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Abstract

A dynamic hedging problem with stochastic production is solved. The
optimal feedback rules recognize that future hedges will be chosen optimally
based on the most current information. The resulting distribution of revenue

is analyzed numerically. This analysis enables the hedger to select his

appropriate level of risk aversion.

Larry S. Karp is an assistant professor of agricultural and resource

economics, University of California, Berkelev.



METHODS FOR SELECTING THE OPTIMAL DYNAMIC HEDGE
WHEN FRODUCTION IS STOCHASTIC

Introduction

Futures and forward markets insulate producers from the risk inherent in out-
put and price uncertainty. The possibility of hedging influences the produc-
tion decision. There is considerable literature on the joint problems of
optimal hedging and production. McKinnon derived the hedge which minimizes
the variance of income. The papers by Danthine; Feder, Just, and Schmitz; and
Holthausen consider the more general expected utility maximization problem
with hedging. 1In a series of papers, Anderson and Danthine (1981, 1983a,
1983b) derive theoretical results using a mean-variance criterion. Hildreth
considers more general utility functions and stochastic production. Batlin
concentrates on the case where the date of maturity of tﬁe futures contracts
and the time of harvest do not coincide (the "imperfect time hedge'"). Ho;
Karp (1986); and Marcus and Modest consider dynamic hedging in continuous
time. The papers by Berck (1981); Nelson; Peck; and Rolfo present empirical
results.

With the exception of Anderson and Danthine (1983b), Ho; Marcus and
Modest; and Karp {1986), these papers view the hedging decision as static.
The static approach includes the situation where hedges can be made at differ-
ent points in time, but the current hedge is determined as if a commitment
were being made concerning future hedges. In this case there is no recogni-
tion that future hedges will be conditioned on information which will become
available in the future. The dynamic strategy, on the other hand, does anti-
cipate that future hedges will be optimally chosen. The solution to the

dynamic problem consists of rules which determine the hedge as a function of

the most current information.
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There have been two approaches to characterizing the dynamic hedge.
Marcus and Modest consider the case of a public firm which is able to make its
total return free of all systematic risk. Using arbitrage relations, the op-
timal hedge is shown to be independent of firm-specific characteristics such
as risk aversion. These results are not applicable to the unincorporated
private firm. The second approach is to choose a specific utility function
and specific stochastic processes and solve the resulting optimal control
problem. Anderson and Danthine (1983b) use & mean-variance criterion in a
two-period problem. Ho and Karp (1986) both use a constant absolute risk
aversion (CARA) utility function with continuous time, The former paper
assumes that prices and harvest are lognormal and the latter that they are
nomal; the former paper obtains an approximate solution and the latter an
exact solution. Ho considers the joint hedging and consumption decision and
assumes a 0 expected change in price. Karp allows a nonzero expected change
in price so that there is a speculative motive in the hedge; consumption deci-
sions are ignored.

The objective of this paper, which recasts Karp's paper in discrete time,
is to provide a practical decision-making tool. The continuocus time problem
permits a closed-form solution in the case of one crop and a simple form of
price expectations. The discrete time version, which relies on numerical
methods, has two advantages. First, it accommodates a more general problem:
It isrpossible to treat n crops, transactions costs, and more complicated
forecasting equations. Second, it leads to ways of identifying key parameters
in the decision problem. For example, the hedger is unlikely to know his
{constant absolute} risk aversion parameter. To each value of this parameter,

there corresponds a set of optimal control rules and, hence, a distribution of



profits. 1In selecting his preferred distribution, the decision-maker identi-
fies his aversion to risk and chooses the optimal hedging strategy. The next
two sections discuss these two aspects of the problem. The subsequent section

contains an example that illustrates the methods. A conclusion follows,

The Optimal Dynamic Hedge

Given the assumption of additive normal errors and a CARA utility function,
the dynamic hedging problem can be written as a variation of the Linear Expo-
nential Gaussian (LEG) control problem first solved by Jacobson. This section
formulates the dynamic hedging problem as a LEG problem and mentions the modi-
fications needed in Jacobson's solution. The production aspect of the problem
is then considered. The solution to the single-period version of the hedging
problem is given by Bray.

