 

converted to conservation tillage and if effective weed control is practiced.”    

Conservation Tillage and GE Crops 

Researchers have also examined the influence of adoption of GE crops (particularly GE crops 

with herbicide tolerant traits) on conservation tillage. Measurement of the adoption impact of HT 

crops on conservation tillage use is complicated because the direction of causality is not certain.  

Availability of the herbicide-tolerant technology may affect the adoption of conservation tillage, 

while at the same time the use of conservation tillage may impact the decision to adopt 

herbicide-tolerant seeds.  Therefore, the two decisions must be considered simultaneously.  An 

econometric model developed to address the simultaneous nature of the decisions was developed 

by Fernandez-Cornejo et al. (2003).  The model was used to determine the nature of the 

relationship between the adoption of HT soybeans and no-till practices using 1997 national 

survey data.  Farmers using no-till for soybeans were found to have a higher probability of 

adopting HT soybeans, but use of HT soybeans did not significantly affect no-till adoption.  This 

                                                 
2 Still, glyphosate (the herbicide used in most of the HT crops) is less than one-third as toxic to humans, and not as likely to 
persist in the environment as the herbicides it replaces (Fernandez-Cornejo and McBride, 2002). 
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result seemed to suggest that farmers already using no-till found HT seeds to be an effective 

weed control mechanism that could be easily incorporated into their weed management program.  

On the other hand, the commercialization of HT soybeans did not seem to encourage the 

adoption of no-till, at least at the time of the survey in 1997.   

Mensah (2007), however, found a two way causal relationship using more recent data. He 

examined the same issue using a simultaneous adoption model and a 2002 survey of soybean 

farmers.  Mensah found that farmers who adopted no-till were more likely to adopt HT soybeans 

and, conversely, farmers who adopted the HT technology were more likely to adopt no-till.  

In the case of cotton, the evidence points toward a two-way causal relationship.  Roberts 

et al. (2006) evaluated the relationship between adoption of HT cotton seed and conservation 

tillage practices for Tennessee over time (1992-2004). Using two methods (an application of 

Bayes’ theorem and two-equation logit model), they found that herbicide-tolerant cotton 

increased the probability that farmer would adopt conservation tillage and, conversely, that 

farmers that had previously adopted conservation tillage practices were more likely to adopt HT 

cotton.  

Kalaizandonakes and Suntornpithug (2003) also studied the simultaneous adoption of HT 

and stacked cotton varieties and conservation tillage practices using farm level data. They 

conclude that conservation tillage practices both “encourage” the adoption of HT and stacked 

cotton varieties and are encouraged by them.  Using state level data from 1997 to 2002 and using 

a simultaneous equation econometric model, Frisvold et al. (2007) studied the diffusion of 

herbicide tolerant cotton and conservation tillage. They found strong complementarities between 

the two technologies. They were able to reject the null hypothesis that the diffusion of one of the 

technologies is independent of the diffusion of the other one. They also found an increase in the 

probability of adoption of HT cotton increased the probability of adoption of conservation tillage 

and vice versa.   
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In sum, the majority of the empirical evidence point to a two way causal relationship 

between the adoption of HT crops and conservation tillage.  This complementary relationship, in 

turn, leads us to conclude that the adoption of HT crops indirectly benefits the environment in 

the form of reduced soil losses and runoff and reduced fuel use. 

 

Data and Research Methodology 

Pesticide use in major crops such as soybeans (on a per acre basis) is hypothesized to be related 

to crop and pesticide prices, the extent of adoption of conservation tillage and the adoption of 

genetically engineered crops, in addition to factors related to location and weather. We have 

constructed a panel data set for the 1988-2006 period for the major corn-soybeans producing 

states. Conservation tillage data are obtained from the Conservation Technology Information 

Center (CTIC) supplemented by USDA’s ARMS data; adoption of GE crops data are obtained 

from USDA (Fernandez-Cornejo, 2009), crop price data are from USDA’s Agricultural Prices 

and pesticide data are quality adjusted based on chemical usage data from USDA/NASS 

pesticide use surveys and from the Doane Countrywide Farm Panel Survey. The procedure to 

quality-adjust the pesticide series is shown in Fernandez-Cornejo et al. (2009) and Vialou et al. 

