%‘““‘“\N Ag Econ sxes
/‘ RESEARCH IN AGRICUITURAL & APPLIED ECONOMICS

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their
employer(s) is intended or implied.


https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/

Division of Agricultural Sciences
UNIVERSITY OF CALTFORNIA

277}

oot £ F

Working Paper No. 371

~

~ DYNAMIC HEDGING WITH UNCERTAIN PRODUCTION

by

Larry Karp

LIANRMINT PORIREATINN O
ASRICULTURSL, BOONSIGSS
LIBRARY

California Agricultural Experiment Station

CGilannind Foundation of Agricultural Economics

June 1985



DYNAMIC HEDGING WITH UNCERTAIN PRODUCTION

by

Larry Karpt

T Department of Agricultural and Resource Fconomics, University of
California, Berkeley, California 94720



DYNAMIC HEDGING WITH UNCERTAIN PRODUCTION

1. INTRODUCTION

The possibility of hedging provides an opportunity for producers to reduce
the risk associated with price and production uncertainty. McKinnon [17] was
one of the first to study the problem, assuning normal distributions for price
and harvest, and the objective of minimizing the variance of income. Anderson
and Danthine [3] considered the problem where production was certain and pro-
ducers had a mean-variance criterion; their later papers, [1] and [2], gener-
alized this to include stochastic production. The papers by Rolfo [20] and
Hildreth [11] study optimal hedging with production uncertainty using utility
functions other than mean-variance. Most of these papers view the decision
problem as static; the exception is Anderson and Danthine [1] who treat a two
period problem. Other papers on optimal hedging include those by Danthine
[7]; Feder, Just, and Schmitz [8]; Holthausen [12] and Batlin [4]. A recent
paper by Marcus and Modest [16] studies dynamic hedging by a public firm with
stochastic production. Their results are not applicable to privately held
firms which are unable to make their total return free of all systematic
risk. The decision-maker in this paper is taken to be the owner of a private
firm.

The general abstraction from the dynamic nature of the hedging problem
misrepresents the producer's situation. At the beginning of the production
period (planting), the farmer chooses inputs and his position in the futures
market. The knowledge that he will be able to revise his hedge in subsequent

stages may affect both his initial production and hedging decisions. This



point has been largely neglected because of the difficulty of characterizing
the solution to the dynamic problem.

Choice of the constant absclute risk aversion {CARA) utility function per-
mits a closed-form solution to the dynamic problem. This gives the hedge at
any point in time as a function of the current futures price and the
parameters of the harvest forecast and price equation. One result is that, it
the current futures price is an unbiased predictor of the cash price at har-
vest, the optimal initial hedge is myopic; that is, the same solution is ob-
tained from the corresponding static problem. This does not hold when the
expectation at t of cash price at harvest differs from the futures price at t.
A second result is that an expected increase or decrease in the amount hedged,
over the production period, is consistent with the current futures price being
either an upwardly or downwardly blased estimatcr of cash price at harvest.
The sign of the expected change in the hedge depends on the magnitude of the
bias relative to the degree of risk aversion.

These results hold in the limiting case where there is no basis risk (de-
fined below) and the interest rate is 0. A small increase in basis risk leads
to an increase in the optimal level of futures sales provided that the
absolute level of risk aversion is small. A small increase in the interest
rate reduces the level of sales if the futures price is expected to decline;
otherwise, an increase in the interest rate increases the level of futures
sales. 'These results hold for small levels of absolute risk aversion.

It is helpful to bear in mind the relationship between the hedging and
standard portfolio problems. If producticn were nonstochastic, the farmer
could sell the entire ¢rop at the current futures price at planting and regard

the proceeds as his initial wealth. Hedging either more or less than his
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known production is equivalent to investing in the risky asset in portfolio
theory. Thus, in the case of nonstochastic production, the farmer's dynamic
hedging problem can be treated as a special case of the class of problems dis-
cussed by Mossin [19). With the CARA utility function, the sclution to that
problem requires "limited foresight': the investor distributes his assets
between the risky and safe investment in order to maximize the expected
utility of next period's wealth, compounded at the rate of the safe asset,
over the remaining horizon. The myopic hedging result alluded to above is
clearly related to this result from portfelio theory. Wwhen production is
stochastic, the hedging problem is analogous to a portfolio problem in which
initial wealth is unknown. For a more general discussion of myopia in dynamic

problems see Tesfatsion [22, 23].