To simplify notation, suppose there is a single crop; generalization to n
crops reguires replacing scalars by vectors. The purchase or sale of a fu-
tures contract involves no exchange of assets; any price change is debited or
credited from the agent's account. This is referred to as "marking to market™
{Cox, Ingersoll, and Ross). Let the discount rate for one week be 8. Let
futures positions be marked to market at intervals of arbitrary length; for
concreteness, take this interval to be one week., Initially, assume that the
farmer plans on revising his hedge everv week. This assumption is later re-
laxed. Let the production season be T + 1 weeks. At the beginning of weeks
1, 2, ..., T the farmer can buy or sell futures contracts. At the beginning
of week T + 1, he closes his futures pesition and sells his crop on the cash
market,

The time of harvest, T + 1, need not coincide with the date of maturity of

the futures centract. In this case the futures price at T + 1 will not equal
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the cash price. Define b, , as the bagis at harvest (basis = futures - cash

price) and h€+1 as the harvest. Let Dy and ft be the futures price and

the hedge at t, respectively. The present value of the farmer's profits, dis-

counted to pericd 1, are
T

(1) 7= -5

t T -
(Z B Pray - PY) Bt 81 (ppyy - bpyy) Bipy.

Futures prices are assumed to be governed by

Prsp = @ Py ¥ My go Py given

where Ql,t is normal. Setting a > 1 implies normal backwardation; a < 1
implies contango; a = 1 implies that the current futures price is an unbiased
estimator of the futures price of the next pericd.

Designate the farmer's forecast at t of his harvest and the basis at T + 1

as, respectively, ht and bt' If his estimates are unbiased, then

ht+1 = ht + Ny e h1 given

b =D

t+1 bl given

t 7 M3 g

vhere Nt is normal. 1t is convenient to write the state vector as Ve =
4
(ft, ht+1’ Pti1s Pes bt+1)!' At time t the farmer makes his decision

based on Yeo1+ In matrix notation, the state system is

(2} Ve t Ayt BE + T g, vy given
where
00 a0 0 0 15 /GGG
01 0 o 0 0 0 1 0
A={0 0 a 0 0 B=1| 0 r=|1 0 0
0 g 1 0 Ojj H j \ 0 ¢ 0
0 0 0 0 1 0/ N0 0 1
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and N, = (nl,t, N2, ns’t}’ A N{0, I). Bauation (1)} can be rewritten as

T
(3) L

Current and future decisions do not depend on previous profits or the cur-
rent level of wealth, due to the assumptions of CARA utility and a nonstochas-
tic interest rate. Define J{t, thl) as the maximized expected value of the
utility of revenue from current and future hedging and cash sales, discounted

to time t; the expectation is conditioned on y, ;. Then J(t, y_,) is the

I
E k t-tel

(4) m%x (e - 5 §t 8 Yo QY _S
f =
{ T} =t

subject to (2) with Y1 given, The parameter k is the risk coefficient,

splution to

and the notation Et means the expectation conditioned on the information
available at t. In particular, J{1, YO) gives the expected utility, at the
beginning of the season, of the revenue from hedging and cash sales.
. s ! &
The function J(t, Yi.p) is of the form -5, exp [—yt_l W yt/Z), and the

W*

The equations for calculating s ¢

optimal hedge is given by ft = Gt Yeo1e £
and Gt are given in the Appendix. The problem differs from Jacobson's in
several minor respects. The presence of discounting leads to a trivial modi-
fication. In addition, w is linear in f, so it is necessary to check that

the first-order conditions do indeed imply a maximum and that the problem is
well defined (the solution is bounded}. These conditions are given in the

Appendix. Finally, the difference equation (2} is written as a backward dif-

ference rather than a forward difference. This was done to make it more con-

venient to write 7.
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Now consider the production aspect of the problem. The entire problem is

max E ¢-exp - k [ 7 - clhy, o )]
h Tft‘? T 1> "h

e
1*"h? =]

where 7 is given by (3}, and C{hl, oh} is the nonstochastic cost given

as a functién of expected harvest and the standard deviation of the innovation

in the weekly harvest forecast. This type of cost function can be derived

from a production function of the type considered by Just and Pope. At pe-

riod 1, the farmer selects his expected harvest and the variance, (T + 1) ci.
Using the definition of J{ ) and the solution to the problem given by {4},

the above problem is equivalent to

{ Yo M) Yo}
h??ih - spexp Lk c(hl, gh) i

In the case of a single crop with no basis risk and continuous hedging,
this problem can be solved explicitly. There, the optimal rule is to set ,
equal to the current price discounted to T. This result, which is analagous
to the static results of Danthine; Feder, Just, and Schmitz; and Holthausen,
holds at every instant, not just the initial time. The farmer may be able to
intervene in the production process after the season has begun and thereby
affect the current harvest forecast. The optimal hedging rule is closed loop;
but the fule, "set marginal cost equal to discounted price," is open loop with
revision. If at a given time the producer anticipates future intervention in
the production process, then the dynamics for harvest forecast are no longer

linear (unless the cost function is linear-quadratic in h) and the joint
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hedging-production problem does not fit the LEG mold. The introducticn of
basis risk is discussed with the numerical example below.