(2008) and is summarized below. 

Measuring Pesticide Use  

In the past, agricultural chemical use has been measured and reported in pounds.  This approach 

is straightforward, but limits the analysis of trends over time and across chemicals.  One pound 

of a pesticide counts the same as one pound of another pesticide that is twice as effective. To 

account for these differences in characteristics and provide a standard measure of pesticide 

usage, the prices and quantities of pesticides are adjusted for quality using hedonic estimation as 

in Fernandez-Cornejo and Jans (1995).  This approach allows comparisons of chemical usage 
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over time, as measures take into account the dynamic efficacy and safety characteristics of the 

product mix.    

 More precisely, hedonic methods take into account the concept that inherent differences 

in pesticide characteristics or quality prevent the direct comparison of observed prices of 

pesticides over time and across regions. A hedonic price function expresses the price of a good 

or service as a function of the quantities of the characteristics it embodies. Thus, a pesticide 

hedonic function may be expressed as ),( DXWw = , where w represents the price of pesticide, X 

is a vector of characteristics or quality variables and D is a vector of other variables. If the main 

objective of the study is to obtain price indexes adjusted for quality, the only variables that 

should be included in D are dummy variables, which will capture all price effects other than 

quality. After allowing for differences in the levels of the characteristics, the part of the price 

difference not accounted for by the included characteristics will be reflected in the year (or state) 

dummy coefficients. Inherent differences in pesticide characteristics or quality prevent the direct 

comparison of observed prices of pesticides over time and across regions.  Hence, a hedonic 

price function expresses the price of a good or service as a function of the quantities of the 

characteristics it embodies--pesticide potency, hazardous characteristics, and persistence.  

Quality-adjusted price indices are calculated for pesticides using these hedonic functions.  In this 

study, we use the results of Fernandez-Cornejo et al. (2009) and Vialou et al. (2008) who 

obtained quality-adjusted price and quantities of pesticide used in corn and soybeans.  They 

adopted a generalized linear form, where the dependent variable and each of the continuous 

independent variables is represented by the Box-Cox transformation. This is a mathematical 

expression that assumes a different functional form depending on the transformation parameter, 

and which can assume both linear and logarithmic forms, as well as intermediate non-linear 
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functional forms. The analysis employed a new pesticide database that was compiled from 

USDA pesticide use surveys and the Doane’s Countrywide Farm Panel Survey.  A detailed, state 

panel dataset was developed for 1986 to 2007.   

Avoiding Spurious Regression Results  

In order to minimize the potential for spurious results in regressions using time series, the model 

variables must be stationary (stationarity is a necessary condition to satisfy an assumption of 

classical econometrics). Spurious regression results are avoided if all variables are integrated of 

order zero, I(0). Alternatively, if all variables have unit roots, I(1), spurious regression results 

may be avoided if the variables are cointegrated.3  

Thus, we first examine whether the behavior of the economic variables is consistent with 

a unit root or not; that is, whether the series is non-stationary or stationary. Typically, this 

analysis has been carried out using tests such as the augmented Dickey-Fuller test or 

semiparametric tests, such as the Phillips-Perron test (Ball et al., 2004). The main problem is 

that, in a finite sample, any unit root process can be approximated by a trend-stationary process. 

The result is that unit root tests have limited power against the stationary alternative (Ball et al, 

2004). 

Recently, many researchers have been exploiting the extra information provided by 

pooling time-series and cross-sectional data and the subsequent power advantages of panel data 

unit root tests.  Starting from the seminal works of Levin and Lin (1993, 2002, 2003) and Im, 

Pesaran and Shin (1997), many tests have been proposed for unit roots in panel data.  Levin and 

Lin (2002, 2003) show that by combining the time series information with that from the cross-

section, the inference about the existence of unit roots can be made more straightforward and 

                                                 
3 Cointegration allows us to consider long run relationships among these variables. Conversely, if a long-run relationship exists 
between the variables, they must be cointegrated.  As a consequence, testing for cointegration among these economic variables 
implies testing for a long-run relationship among them. 
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precise, especially when the time series dimension of the data is not very long and similar data 

may be obtained from a cross-section of units such as countries or industries. 