Z. PROBLEM FORMULATION AND SOLUTION

The following formulation is a dynamic generalization of a static problem
used by Bray [5]. To derive the model of continuous trading, suppose first
that there are n + 1 trading dates which, for notational ccnvenience, occur at
regular intervals of . Futures are first traded at time 0; at ne = T
the farmer's futures position is closed and he sells his crop on the cash mar-
ket, At each trading date the farmer decides the number of futures contracts
to hold, based on his current information about prices and his (futurej
harvest.

It is typically the case that the time of harvest, T, does not coincide
with the time of maturity of the futures contract. This is referred to as an
imperfect time hedge. It can be modeled by azllowing the basis, defined as the

difference between the futures price and cash price, to be a random variable.



Futures contracts are marked to market. That is, the purchase or sale of
a contract involves no exchange of assets; any price change is debited or
credited from the agents' account {Cox, Ingersoll, and Ross [6]). If the in-
stantaneous interest rate is r, then the discount rate for a period of ¢

'€ Define p as the futures price, b as the basis,

units of time is gle) = e~
f as sales of futures contracts (f > 0 implies that the farmer takes a short
position), and hT‘as the harvest; recall n ¢ = T. The farmer's profits, dis-

counted to time 0, are

_ i+l _ n - _
o i-EO " [p(i*‘l)g pi€] fis + 8 (pne bne) hT =B 2y fU
. (1)
n-1
ip. [g £, - £, .41 n _ )
* iil B Fie” He s Ti-le v B {pna{hT fn-1)ed = Bae Brt

Define flis = f(i~1)e the number of contracts held in the previous period. De-

fineu, e=81¢£ - f. s0 u. has the dimensions of a rate. If r = 0 s0
ig ie (i-1)e ie

that g8 = 1, W« is the mumber of additional contracts sold at the beginning

of the ith period. Equation (1) can be rewritten as

n-1 .
1 n
ﬁx8p0f0+i§18 P Yj. e+ B [p(h - £1) - b bl (2)

Define hie as the farmer's forecast at time ic of his harvest at
time T. Suppose that h, p, and b obey the following stochastic difference

equations
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Biia)e = Mie * 21,4, (3a)
Pli+1)e = cle) Pic * 47 i, (3b)

. 4 b }' is identically and independently distributed

where A5 = (8 5., 8y 500 83 5,
H

with mean 0 and E Bic By =L &y Z positive semidefinite; cf{e) = &%,

ie System

(3) assumes that the disturbances are additive. This is unfortunate since it
admits the possibility of negative prices and quantities. It is the price paid
for a closed form solution. The difficulty that arises from using multipli-
cative disturbances, as is customary (e.g., Merton [18]), is discussed briefly
below.

Equation {3a) is included because, at time ie, the farmer uses his cur-
rent prediction of his harvest in deciding on his level of futures sales.
Equation (3b} allows the current futures price to be a biased estimator of the
futures price in the next period. The current basis is assumed to be an un-
biased estimator of the basis in the next period. This involves no loss of
generality since the farmer is only interested in the basis at time T; bis
can be reinterpreted as the forecast at ie of the basis at T. System {3)
can be regarded as a reduced form system. If, for example, the farmer is
located in a major production area, the change in his harvest forecast may be
corvelated with that of the aggregate of producers and, hence, with the change

in the futures price. The definition of f1 and u imply the additional equation

{3d)

iy e

This completes the discrete time model.
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The continuous trading model is obtained by taking the limit as £ » 0.

The result is {see Malliaris and Brock [15]).

T -1t : ~rT
m =Py £y * g e p(E) ult) dt « e plh - £) - b))y 21)
dh = dz, (3a')
dp = a p dt + dz, (3b')
db = dz (3ct)
df = {rf + u) dt. (3a')

Here, z = (zl, 255 33)'15 the solution to a system of stochastic differential
equations with 0 drift and infinitesimal variance L. Define x = (f, h, p, blt,

and rewrite {3) as

dx = (Ax + Bu) dt + T dz (4)
where
r 0 0 0 1 000
1o 0 0 0 1o 1100
A=1p90 a0 B=10 F=1010
g ¢ 0 0 & 001

Choose units of h and p so that I can be written

Loy og3
L= leyy b oops
f13. Pz ©

There are two points worth making about this formulation. The first re-

gards the definition of u, €. It might, perhaps, seem more natural to use the
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alternative definition u; = £, - f(; ,y in which case Eg e T pe) [-re(t) +
u{t)] dt replaces the integral in (2') and df = u dt replaces (3d'). A
closed-form solution to the control problem posed below requires solving a
matrix Ricatti equation. This can be easily obtained using the current formu-
lation; the alternative definition of u results in a more difficult

Ricatti equation. This is explained below when the Ricatti equation is written
down.