Since W? is independent of the state, the first order condition for the
choice of h can be easily solved. However, W? is a function of O, SO, for
higher dimensional problems, it is necessary to use numerical derivatives to
determine the optimal o, . Note that this parameter includes the uncertainty
due to the intrinsic variability of harvest and also due to forecast errors.
The farmer may alter oy, by choice of production technology or by changing

the resources devoted to sampling and forecasting.

There are several points to be made about the model. The problem was set
up as if the farmer plamed on entering the market each time the position was
marked to market, i.e., every week. If the transaction costs are significant,
the farmer may choose to enter the market less often, although he is still
obliged to meet the marketing to market requirement. Suppose, for example,
that T is an even number, and the farmer plans on entering the market every

other week. Then equation (1) is replaced by

(1') n= L

T e [
i=1

2
BP(i-1yz+1 * BB - 1) P(4.9y247 = 8 p(i-1)2+3j :

' #(T%-2) 2 2
Ei-1)ze1 * B [( B8 pp+ B(B -1) pp - B P’M) fpo1 * 87 Ppyg hT«t-l_!’

where the definitions B* = 82 and T* = T/2 are used. The state vector
should now be written as Yi = [fz,lwlg h(i~1}2+3’ P(i-1)2¢3 P(i-1)2¢2°
P(§-1)2417 b(i—l}?+3}$ so that (1') can be written as in (3). Correspond-

ing changes in the difference equation (2} must be made.
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Given an initial observation, Yo the farmer can vepeatedly solve the
dynamic hedging problem varying the number of times he plans to enter the
market (T#). He can compare the expected utility and the moments of profits
under the different scenarios and select the optimal strategy. Entering the
market more often gives him greater flexibility and a higher expected revenue
but also higher transactions costs. Suppose that at t = 1 he decides to enter
the market every other week. At t = 2 this strategy calls for leaving his

initial hedge, fl, unchanged until t = 3. However, £, is not optimal at

1
t = 2 since he now has more recent information. It is & simple matter, using
the methods described in the next section, to recalculate the moments and
expected utility of profits, conditional on information available at t = Z,
under the assumption that (1) he adheres to his initial strategy or (2} he
departs from that strategy and revises his hedge at t = 2. This gives him the
information necessary to decide whether it pays to reenter the market.

The model was not written in its most general form. The matrices A and
L can depend on time; the algorithm in the Appendix shows them as time de-
pendent. Future prices may become either more or less volatile as harvest
approaches (Anderson and Danthine 1983b). In addition, the innovation in the
harvest forecast need not have constant variance. As previously suggested,
the farmer may be regarded as choosing a production technology which deter-
mines output variance or he may choose a sampling strategy which determines
the variance of the error of harvest forecast. With either interpretation,
E(q%’t) may be time dependent. Numerical analysis will indicate the relative
importance of decreasing the variance of forecast error at different times in
the season. Since this depends in a complicated way on all the parameters of

the problem, it is unlikely that analytic results can be obtained.



Inclusion of a constant in the state vector y allows an intercept to be
included in (2) and a constant and linear cost to be included in the profit
function. The latter permits an affine transactions cost to be included in
profits. No alteration in the algorithm is required. Under some circum-
stances, it may be desirable to include a cost which is quadratic in the
controls. This may arise if, for example, there is a control "fertilizer
application” which invelves a quadratic adjustment cost and which changes the
expected harvest. Since the state vector is already augmented to include the
contrcl(s), no change is needed in the algorithm.