Many tests have been developed to test for unit roots or stationarity in panel datasets 

(Levin–Lin–Chu, 2002; Harris–Tzavalis, 1999; Breitung, 2000; Breitung and Das, 2005; Im–

Pesaran–Shin, 2003; Choi 2001). These tests have as the null hypothesis that the panels contain a 

unit root. But some of them (Levin–Lin–Chu, 2002; Harris–Tzavalis, 1999) are more useful 

because their alternative hypothesis is that all the panels are stationary, while for others (e.g., 

Im–Pesaran–Shin) the alternative hypothesis is that “some panels are stationary.”  

Because the Levin–Lin–Chu test requires that the ratio of the number of panels to time 

periods tend to zero asymptotically, it is not well suited to datasets with relatively few time 

periods. In this paper we use the Harris–Tzavalis test to examine whether the variables contain a 

unit root (Harris-Tzavalis, 1999; STATA, 2010).  

After having examined the stationarity of the variables, we estimate the long term 

relationship between conservation tillage adoption of biotech crops and pesticide use for 

soybeans in the United States. We specify two regressions. The first regression considers the 

adoption of conservation tillage (CTILLSOY), as a function of the adoption of herbicide tolerant 

soybeans (SOYHT) and the real price of soybean (REL_SOYPRICE).  The second regression 

considers the quantity of quality-adjusted herbicides applied to produce soybeans 

(QQPESTSOY_HT) as a function of adoption of conservation tillage (CTILLSOY), adoption of  

herbicide-tolerant soybeans (SOYHT), and the quality adjusted price of herbicides lagged one 

year (REL_PQPESTSOY_HT_1). In each regression we estimate a fixed effects model and a 

random effects model.  
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The fixed effects model is usually used to control for omitted variables. In our case, we 

use a two-way fixed effects model that captures State and year effects. Using Baltagi’s notation 

(Baltagi, 2001), the fixed effect model is: 

Yit = α + X’it β + uit,    i = 1…N; t=1….T   (1) 

uit = µi + λt + νit       (2) 

where i represent States and t denotes time (year); α is a scalar, β is Kx1 and Xit is the 

observation for State i in time t for the K explanatory variables. µi is the unobservable 

individual specific effect; it is time invariant and accounts for any individual effects not included 

in the regression (Baltgi, 2001). λt is the unobservable time effect; it is individual-invariant and 

accounts for any time-specific effect not included in the regression; νit is the remainder 

disturbance In the two-way fixed effects model the µi and the λt are assumed to be fixed 

parameters to be estimated. The Xit is assumed to be independent of νit for all i and t (Baltgi, 

2001).  

  For the random effects model, the µi and λt are assumed to be random and independent 

of the νit and, again, Xit is assumed to be independent of µi, λt and νit for all i and t (Baltagi, 

2001).   

To estimate the models we use the PANEL procedure from SAS.  Fixed effects models, 

as noted in SAS (2002) “are essentially regression models with dummy variables that correspond 

to the specified effects. For fixed-effects models, ordinary least squares (OLS) estimation is the 
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best linear unbiased estimator.” For random effects a two stage approach is used. In the first 

stage we follow SAS and use the estimated error variance components following Fuller and 

Battese (1975). In the second stage, the PANEL procedure uses the estimated variance 

components to perform the GLS regression  

To test the significance of the dummy variables of the fixed effects model an F test is 

performed. To choose between the fixed effects and random effects models we use the Hausman 

test.  The period considered is 1988-2006 and 12 major soybean producing states are included in 

the dataset: Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska, North 

Dakota, Ohio, South Dakota, and Wisconsin.  Table 1 shows the list of the variables and their 

mean values.   

 

Preliminary Results 

The stationarity (unit root) test results using the Harris–Tzavalis (1999) and are shown in table 1. 

As seen there, all variables are stationary since the null hypothesis that the panel contains unit 

roots is rejected at the 1 percent level in favor of the alternative hypothesis that the panel is 

stationary for all the variables.  