The second point concerns the interpretation of the integral Sg e Tt plt) -
u(t) dt. For this discussion, let r = 0 to simplify the exposition. It is
customary in the finance literature {e.g., Harrison and Pliska [10]) to take the
limit of the expression after the first equality in (1) to obtain the integral
—Sg £(t) dp(t). This is an Ito stochastic integral. Many of the results in
finance are based on arbitrage arguments, and it has proven convenient to work
with Ito integrals. With r = 0, the integral in (2) can be written fg p(t) -
df(t). This is not an Ito integral; rather, it is a linear combinpation of
Stratonivich [21] and Ito integrals. However, Sg p(t) u(t) dt is the stand-
ard form of the integral in stochastic control problems. The integrand is a
function of the state and control {p and u, respectively) at a point in time.
Note that the integral fg £(t) dp(t) does not have this property, and
it cannot be used with standard control methods.

The farmer's problem is to choose f as a measurable function of h(t),

p(t), b{t), and t to maximize the expected utility of profits. We assume that
the optimal f is continuous with probability 1. This is a weak assumption
since h(t), p(t), and b{t) are all continuous with probability 1. Continuity
of f guarantees its admissibility (Fleming and Rishel [9], p. 156). The

problem of choosing f(h, p, b, t) can be replaced by the equivalent problem of
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choosing an initial value f[h(t]), p(t), b, t}itzo and subsequent variations,
i.e., ulh(t), plt), blt}, t] for t > 0. The assumption that £ is continuous
guarantees that the optimal u is bounded when the initial f is chosen opti-
maily. The boundedness of u guarantees its admissibility for the control
problem specified helow; boundedness is also important because it insures that
there is no ambiguity in taking the expansion used to derive the dynamic
programming equation.

Define J(x, t) as the maximum of the expected utility of profits for
arbitrary h(t), p(t), b(t), t given that f(t) has been chosen optimally. Let
the farmer have constant absolute aversion to risk with parameter k > 0.

Then,

Problem #*:

Jx, t) = : ?3§]T - Et{exp[-k ert(fg e p(r) ulr) dr
uft .

T=t

+ ¢ p(h - £) - bh] )

subject to {4); x(t) given [f(t) chosen optimally]. The farmer's problem is:

Problem ##
max expl-k p(t) £(t}] « JI£{t), h{t), plr), blt), t].
£(t)
Problem *% requires finding the optimal initial condition for problem #*,
Problem * is a variation of the Linear Exponential Gaussian (LEG) control
problem solved by Jacobson. It differs from his problem in two minor re-

spects. First, the dynamic programming equation is linear in the control.
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This results in a singular solution; the sufficiency condition requires con-
sideration of both problem #* and problem *% and the assumption that the op-
timal f is continuous. Second, the integral and final payoff in the exponent
is multiplied by ke't rather than a constant as in the LEG problem. At each
point, future profits are discounted back tc the current time. It is unneces-
sary to do this where utility is time additively separable. 1In the current
problem, however, failure to apply the discount would imply that the farmer's
risk aversion parameter is time dependent. In that case, letting the season
run from time tyto T+t would lead to a different solution than when
the season runs from time Q to T.

Assume that J(x, t} is continuocusly differentiable in t and twice con-
tinuously differentiable in x. The assumption that u is bounded justifies the

expansion that leads to the dynamic programming equation

~ J ' 1 .,
-Jt = mix [-kpu J - r In(-J) J + JX(AX + Bu) + = tr Jxx rrl.  (s)

Details are provided in the appendix. The assumption that the optimal u is

bounded implies
1
-kpJ + J, B =0 (6)

which defines the singular arc. Following Jacobson, try the ansatz J(x, t) =

-F{t) expl-x* 8(t) x/2]. Substitution into (5) gives1

» ! - ' H
Fexp (W)@W:mx{%}kpu+j {“I‘ 1n}«+_r_w§.2._§_.¥.]

u

-Jx S{Ax+ga}+3tr{"SFZ?"X’SFZF;SXH.