Equation {2) indicates that only the current futures price contains infor-
mation about next period's futures price. This is an unnecessary restriction

and was adopted only for purposes of exposition. More generally, write

pt*‘}_ = al 2t + ﬂt

where Zy is a vector of explanatory variables which may include current and
lagged prices; z becomes a component of the state y. The only necessary as-
sumptions are linearity and normality. The error Ny can be replaced by a

moving average term by suitable definition of Zgo
The above modifications to the simple problem allow for a great deal of

flexibility and make the model useful.
Methods for Analvzing the Optimal Hedge

The previcus section discussed the optimal hedging strategy conditional on the
parameters k, T%, and O}y at least the first two of which are determined by

the farmer. As a decision-making aid, this is incomplete. For example, the
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farmer is unlikely to knmow what his risk aversion coefficient is. He is more
likely to be concerned with the probability that his profits are less than a
certain amount than he is with the expected utility of profits. One would,
therefore, like to determine the distribution function for profits for a given
set of optimal control rules {G}. Different values of k generate different
sets of contrcl rules. The normality assumption implies that profits are
distributed as a linear combination of noncentral XZ random variables

(Johnson and Kotz II, chapter 29), but this distributicon cannot be written in
closed form.

Since the distribution function cannot be obtained in a useful form, the
obvious alternative is to calculate the moments of profits. There are a num-
ber of ways of calculating the moments of a random variable like (3) given a
linear system like (2) (Karp, 1985). These computations become expensive for
large problems. However, close approximation to the first several moments can
be obtained by using numerical approximations to the derivatives of the moment-
generating function. In brief, the procedure is as follows. Begin with a so-
lution to the hedging problem, i.e., a set {G} of control rules. Replace

(2} by
Ve = Dp Yeop * My
where D = A + B G.. Use equation (7) of Karp (1985) to obtain

(7) E expla 7) = z(q) explq yé 8{a) vyl = Mlygs Q).

The function M{ } is the moment-generating function. Define the difference

operator A as
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aMlygs @) =My, a + .5 1) - Mlyg, g -.5 1)

where r is a small positive number; A" M = A An-l M( ), etc. Then the nth

derivative of M with respect to q, evaluated at Ag is

oot Myy» ag)
1im e,
=+ i

The nth mement of = is given by the nth derivative of the moment-generating
function, evaluated at q = 0. Let qg = 0, and use the fact that M(ye, 0) = 1;
approximate the nth derivative of M with respect to q, evaluated at g = 0, as
[a" M(yG, 0)1/r". For example, approximating the first two moments of 7
requires calculating the expression in {7) for two different values of q;
approximating the third and fourth moments requires making the calculation
four times. It is useful to approximate each moment using several values of T
to check for convergence. Exact calculation of the first moment is inexpen-
sive; this can be checked against the approximation to gauge the latter's
accuracy.

Having obtained a set of a finite number of moments of w, each set of
which corresponds to a different value of k (or T#* or Gh)’ it is possible
to proceed. To avoid repetition, assume that the only question is to de-
termine the k that most accurately reflects the farmer's preferences. This
section suggests three methods of helping the farmer choose k, The first
method invelves parameterizing on k and graphing the resulting mean-variance
trade-off. The second method uses a Chebvchev-type ineguality to obtain an

apper bound on the probability of profits falling below a given level. The
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third method uses the higher moments to obtain an approximation of the distri-
bution function for profits. This can then be used to obtain the expected
value of a given function of profits or the probability that profits are below
a given level.

The first method involves parameterizing on k to cbtain various sets of
control rules and corresponding pairs of mean and variance of profits. The
farmer chooses the preferred mean-variance trade-off. Parameterizing on k
does not sweep out the mean-variance frontier because the maximand is not a
mean-variance criterion. For small values of k, the two criteria are similar
and give similar results. This is not so for large values of k. Numerical
experiments show that for large k further increases in risk aversion lead to a
decrease in expected profits and an increase in the variance. This is not
surprising--for large k, the third and higher moments of profits assume
increasing importance.

The farmer may be more interested in the probability that profits are less

2 he the mean and

than some critical value; call this value a.l Let uand o
variance of profits under the control rules which are optimal for a given k;

let u; = 7 and u; = E 7' be the third and fourth moments about the origin.
Assume that o < pand o <y + G{u; - Jp%z + 4)/2, The following formulas are

taken from Walsh (page 90} (the cases where o does satisfy either of the above

inequalities are treated there):

2
(8a) Pr {m < a} < c)

g+ (o - u}z

o
o

. 2
r o2 (a-yuu - N2 oqe1]
{an) Pr {7 < &}<<1Lw{& ij + 5 + 1J + LE + iﬁm_zﬁim %} Ei?
L
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¥ !2
where ¢ = Hy = Hg " i,

These are the tighest bounds that can be achieved
for the given level of information. The degree of improvement in the bound
resulting from the use of the third and fourth moments depends in a compli-
cated manner on a and the moments. The example in the next section, which
calculates the moments of profits resulting from an optimal control problem
with reasonable parameter values, suggests that the gain in precision may be
quite modest. Two-sided confidence intervals for w can be calculated using
Chebychev's inequality or its higher moment analogs (Walsh).