Table 2 shows the regression results for the fixed effects model of the conservation tillage 

equation. Table 2A shows the corresponding case with random effects.  In both cases the 

coefficient of the HT soybean adoption variable is positive and highly significant 

(pvalue=0.0056) indicating that the adoption of herbicide soybeans is impacting positively the 

adoption of conservation tillage in U.S. soybeans.  The elasticity of the adoption of conservation 

tillage with respect to the adoption of herbicide-tolerant soybeans (at the means) is 0.35, 

indicating that a one percent increase in adoption of HT soybeans leads to 0.35 percent increase 
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in adoption of conservation tillage. The Hausman test, comparing fixed and random effects, 

shows that the null hypothesis of the random effects model being appropriate, i.e., consistent, 

cannot be rejected. 

 Table 3 shows the regression results for the fixed effects model of the quality-adjusted 

quantity of herbicide use equation. Table 3A shows the corresponding case with random effects.  

In this case the Hausman test allows rejecting the null hypothesis at the 5 percent level, meaning 

that the random effects model is not consistent. The coefficient of the conservation tillage 

variable is significant (p value = 0.052) and negative indicating that adoption of conservation 

tillage is impacting negatively the quality-adjusted quantity of herbicide used (that is, higher 

adoption of conservation tillage reduces herbicide use).  And the elasticity of quality-adjusted 

pesticide use with respect to adoption of conservation tillage (at the means) is 0.30. On the other 

hand, the coefficient of the HT soybean adoption variable is not significant, indicating that the 

direct effect of HT adoption on quality-adjusted herbicide use is not significant. 

 

Concluding Comments 

Using a panel data set covering 12 States and 19 years (from 1988 to 2006) we find that a one- 

percent increase in the adoption of HT soybeans in the U.S. leads to 0.35 percent increase in the 

adoption of conservation tillage, confirming the complementary relationship between adoption of 

conservation tillage and adoption of HT soybeans found previously using cross-sectional data.  

Moreover, an increase of one percent in the adoption of conservation tillage leads to a decrease 

in the quantity of herbicide used (adjusted for quality) of 0.30 percent.  The effect of adoption of 

HT soybeans on the quality-adjusted quantity of herbicides used on soybeans is not significant. 

Thus while the adoption of HT soybeans does not lead to a direct decrease in herbicide use, it 
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does lead to an indirect decrease through its influence in facilitating the use of conservation 

tillage. The regression results are not spurious because we verified that all the variables 

examined are stationary based on statistical testing that exploits the extra information provided 

by the pooling of time-series and cross-sectional data and the subsequent power advantages of 

panel data unit root tests. 
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Table 1. Variables: Definitions, Means, and Stationarity Test Results 
______________________________________________________________________________ 
  Variable              Label                                               Mean    Stationarity?   
                                                                                     p-value 1/            
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
CTILLSOY           Fraction of soybean  acres using conservation tillage    0.475815  Yes 0.0004              
SOYHT              Fraction of acres in HT soybeans                   0.347561  Yes 0.0000 
REL_SOYPRICE       Relative soybean price                           5.189408  yes 0.0000   
QQPESTSOY_HT       Quality-adjusted quantity of herbicides used on soybeans 8.371778  yes 0.0288     
REL_PQPESTSOY_HT   Real price of quality-adjusted herbicide use on soybeans 5.718484  Yes 0.0000   
REL_PQPESTSOY_HT_1 Lagged REL_PQPESTSOY_HT                   5.827536  Yes 0.0000    
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 

 
1/ Using the Harris-Tzavalis unit root test for panel data (Harris and Tzavalis (1999). H0 is 
that panels contain unit roots and Ha is that all panels are stationarity (results obtained using 
STATA.)    
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Table 2--Regression Results: Effect of Herbicide Tolerant Soybeans on Conservation Tillage 
 

Fixed Two-Way Estimates 
 

Dependent Variable: CTILLSOY fraction of soybeans acres using conservation tillage 
               
                                                      Fit Statistics 
          ____________________________________________________   
                                    SSE              0.7947    DFE              196 
                                    MSE              0.0041    Root MSE        0.0637 
                                    R-Square         0.8968 
          ____________________________________________________   
                                               F Test for No Fixed Effects 
      _____________________________________  
                                           Num DF      Den DF    F Value    Pr > F 
 