z
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Equation (6) becomes
kp + x' SB = 0. (7}

Equate coefficients in the dynamic programming equaticn and use (7) to obtain

the system

S=rS§5-SA-AS+STzT'S

(8a)
0 ¢ -1 0
. 0 ¢ 1 -1
S =k |1 1 o o
0o -1 0 0
%:(r}_nF-yW)F
(8b)
F(T) = 1.
Define A = ri/2 - A, and rewrite (8a) as
S=SA+AS+ST oIS, (8a")
Define Q(t) = S(’c)"1 and use dQ(t})/dt = stsst together with (8a')
and the boundary condition to write
Q=AQ+QA+T LI
(9}
¢ ¢ -1 -1
110 0 0 -1
A =g 14 o o o}°
-1 -1 0 0

The reason for the particular definition of u is now apparent. The alterna-
tive definition would lead to a term in {8a) which is independent of S; in

that case the solution to S${t)} is no longer simply le(t}.
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The solution to (8) is a symmetric matrix whose upper triangular part,

QU(t), is
- at ]
- -1
0 0 X 13
-rT ¢ e ' P13
e -1 12  (a-r)+ 13 1 -TT 13
— Toale - )
P (t) = (10)
4T £
G -1 23 {a-r)T
— =g le - 1]
ale T - 1)
L T e

which uses the definitions 1 =t - Tand ¢ = r - 2a. Although { can be
easily inverted to obtain S, the result is rather complex and not very
illuminating. Therefore, attention is focused on what is hereafter referred
to as the "simple case,' obtained by setting g =1 = pij = 0, i, 3 =1, 2, 3.
The introduction of basis risk (¢ > 0) and discounting {r > 0) can be studied
by looking at perturbations around the simple case.

Recall that equations (6) and (7) result from the boundedness of the
optimal u which is implied by the assumption that the optimal level of futures
sales is continuous. To verify that continuity holds, consider problem ##%,
The first-order condition to that problem, using J( ) = -F exp(-x' S x/2),
duplicates (7). That is, given that (7) holds over (t, T), (7) must alsoc hold

at t. Since p, h, and b are continuous with probability 1, so too is f. The

A
o
-

second-order condition for problem *% evaluated on (7) is F(t) Syy(t)

where subscripts indicate the element of S{t). In the simple case (r

t
[
[

Pij = 0), the upper triangular part of the symmetric matrix S(t) is

sHe)s
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-8 8 i 16 k

AT _elar
-6 % K
2 U

k“ bt} s7(t) = (11)

T - ea'r

i . eBaT

where

2a
D(t) :—:(«r g + 9—}?‘)/ K?

o(t) = (1 - zZaT) . 0.
D(t) is the determinant of Q in the simple case. Since D(T) > 0, a neces-
sary and sufficient condition for the existence of S{t) over an interval
[tl, T] is that D{t) > 0 over that interval. For finite t and a, this condi-
tion can be insured by choosing k sufficiently small. In this case S;(t) < 0
for t < T. Solving (8b) gives F(t) = expl -1/2 55 (S,, + S:5) drl > 0. Con-
clude that, for finite T and a and sufficiently small k, F(t) Sli(t) < 0 so
that (7) does indeed solve the maximization problem; hereafter, it is assumed
that k is such that D(t) > 0. For this reason, the analysis concentrates on the
case where k is small. Note that a/k can be of any sign and magnitude and k

chosen so that the second-order condition holds.
3. ANALYSIS OF THE OPTIMAL HEDGE

With the control rule (7) and the inverse of Q(t), the unique elements of

which are given by (10), it is straightforward to study the dependence of the
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optimal hedge on the parameters of the problem. In the previous section, it
was established for the simple case that, provided the farmer is not exces-
sively risk averse, the optimal hedge is given by (7) for all values of a and
T. Given the continuity of all elements of Q and, hence, S in all argu-
ments, the second-order condition F(t) Sil{t} < 0 also holds for small

values of ¢, T, and Pi Equation {7) and inspection of (11) lead to

I
the observatiocn:

Remark 1. In the absence of basis risk, discounting, and correlation of
the random elements, an increase in the basis (futures - cash price) at har-
vest increases the optimal hedge (S;; < 0 < 314)‘

This also holds for small values of ¢ (the measure of basis uncertainty)
or as the cash price and futures price become perfectly correlated. To deter-

mine the effect of a slight increase in basis risk, differentiate (7) with

respect to ¢ and rearrange:

. d 35 > N
f—‘§=-(fllf+ 12h+8&13p+ nsl&b> /81

aa 3 30 90

The first row of 3S/30, obtained using 3S/3c = -S 3Q/3c S, is

where the partial derivative is evaluated at ¢ = 1 = Pij = 0. The sign of 3f/sc
is ambiguous. The interesting case is when k is small since, from the previocus
section, this assures that the second-order condition holds. Using the control

rule to solve for f and substituting into the expression for 3f/to gives
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N 2 Zart
f e hl
ac kz D

as k~ 0. Hence:

Remark 2. 1If the farmer's absolute aversion to risk, k, is small, an in-
crease in basis uncertainty leads to an increase in the optimal level of
futures sales. This holds in some neighborhood of ¢ = r = Pij = 0.

The remaining analysis assumes that o = 0. The presence of a non-
stochastic basis adds no information except that contained in Remark 1, so
hereafter set b = 0. In places it is convenient to allow the covariance of
harvest forecast and futures price, £1p to be nonzerc. To avoid
notational clutter, define P12 = o= Since g = 0, set 013 = Pp3 = 0. The
(1,1} and (1,2) cofactors of Q differ only in sign for this case (b =71 =¢ =

b1z = Py3 = 0) so the control rule can be written more concisely as
S12 vy + (k + 813) p'z 0 (71)

where y is defined as h - f, the unhedged portion of expected harvest. This
can be seen more directly by noticing that, in the absence of basis risk and
discounting, the original problem can be reformulated in the states y, p
rather than £, h, p.

The easiest case to analyze is a = 0, where the current futures price is

an unbiased estimator of cash price at harvest. Equation 7' gives
y(t) = wlt) p(t), wlt) = (1 - p2) (T - £) k - .

The unhedged portion of expected harvest tends to decrease over time; but for

p 70, B, v(T) # 0. If the harvest forecast and futures price errors are
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inversely related, the final position in futures is less than harvest; other -
wise it is greater. If p > 0, the sign of y may change over time: The
farmer may begin the season with a position in futures less than expected
production, increase futures sales over time, and finish with the hedge
greater than harvest. The previous equation also leads to:

Remark 3. When the futures price is an unbiased estimator of cash price
at harvest and in the absence of basis risk and discounting, the optimal hedge
is myopic.

To see this, use the solution to the static (1 period) problem {Bray [S])

ym =8 p -a pl0)
where

2]

]

2
Il +ke)® -k
o= K
8*':(1 + ko).
il

P [= e® p(0)] is the expectation at planting of cash price at harvest, p(0)
is futures price at planting, and ym is the unhedged expected production in
the myopic problem. Bray's solution has been normalized by setting the
variance of the harvest and price forecast equal to one. To make the units of
measurement in the dynamic and static problems the same, set T = 1 in the dy-
namic problem. When a = 0, p = p(0); since w(0) = g - o, conciude y" =
y(0}. The initial dynamic hedge and the myopic hedge are equal in this case;
hence, Remark 3.

For a ¢ 0, the initial dynamic hedge and the myopic hedge differ. This

can be seen by comparing Y and the general expression for y{0) or from the
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special case p = 0 discussed below. This result is very intuitive. It

price is a random walk, then, because there is no adjustment cost associated
with changing the hedge and because the degree of risk aversion is independent
of wealth, the farmer does not benefit from the recognition that he will be
able to change his futures position at a later date. However, if the current
futures price provides a blased estimate of cash price at harvest, it matters
at what point the sale is made, and the dynamic problem is not vacucus. The
guestion whether the current futures price provides a biased estimator of
future cash price (abstracting from the time imperfection of the hedge) has
not been resolved either empirically or theoretically. For example, Anderson
and Danthine [1] point out the possibility of bias even in a rational expecta-
tions equilibrium.

It is instructive to compare the solutions to Bray's static problem and
the problem in which the objective function is linear in the mean and variance
of profits (hereafter, the MV problem}. The MV problem emerges if =, rather
than its arguments, is normally distributed and the farmer maximizes the ex-
pected value of the CARA utility function. Hence, the two problems are
equivalent except for the different assumptions regarding the distributions of
price and harvest; both versions permit the possibility of negative profits,
For ease of comparison, suppose that the current futures price is an unbiased
estimator of cash price at harvest.