The third method of evaluating the control rules that result from a given
level of k involves the approximation of the distribution function of the
random variable, w. For example, choose two levels of k, kl’ and kZ‘ Solve
the control problem for each ki and obtain a finite number of moments for
each random variable ﬂ(ki). Fit distribution functions to each set of moments:
designate these functions as F(n; ki)' The preferred value for k and, hence,
the preferred set of control rules requires a comparison of the two distribu-
tions F(m; kl) and F{m; kz), Mever suggests one method of ranking distribu-
tions. A simpler approach is to use the distribution F(w; ki) to calculate
the probability of m being less than a critical level. For the same number
of moments, this bound is smaller than that given in (8a) or {8b) since the
latter gives the worst possible case.

The approximation of an unknown density or distribution function using
known {or estimated) moments is a well-developed subject, but it appears to
have found limited application in applied economics. The following discussion
is drawn from Johnson and Kotz I (chapter 12); this book provides an excellent

intreduction to the subject.
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1t is convenient to standardize the random variable 7. Replace 7 by
#=(m - /o, so v has 0 mean and unit variance. Write the ith central mo-
ment as ., i > 2. The following quantities play an important role: By =
(;43/03)2 is a measure of skewness; and B, = y&/c4 is a measure of excess or
kurtosis. Given the first four moments about the origin of the original ran-
dom variable w, it is straightforward to obtain the central moments of the
standardized variable 7 and, hence, By and B, - Hereafter, it is understood
that B, and B, give the skewness and kurtosis of 7.

The Pearson system provides one method of using the moments to fit a dis-
tribution. For a random variable x, suppose that the probability density p(x)

satisfies the differential equation

The form of the solution to this equation depends on the values of the pa-
rameters C, Cqs Cpo and Cs- These parameters have a simple relation to the
moments of the random variable and, hence, to 8y and 8- Calculation of By
and B, and inspection of a chart {Johnson and Kotz I, Figure 1, p. 14) deter-
mine to which type of distribution the moments correspond. These types include
the beta, gamma, and t distributions. Calculation of the parameters €y Cqo
Cys and Cqg permits calculation of the parameters of that distribution. If the
distribution is of a common type, it i$ possible to use tables to determine
the probability that w {and, hence, #) falls below a given level. For less com-
mon types of distributions, numerical integration may be used.

Variocus types of expansions provide alternatives to the Pearson system.
The idea is to express the unknown density {(that of ) with known (or esti-

mated] moments as a function of some tractable density, f{ ). One of the most
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common expansions, the Edgeworth expansion, chooses £{ ) as the standard nor-
mal density and uses a particular arrangement of the terms in the series.
Designate the resulting representation of the unknown density as g(w). The
moments given by g( ) equal those of 7, but g{ } may not be a proper density in
that g < 0 is possible. However, the boundary of the region in (Bl, BZ} space
for which g > 0 is guaranteed is known. Even for Bl’ B, such that g < 0 for
some values of #, the Edgeworth expansion can provide a good approximation to
the unknown distribution.

The Edgeworth expansion involves an infinite number of moments of 7. In

practice, only the leading terms of the expansion are used. Johnson and

Kotz I suggest that the first four moments generally provide a sufficiently
good approximation. One reason for not using fifth and higher moments is
that, with observed data, these are often not estimated accurately. In the
present case, the moments of 7 are not estimated but are approximated. Since

approximation of the nth moment involves division by rn, a very small mm-

ber, the approximation of higher moments is likely to be poor. Therefore,
only the first four moments, or equivalently, 8y and 82, are used in the
Edgeworth expansion reported in the next section. This uses equation (44)!
of Johnson and Kotz I (p. 17).