                                              29         196      37.10    <.0001 
            ______________________________________  
                                           

    Parameter Estimates 
               ____________________________________________________________________   
                                                  Standard 
                Variable        DF    Estimate       Error    t Value    Pr > |t|     

____________________________________________________________________ 
 
CS1              1    0.095878      0.0233       4.11      <.0001                                 

               CS2              1    0.134906      0.0224       6.01      <.0001                                 
CS3              1    0.160257      0.0211       7.58      <.0001                                 
CS4              1    -0.12513      0.0211      -5.94      <.0001                                 
CS5              1    0.019121      0.0211       0.91      0.3658                                 

               CS6              1    -0.08071      0.0207      -3.91      0.0001     
               CS8              1    0.080784      0.0212       3.82      0.0002     

CS9              1    -0.26246      0.0220     -11.95      <.0001                                 
CS10             1    0.075694      0.0222       3.42      0.0008                                 
CS11             1    0.003116      0.0226       0.14      0.8905                                 

               TS1              1    -0.23628      0.2099      -1.13      0.2617     
               TS2              1    -0.19497      0.1170      -1.67      0.0972     
               TS3              1      -0.183      0.1121      -1.63      0.1043     
               TS4              1     -0.1508      0.1057      -1.43      0.1554     
               TS5              1    -0.07413      0.1028      -0.72      0.4716     
               TS6              1     0.01038      0.1263       0.08      0.9346     
               TS7              1    0.038051      0.0940       0.40      0.6860     

TS8              1    0.042093      0.1251       0.34      0.7368     
               TS9              1     0.02865      0.1295       0.22      0.8252     
               TS10             1    0.048348      0.0897       0.54      0.5903     
               TS11             1    -0.00253      0.0474      -0.05      0.9574     
               TS12             1    -0.02991      0.0386      -0.78      0.4391     
               TS13             1    -0.01953      0.0430      -0.45      0.6500     
               TS14             1    -0.05399      0.0449      -1.20      0.2305     
               TS15             1    -0.08446      0.0319      -2.64      0.0088     
               TS16             1     -0.0713      0.0801      -0.89      0.3743     
               TS17             1    -0.02933      0.0262      -1.12      0.2644     
               TS18             1    0.006578      0.0295       0.22      0.8240     
               Intercept        1    0.394537      0.2085       1.89      0.0600     
               SOYHT            1    0.245397      0.0876       2.80      0.0056     
               REL_SOYPRICE     1    0.008552      0.0478       0.18      0.8583    
              _____________________________________________________________________ 
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         Table 2A--Regression Results Conservation tillage and Herbicide Tolerant Soybeans 
 
Random Effects - Fuller and Battese Variance Components (RanTwo) 

 
      Dependent Variable: CTILLSOY fraction of soybeans acres using conservation tillage 
 
                                                      Fit Statistics 
          __________________________________________________  
                                    SSE              0.9239    DFE                 225 
                                    MSE              0.0041    Root MSE         0.0641 
                                    R-Square         0.1422 
          __________________________________________________    
 
                                              Variance Component Estimates 
         ___________________________________________________   
                                    Variance Component for Cross Sections    0.010379 
                                    Variance Component for Time Series       0.006251 
                                    Variance Component for Error             0.004054 
          __________________________________________________   
 
                                                     Hausman Test for 
                                                      Random Effects 
       ________________________ 
                                                    DF    m Value    Pr > m 
                                                     2       0.30    0.8628 
       _________________________ 
 
                                       Parameter Estimates 
  ___________________________________________________________________ 
                                                    Standard 
                Variable        DF    Estimate       Error    t Value    Pr > |t|     
                ___________________________________________________________________ 
                Intercept        1    0.490986      0.1188       4.13      <.0001    
                SOYHT            1    0.248617      0.0523       4.76      <.0001     
                REL_SOYPRICE     1    -0.01788      0.0187      -0.95      0.3411     
         _____________________________________________________________________ 
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Table 3--Regression Results: Effect of Conservation tillage and Herbicide Tolerant Soybeans on 
Quality-Adjusted Pesticide Use - Fixed Two Way Estimates 
  