Let each problem be resolved periodically as the season progresses. Using
the previous results, the unhedged portion with Bray's problem is y{t) =
w(t) p(t). The unhedged portion with the MV problem is ybﬁkt) = ~c0vt{p(T) h{T},
p(T)}/vart{p(T}} (Anderson and Danthine [1] eq. 11} where the subscript t indi-

cates that the variance and covariance are conditioned on the information at t. .
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In general, covt[p(T} h(T), p{T}] # © even if covt[p(T), h(T)] = 0; the two co-
variances may have opposite signs. This means that the two problems may pre-
scribe qualitatively different behavior at some or all points in time: One may
recommend that the farmer hedge more than expected production and the other,
that he hedge less. This lack of robustness is not particularly surprising but
is worth keeping in mind when evaluating the models.

Now consider the case where a %-G. Define y* = {%3% y(t)} , the ex-
pectation at t = 0 of unhedged production at harvest, given that the dynamic
rule is followed. Use E, p(T) = D = e? p(0) and L'Hospital's rule with (7') to
obtain y* = e®(a/k - ¢) p(0). An expected upward drift in price or a negative
correlation between price and harvest forecast errors {a > 0 > p) tends to dis-
courage the farmer from finishing the season in a short position. When ¢ = 0,
a #0, unhedged expected production at t = 0 is greater in the myopic problem
than in the dynamic problem [Y" > y(0)]; y™ may be greater or less than y*.

For p = 0, the three quantities are:

a
ym = (9—-}2:——}1+ > p(0)

a2
v(0) = [Za(e & e +§(} p(0)

These expressions imply

y' - y(0) = H [1 - (2a + 1) e“za} P%-)-, (12}
- e
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y*_ymz[1_(1_3)63]\9_@%2,}(13({})_ (33)

Equation (12) implies y" > y{(0), with equality holding only at a = 0. Equa-
tion (13) is ambiguous; however, 1 - {1 - a) e° > 0, with equality holding only
at a = 0. This implies that for any a = 0, there exists k¥ > 0 such that y* -
ym > 0 for all k < k*; also, for any k » 0, there exists a* > 0 such that y#* -
ym < 0 for all lal < a*. This follows from the fact that all equations are
continuous in their parameters. From the previous analysis of the case a = 0,
it follows that for jal sufficiently small (and thus, for {ai/k sufficiently
small) y(0) > y*. Define £ £(0), £* as (expected) futures sales, in cor-
respondence with y", y(0), y*. The conclusion can be summarized as

Remark 4. (i) For large laj/k, the dynamic futures position tends to de-
crease;z and the myopic futures pesition lies between the initial and ex-
pected f£inal dynamic position [£(0) 3“fm > f%}, (ii) For small lal/k, the
dynamic futures sales tends to increase; and the myopic position lies below the
initial dynamic hedge [f* > £(0) z‘fm].3 Strict inequality holds except at
a=70,

A tendency for the hedge to rise or fall during the growing season is con-
sistent with either normal backwardation {a > 0) or contango (a2 < 0). The
direction of the tendency is determined by the size of {al/k. The explanation
for this result lies in the fact that the farmer considers both the expected
gains (or losses) from his activity in the futures market over (0, T} and from
closing his position at T. Consider the certainty equivalent paths under two
different values of a, a; > 0 and a, < 0; suppose Eaii/k, i=1, 2
is large, so that fi is expected to fall over the season. [The notation

*
fi neans f(ai),} Since Yi”? 0, the farmer expects to end the season with
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futures sales less than his harvest. He begins the season with a small
{relative to the case a < 0) level of sales and then proceeds to buy back
contracts as price increases. He expects to make a profit on the sale of
these at T. The initial sale with the expectation of subsequent purchases may
appear perverse, but it is simply a hedge against an unexpected drop in price.
The second case, with a = a, < 0, is more obvious. Since yz < 0 and fZ(O) >
f;, conclude that fz(o) > h(0}: The farmer begins by hedging more than
expected harvest. As price falls, he makes profits buying contracts. The
situation where lal/k is small has a similar interpretation. There, the case
a > 0 has the more obvious interpretatién.