This section has indicated how a parameter, such as k, of the hedging
problem can be selected. Once that parameter is selected, the farmer can
follow the hedging and production rules given in the previous section. Two
distinct issues were considered. The first concerned the calculation of the
moments of profits. A numerical approximation of the derivative of the
moment-generating function was suggested. In a previous study (Karp, 1985],

this approximation was compared to exact calculation of the first two moments;
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the results were encouraging. The second issue concerned how the moments
should be used. Three possibilities were suggested: (1) derive the mean-
variance trade off, {2) obtain an upper bound on the probability of a low
level of profits by means of a Chebychev-type inequality, and (3) approximate
the unknown distribution. The third alternative can be accomplished using the
Pearson system or an expansion such as the Edgeworth expansion. The next sec-

ticn applies the methods of this and the previous section,
Illustration of the Metheds

A simple example illustrates the methods of the previous two sections. The
parameter values used are of a reasonable order of magnitude but do not
represent detailed statistical analysis. Wheat yield data (U. S. Econcmic
Research Service) for the United States (1967-1983) suggest expected harvest
of 32.32 bushels per acre with a sample variance of 8.2, The length of the
season, T, was set at 16 weeks; and the variance of the weekly innovation in
harvest forecast was taken to be 8.2/16 = .51, Using 1983 weekly data
{Chicago Board of Trade) (June 1-September 4), the sample variances of the
weekly change in futures price and basis were, respectively, .0Z1 and .004.
The initial futures price and expectation of the harvest basis were taken to
be 3,54 and .057 dollars per bushel. The weekly discount rate, 8, was set
at .998, implying an annual interest rate of 10 percent. The covariances of
p, b, and h were set at 0. These parameter values are referred to as base
values. The regression of Pe OR Dy 4 using 1983 data implied a coefficient of
a = .94; choosing a to solve Py alt = py; gave a = 1.002., The results below,

except where indicated otherwise, use the intermediate value a = .98, This

implies that price is expected to fall.
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In order to indicate the advantage of entering the market frequently, the
optimal hedging problem was solved for 16 values of k in the range {.0025, .12)
under the assumption that the farmer enters the market (1) every week, (2] ev-
ery second week, and (3} every fourth week. The mean and variance of profits
were calculated in each case, and the result is shown in figure 1. The three
curves give the mean-variance trade-off for the three strategies. Since
transactions costs were set at 0, the farmer does better for every level of
risk aversion by entering the market 16 times. The inclusion of transactions
costs may cause the relative positions of the curves to change, and the curves
may cross. In the latter case farmers with different levels of risk aversion
and the same transaction costs will not only make different hedges but will
change their hedge with different frequency.

For the results shown, a lower level of risk aversion corresponds to a
higher level of expected profits and a higher variance. As mentioned in the
previous section, it is possible for the mean-variance graph to be decreas-
ing. This occurs at large vaiues of k. The graph indicates that the location
of the mean-variance point is more sensitive to changing the number of times
the farmer hedges when the level of risk aversion is small., This occurs be-
cause, for small levels of risk aversion, the farmer is more willing to take
advantage of the opportunity for speculation.

The mean-variance trade-off offers the farmer some help in choosing his
preferred levels of k and T* and, thus, his optimal hedging and production
rules. Supplementary information is obtained by considering the probability
§ {associated with each level of k) that profits fall below a given level «.
The previous section discussed methods of putting a bound on § and of obtain-

ing an approximation of the distribution of w and, hence, an approximation
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of 8. To illustrate these methods, suppose that the farmer has decided to
enter the market four times. He now chooses k on the basis of the mean and
variance of profits and of the probability, &, of profits falling below

a = $120. Table 1 provides him with this last piece of information. The
first column gives k; columns Z and 3 give, respectively, the third and fourth
moment of the standardized random variable, w. For all levels of k, the
distribution of profits is skewed to the left. Since uy > 3, the value of the
fourth moment for the'standard normal, the tails are "'somewhat thick.” The
fourth and fifth columns give 84 and P the upper bounds on the probability
that profits are less than $120 per acre using, respectively, the first two
and the first four moments [(8a) and (8b), respectively].

The coefficients of the Pearson system were calculated using By = yz and

3
B, = W;. For all values of k, the results indicate that # is distributed (ap-
proximately) as a beta. The parameters of the distribution were calculated
from the coefficients of the Pearson system, and the SASS function PROBBETA was
then used to obtain the probability that w < 120. This is reported as 82 in
column 6. Column 7 gives 64, the probability that n < 120, obtained from the
Edgeworth expansion.