Dependent Variable: QQPESTSOY_HT 
 

                                                      Fit Statistics 
                ____________________________________________________ 
                                    SSE           1099.0585    DFE                 184 
                                    MSE              5.9731    Root MSE         2.4440 
                                    R-Square         0.8844 
          ____________________________________________________  
 
                                               F Test for No Fixed Effects 
          ________________________________________ 
                                          Num DF      Den DF    F Value    Pr > F 
                                              28         184      32.34    <.0001 
          ________________________________________  
 
                                                   Parameter Estimates 
      _______________________________________________________________________ 
                                                     Standard 
             Variable              DF    Estimate       Error    t Value    Pr > |t|  
      ________________________________________________________________________ 
             CS1                    1    18.25545      0.8883      20.55      <.0001     
             CS2                    1    12.19552      0.9111      13.39      <.0001     
             CS3                    1    17.83032      0.9507      18.76      <.0001     
             CS4                    1     1.09636      0.9637       1.14      0.2567     
             CS5                    1    1.426255      0.8554       1.67      0.0972     
             CS6                    1    8.509989      2.7464       3.10      0.0022     
             CS7                    1    6.064476      1.3470       4.50      <.0001     
             CS8                    1    4.867371      0.8785       5.54      <.0001     
             CS9                    1    -1.17569      1.0978      -1.07      0.2856     
             CS10                   1     7.39913      1.0874       6.80      <.0001     
             CS11                   1    2.479295      0.9122       2.72      0.0072     
             TS1                    1    -4.85493      2.5228      -1.92      0.0558     
             TS2                    1    -2.38577      2.5096      -0.95      0.3430     
             TS3                    1    -2.49294      2.4658      -1.01      0.3133     
             TS4                    1    -2.18598      2.4877      -0.88      0.3807     
             TS5                    1    0.793246      2.5001       0.32      0.7514     
             TS6                    1    1.844364      2.4982       0.74      0.4613     
             TS7                    1     2.89115      2.4789       1.17      0.2450     
             TS8                    1    3.424385      2.3086       1.48      0.1397     
             TS9                    1    4.628804      2.1151       2.19      0.0299     
             TS10                   1    3.262461      1.5762       2.07      0.0399     

     TS11                   1    1.463762      1.4668       1.00      0.3196     
             TS12                   1    1.427159      1.4400       0.99      0.3230     
             TS13                   1    0.858095      1.2016       0.71      0.4760     
             TS14                   1    0.740092      1.1320       0.65      0.5141     
             TS15                   1    0.397903      1.1261       0.35      0.7242     
             TS16                   1    0.001767      1.0802       0.00      0.9987     
             TS17                   1    -0.46311      1.0367      -0.45      0.6556     
             Intercept              1    3.950754      3.2343       1.22      0.2234     
             CTILLSOY               1    -5.37615      2.7520      -1.95      0.0523      
             SOYHT                 1    1.048856      2.4385       0.43      0.6676     
             REL_PQPESTSOY_HT_1     1    -0.02549      0.4709      -0.05      0.9569 
 ________________________________________________________________________  
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Table 3A--Regression Results: Effect of Conservation tillage and Herbicide Tolerant Soybeans on 
Quality-Adjusted Pesticide Use -  
                                 
Random effects - Fuller and Battese Variance Components (RanTwo) 
 

Dependent Variable: QQPESTSOY_HT 
 
                                                      Fit Statistics 
          ____________________________________________________ 
                                    SSE           1320.8726    DFE                 212 
                                    MSE              6.2305    Root MSE         2.4961 
                                    R-Square         0.0006 
          ____________________________________________________   
 
                                              Variance Component Estimates 
 
                                    Variance Component for Cross Sections    30.78885 
                                    Variance Component for Time Series       3.059627 
                                    Variance Component for Error             5.973144 
 
 
                                                     Hausman Test for 
                                                      Random Effects 
       __________________________ 
                                                    DF    m Value    Pr > m 
                                                     3       8.17    0.0426 
       __________________________ 
 

             