The ratio {a|/k is a measure of the opportunity for speculative profits
relative to the degree of risk aversion. This measure depends on the magni-
tude rather than just the sign of a/k since the potential for speculative
profits exists for a Z 0. The myopic hedge can be regarded as an ap-
proximation to the optimal hedge. The above analysis shows that (for small
p) the approximation is biased downward. The extent of the bias is posi-
tively related to lal/k.4

The next question concerns the effect of discounting on the optimal

hedge. Use 3S/s1 = -5(3Q/3r) S to obtain

— _
3( 6 k}z - eZaT
S11 |
gl S jor = 1 ezar(n +1 8) - gk
i2 6 .2 7
k- D
513 eaﬂ{Tk<3§T+{}>
- ad

where
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ezaT(Za'( -1} +1

> 0.
4 a2

n =

The partials are evaluated at g = 1 = Pij = 0. Differentiation of the control

rule gives

38 S 58
af 11 12 13
T (: T vl B+ %) /81y

Recall b = 0 by assumption. Using the control rule to eliminate f results in
a complicated expression. As argued above, the sign of the partial is chiefly

of interest for small k. Eliminating f gives

fok)
rh

Jat
-1 Z a

i vl LR Ry (1_81“)9}
k™D Sll

i 3

Q2

as k+ 0. The term outside the square brackets_is positive, For a < 0,
both terms in the brackets are negative so 3f/3r < 0. For a » 0, the
second term is positive and dominates the first term as k - 0; in that case
3f/ar > 0. This is summarized in:

Remark 5. If the futures price is an unbiased estimator of cash price or
in the presence of contango (a < 0), an increase in the interest rate re-
duces the optimal hedge. Under normal backwardation, an increase in the in-
terest rate increases the optimal hedge. This holds in a neighborhood of r =
g = pij = {).

When the interest rate is 0, the optimal hedge can be written [ = h +
Ci(t) p. Two farmers with the same absolute aversion to risk and facing the
same price, but with different expected harvests, would have the same amount
of unhedged expected production. For r £ 0, ¢ = f13 = Pyz2 = 0, the

control rule can be written
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£(t) = &7 h(t) + ¢, () plt), 1=t - T. (14)

{ Compare the (1,1} and (1,2) cofactors of Q.] This does not hold for ¢ #
0. 1If two farmers with the same risk aversion have expected harvests ot h1

and h,, then, letting y, = h; - £, i =1, 2, (14) implies

vy - vy = (hy - h) (1 -e).

Remark 6. When there is no basis risk, given two individuals with the
séme risk aversion and different expected harvest, the farmer with the larger
expected harvest will have a greater gap between expected harvest and futures
sales. This difference increases with r and approaches 0 as the season ends
(t + 0).

The ability, in the absence of basis risk, to write the control rule as in
(14) is reminiscent of the limited foresight result in portfolio theory men-
tioned in the introduction. To make the analogy clearer, let a = p = 0 so
that the futures price is an unbiased estimator of cash price at harvest, and
there is no correlation between expected harvest and price. Then,

Cz(t) in (14) becomes Cz(t) = -efT k(1 - e"")/r. Compare this to Bray's static
problem, modified to include discounting; in that problem k should be replaced
by k = ¢'F k when the length of the season is -t. Thils suggests:

Remark 7. If the futures price is an unbiased estimator of cash price at
harvest, there is no basis risk, and all correlations vanish, the dynamic
strategy requires limited foresight. This means that the static rule can be
used except that the current estimate of harvest should be replaced by the

current estimate discounted to harvesttime, the risk aversion parameter
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should be replaced by k, and the current futures price should be replaced by
the discounted stream of expected futures price,

rT T

228 p(t) = e g e ds plt).

There are several other minor points to be made about the model. The
farmer can be viewed as choosing h{0), expected harvest at planting, and pos-
sibly oy which implies the variance of harvest. Let the cost function be
glh(0), Gl]a In the static case with no preduction uncertainty, it is
well known that output is chosen so that 3g/sh(0) = p(0). This also holds if
harvest forecast errors are additive (Danthine [7], p. 83). In the simple case

(o = =1 = 0} with the dynamic hedging model, output is chosen so that

€13
3g/3h = p(0) - bl{0) which collapses to the previous rule when the (deterministic)
basis is 0. The farmer sets marginal cost equal to the current cash price; he
ignores the expected change in the cash price, p(0) (1 - eaT), but takes into
consideration the certain difference between futures and cash price. When a =

0 =py3=0, 1 #0, the first-order condition for h(0) is g'(h) = [p(0} - b{0}] -
e“rT which has an obvious interpretation. Such transparent rules do not

emerge for the more general case where a, ¢, and r are nonzero.