The table indicates that the use of the third and fourth moments in the
Chebychev-type inequalities results in an improvement in the bound of only
1 percent to 3 percent (compare 61 and 62). However, the approximation tech-
niques suggest that § is only 25 percent to 30 percent of the upper bound. It
is encouraging that the two approximation technigues give comparable estimates.
This suggests (but, of course, does not prove} that the approximaticns are
close to the true density.

The upper bound of &, given by 6, or 85 and the estimate of §, given by

85 or §,, provide different pieces of information; their incorporation into
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Table 1, Variation in the Distribution of Profits

K M3 by 5 % s 84
082 -.36679  3.1007 311 308 0764  .0761
.09 -.36676  3.1926 335 324 0867 0864
1 -.3659  3.19 369 366 1012 .100

U3
4
31
82
83
64

]

skewness for standardized random variable.
kurtosis for standardized random variable.

upper bound on Pri{w < 120} using (8a).

upper bound on Pr{w < 120} using {8b).

estimate of Pr{m < 120} using beta distribution.

estimate of Pr{m < 120} using Edgeworth expansion.
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the decision-making process is a matter of judgment. If the true model for
the stochastic processes were known and if the criterion were literally
"safety first," then it would be appropriate to use the upper bound of § to
evaluate the control rules. In practice, the parameters of the stochastic
processes are estimated; and the decision-maker is likely to regard the in-
equality § E.S; § given, as a desirable characteristic rather than as a
precise constraint. On both of these counts, it is more reasonable to seek a
reliable estimate of & rather than its upper bound. Table 1 gives an indi-
cation of the extent to which the use of an upper bound rather than an esti-
mate of & can lead to overly conservative behavior.

The table also shows that, as the hedger becomes more risk averse, the
distribution becomes slightly less skewed. As he becomes more risk averse,
the probability that profits are less than 120 increases. The decrease in
expected profits more than offsets the decrease in variance. The farmer may
find it strange that an increase in his risk aversion is associated with an
increase in the probability of falling below some critical level of profits.
Different choices of a or k or different parameters in the control problem
may reverse the result so that increases in risk aversion could lead to a
decrease in the probability of profits being less than a. The CARA utility
function attaches a specific meaning to '"risk aversion," whereas the same term
means a host of things to most people.

The accuracy of the results in table 1 is conditioned on the accuracy of
the approximations of the higher moments of profits. Recall that these ars
obtained as numerical derivatives to the moment-generating function. For each
level of k, the first four moments were approximated using 10 values of the

4

step size r, ranging from § x 107" to 4 x 10“6; the first moment was also
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calculated exactly as a gauge of accuracy. As expected, the approximations
for the lower moments are more stable than those of the higher moments. The
approximation of the first moment is extremely stable. It varies by less than
.01 percent and is within .01 percent of the true value. The approximations
of the second and third moments vary by less than 1 percent. The approxima-
tion for the fourth moment is much less stable, varying by almost 10 percent.
In addition, the resulting approximations of § using r close to 4 x 10“6 are
nonsensical, falling outside the range (0, 1). However, for larger r, e.g.,
re(5x 10“4, 4 x 107°), the approximations of the fourth moment are very
stable; and the resulting approximations 8, and 53 are even more so. Table 1
reports results using step size r = 5 X 10'4. This discussion indicates the
importance of experimenting with different step sizes. If r is too large, the
derivative is not approximated well; if r is too small, numerical problems
arise because the approximation to the fourth moment requires rd.

A previous section mentioned that, with zero basis risk and continuous
hedging, the marginal cost of expected harvest is set equal to the discounted
price. With the discount rate used above, this gives Py - bl = 1.02879 ch( ).
Table 2 indicates how the rule is altered for moderate basis risk.2 The
interest rate still predominates. It is apparent that an increase in risk
aversion can lead to an increase or decrease in plamned harvest (since c is
convex); however, the effect of risk aversion on planned harvest is small.

In the continuous time model with no discounting and no basis risk, the
optimal hedge is expected to increase over time if the ratio of the absolute
value of the percentage of expected change in price to the level of risk aver-

sion is "small'; if the ratio is large, the hedge is expected to inarease.3
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Table 2. The Optimal Choice of Expected Harvest, h

k Equation to determine hy
.082 Py - by = 1.02055 ¢, ( ) + 3.20 x 107" by
.09 Py - by = 1.02051 ¢, ( ) + 3.61 x 107" h
1 Py - by = 1.02044 ¢, () + 4.01 x 107"
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Numerical analysis indicates that this also holds in discrete time with dis-
counting and basis risk. That is, the hedge is expected to rise (fall) if
E‘pt+1 - pti/ptk = |1 - al/k is small (large).