The CARA utility function implies that the degree of absolute risk aver-
sion is independent of wealth, so it is not surprising that unhedged expected
production, y, is independent of expected production in the absence of basis
risk and discounting. This scale independence is not very plausible. How-
ever, if h(0} and oy are jointly determined by the producer through his

choice of inputs {(i.e., g 1s not separable), then y{t) depends indirectly on

h(t) through ¢y. An alternative choice of utility function, such as the
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isoelastic, would also eliminate the scale independence. Efforts to charac-
terize the dynamic hedging problem with isocelastic (constant relative risk

aversion) utility have not been successful.
4. CONCLUSION

A dynamic hedging problem with production uncertainty was solved and ana-
lyzed; the results were compared to the solution of the static analog.
Several insights were obtained.

It was shown that the myopic hedge provides a downwardly biased approxi-
mation of the initial optimal dynamic hedge. The magnitude of this bias
varies directly with the extent to which the current futures price is a biased
estimator of cash price at harvest; it varies inversely with the degree of
absolute risk aversion.

A second insight concerned the expected direction of change of the indi-
vidual's position in futures. Normal backwardation, for example, is consis-
tent with either an expected increase or decrease in futures sales over the
production period. A systematic decrease in the level of futures sales
suggests a high degree of bias relative to risk aversion; it does not suggest
whether the current futures price is an upwardly or downwardly biased esti-
mator of cash price at harvest.

Intuition might suggest that the myopic hedge would lie between the ini-
tial and expected final hedges in the dynamic problem. This intuition is
correct only if there is a large degree of bias relative to risk aversion or,
paradoxically, if the bias is 0. In the second case, the myopic hedge equals
the initial dynamic hedge.

The myopic problem was also compared to a related problem in which the ob-

jective function is linear in mean and variance. The two models may suggest
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qualitatively different behavior. This lack of rcbustness is an argument for
caution in interpreting the results of either model.

The sensitivity of the optimal hedge to the introduction of basis risk and
discounting was studied. For low levels of risk aversion, introduction of
basis risk leads to an increase in futures sales. Introduction of discounting
leads to a decrease in the level of sales if the futures price is expected to
fali. Under normal backwardation, discounting causes an increase in sales.

Finally, an analogy to the limited foresight result of portiolio theory

was obtained,
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APPENDIX: DERIVATION OF {(5)

Write problem # as

J(x, t} = max —Et{exp[«k eIt 5t+dt e ™ plr) ult) del -

t
U

lexp(-k " (E*E) (T o IT 0y W) d r e e

t+dt

-rdt
- b h] iT})]e } :

Rewrite this, using the principle of optimality, as

J(x, t) = max -E {exp[-k et (T o TT ) ule) @] -

t
u

e~rdt
[-J(x + dx, t +dt)] ]
Expand this and take expectations using

E dx = (Ax + Bu) dt
Et dx dx' = 7 dt

Eﬁ(dxi dxj dxn) = o{dt) i, j, n=1, 2, 3, 4.

rT[

plh - £)

Simplifications result in {5). Karlin and Taylor [14], page 202, give ex-

amples of similar manipulations.
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FOOTNOTES

1At this point, it is apparent why replacing the assumption of additive

noise with multiplicative noise {(i.e., replacing Brownian motion with geo-
metric Brownian motion) leads to difficulties. No ansatz of the form of an
exponential of a polynomial of degree n will be successful since the term

Et(dx)' Jxxidx) will involve elements to the order of x?&z.

2This does not suggest monotonicity, only that £(0) > f*.

SSimulation was used to examine the effect of p on the path of the ex-
pected hedge, The ratio a/k varied over 16 values and p took five values.
For each value of p, there were numbers r;(p) < 0 < r,(p) such that expected
futures sales rose if ry < a’k < r, and fell otherwise. The simulation indi-

cates that dri/dg >0, 1i=1, 2.

4Define
e? -1 ~2a
C(a)=m-——-—_——2§[1~(23+1)e ]
1 -e
50
m _cla) plo)
y' - y(0) = SR

Since c > 0 for a » 0, decreasing k increases y» - y{0). Since ¢ reaches

its minimum at a = § and d¢/da is continuous, conclude that sgn dc/da = sgn a
for small a. It is easy to establish that dc/da > 0 for all a > 0 and

that dc/da < ¢ for sufficiently small a{ a < 0, lal! large), but mono-

tonicity of ¢ in a over all a < 0 has not been established.
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