Figure 2 graphs the expected hedge for a = .98, 1, 1.02, and k = .0978.
The graph is obtained using the optimal control rules with the equations of
motion for p, b, and h and setting all random variables equal to their ex-
pected values. For the first and last values, Ja - 1[/k = .204 is large, and the
hedge is expected to fall. For the intermediate case, la - 1]/k = 0 is
small, and the hedge is expected to rise. In the case where price is expected

to fall {a = .98), the hedger initially sells contracts and proceeds to buy

them back over the season. He ends the season with a short position of ap-
proximately twice his expected cash crop. In the third case (a = 1.02), price
is expected to rise. The hedger initially sells a few contracts as a hedge
against an unexpected drop in price. He then proceeds to buy contracts, fin-

ishing the season in a long position. For both of these cases, the hedger's

behavior is motivated by speculation on expected price change; in neither case

does his hedge approach expected harvest.

The important point is that, although the level of the hedge depends on
whether price is expected to increase or decrease, the expected direction of
change in the hedge depends on a comparison between the magnitude of the ex-
pected price change and the degree of risk aversion. When the price is not
expected to change (a = 1), the farmer hedges slightly less than expected pro-
duction. As the season progresses, his hedge converges to expected production.

The examplie can also be used to indicate the value of entering the futures
market. In the absence of hedging, with a = .98 and the base value parameters,

the expected value of revenue per acre is $78.68; and the standard deviation
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is $17.41., With the same parameter values and setting k = .0978, the optimal
hedge results in expected profits of $143.11 with a standard deviation of
$17.41, The advantage of hedging is so pronounced because a # 1, which

implies the possibility for speculative profits.
Conclusion

This paper has described and illustrated a practical technique for determining
optimal hedges. The method uses the LEG control problem. It requires assump-
tions which are analogous to those underlying the more common mean-variance
optimization problem which uses quadratic programming. Its advantage over the
mean-variance approach is that it incorporates dynamics (anticipated revision
of hedges]).

The solution of the optimization problem is straightforward. Varying pa-
rameters, such as k, the degree of risk aversion, or T#, the number of times
the farmer enters the market, generates families of optimal control rules.

The interesting practical problem is to determine which of these rules should
be followed, i.e., to determine the best k or T*. Several suggestions were
made, all of which require calculation of the moments of profits. Perhaps the
most promising involves approximating the distribution of profits either by
using the Pearson system or by some type of expansion. The approximate dis-
tributions provide the decision-maker with more relevant information than do
the Chebychev-type inequalities, which are extremely conservative.

The techniques discussed in this paper were motivated by the hedging and
production problem. However, it is clear that the same methods can be used

for any sitvation that conforms to the assumptions of the LEG control problen.



Appendix

The LEG Algorithm

The following definitions are used

e _fn W -1 L'
Gt = (Bt W, Bt) B, W, AL
i -1 v -1t
wt = Wi - W, ?t(zt + Ty wt rt) I W,
r*,.,"v-‘_“ v~ -1 W=
wt = At[wt Wy Bt(Bt wt Bt) Bt wt} At.

The difference equations are

* 3 ?* —
We=Q + BW_ 43 Wy Qp (i.e., Wpep = 0)

t -
row r. Y2

£ttt "ttt = 1.

S¢ T Sey T + %

t » STy

[
The second-order condition is that Bt Wt B, be negative definite for
t
all t. 1In addition, I «+ Ly Ty W£ Iy must be positive definite to insure

that expected utility is bounded.
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Footnotes

lThe confidence intervals discussed in this section use the moments

of m. Other statistics, such as the semivariance, can also be used (Berck,
1982). For the problem at hand, the moments are easier to calculate.
ZTable 2 is an approximation. 1t ignores the fact that the coefficients
on p and b differed by at most .001 percent in absolute value. This differ-
ence is due to the fact that the futures price and basis follow different

stochastic processes, so the current cash price is not exactly a sufficient

statistic for the choice of hl‘

3This is a paraphrase of Remark 4 in Karp (1986). For some values of
the above-mentioned ratic, the expected hedge is not monotonic in time; for

very large values of the ratio and a > 1, the hedge is expected to increase.
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