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OPEN-LOOP AhTl FEEDBACK WDELS OF 
DYKAVIC OLIGOPOLY 

Until recently, most theoretical and empirical dynamic oligopoly models 

have been open loop, although such strategies are not subgame perfect. Sub- 

game perfect feedback models are more difficult to use. By comparing the 

paths and the steady-state equilibria of families of open-loop to subgame 

perfect feedback dynamic oligopoly models, we show where open-loop models 

are the same as feedback models and where they deviate substantially. 

This paper makes seven contributions to the literature. First, a new 

family of dynamic oligopoly models is presented that is related to a well- 

knotm family of static models. Second, for certain members of these families, 

the open-loop and feedback paths and steady states are shown to he identical 

I (or very close). Third, the feedback model is shotvn to imply more com- 

petitive behavior than does the open-loop model. Fourth, open-loop models 

are shown to converge more rapidly. Fifth, the difference between discrete 

time and continuous time models is demonstrated for tile family of oligopoly 

models. Sixth, the discrete time feedback model is used to show the depen- 

dence of "consistent conjectures" on the length of the period of commitment. 

Seventh, the effects of an increase in the number of firms or adjustment costs 

is determined. 

Fershtm~n and Xamien (1987) and Reynolds (1987) compare the steady states 

for a Nash-Cournot model for a fixed numher of firms." Our results differ 

since we study a family of oligopoly models, analyze both the adjustment paths 

and the steady states, and examine the effects of an increase in the number of 

f inns. 
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Dynamic models must be used where there are substantial adjustment costs 

in prices, training, or in capital accumulation, or where there is learning 

over time. iVe use a variation of the well-known solution to the open-loop and 

feedback linear-quadratic model (Starr and Ho, 1969) to capture these adjust- 

ment lags. As we show in a related empirical paper that estimates both the 

open-loop and feedback models developed here (Karp and Perloff, 19881, these 

adjustment factors are important in real world oligopolistic markets. In the 

presence of adjustment lags, firms have more strategic opportunities than in 

static models. 

The family of equilibria that we examine includes the collusive, price- 

taking, and Nash-Cournot models as special cases. The justification for 

including collusive and price-takjng behavior are obvious. The Kash-Cournot 

model also may be reasonably motivated. If there are discrete time periods 

(such as growing seasons) during which firms cannot vary their output levels, 

it is reasonable for a firm to make the Cournot assumption that its competi- 

tors cannot respond to changes in its output level within a time period. 

Nonetheless, firms can respond over time. 

Ke consider two possible \lays in which firms may react to each other in 

the long run. First, in an open-loop model, firms choose an initial set of 

strategies (output levels) and stick to that path. Firms do not expect to 

revise their strategies after an tlnexpected shock (such as bad weather) af- 

fects the output levels of various firms. This failare to anticipate rcvi- 

sion is generally irrational. Second, in a feedback inodel, firms react to 

each other over tine; this model is subpame perfect. 

The cpen-loop and feedback models are identical where firms col?iide or act 

as price takers. In other oli~opolistic ni.odels, such as where firms make the 



Nash-Cournot assumption within a period, the two models imply different 

adjustment paths and steady-state output levels, and the open-loop model is 

not subgame perfect. 

In addition to the Nash-Cournot open-loop and feedback models, there are 

many other dynamic oligopolistic games that produce outpr~t paths that lie 

between those of collusion and price taking. Rather than trying to explicitly 

model each of these games, we generalize our model to allow for intermediate 

paths and steady-state output. 

We use an index of behavioral assumptions by firms within a single time 

period to approximate these other games. This index is analogous to a con- 

jectural variation in a static game. In dynamic feedback models, however, 

such an interpretation is inappropriate. While this index is not the explicit 

outcome of a game, it allows us to easily approxipate a range of games. In 

particular, the collusive, price-taking, and Nash-Cournot models are obtained 

as special cases of this more general model. Ke treat this index as a single 

parameter but, more generally, it might be a function of exogenous variables. 3 

The first section describes the model. The second section demonstrates a 

method of nesting price-taking, collusion, Kash-Cournot, and other oligopoly 

models. The third section examines the steady states and trajectories. The 

following section uses the feedback model to examine static consistent con- 

jecture models. Fifth, the effects of increasing the number of firms or the 

adjustment costs are analyzed. Finally, a summary and conclusions are presented. 

1. Definitions and the Model 

lye start with a discrete time model in which the length of a period is 

E. !Is E + 0 ,  the contini~ous tine model is obtained. ?lost of the analysis 

is based on the continuous time model. 



The industry consists of n + 1 firms where n - > 1. At time t, firm i 

decides how much to produce in the current period q. or, equivalently, its 
1,t 

change in output, u. E = qi,t - qi,t-E. Since E is in units of time, u. 
1,t 1,t 

is a rate. Firm i incurs a quadratic cost of adjustment, 

and a quadratic cost of production, 

In period t, the demand curve facing Cirm i is 

Firm its revenue in period t is pi,t qi,t E .  Given an instantaneous interest 

rate of r, the one-period discount rate is e r E ,  and the objective of firm i is 

to maximize its discounted stream of profits, 

For simplicity, we set a. = a and assume 6 = 0 = 5 
I O,i 0,i' The last 

equality implies that adjustment costs are minimized when there is no adjust- 

ment. As a result, the steady-state levels of output in the open-loou, col- 

lusive, noncooperative gash-Cournot, and price-takin~ quilihria are equal to 

their static analogs, This equality holds for general cost and revenue func- 
1 -+ 

tions and not simply the quadratic ones assrimed here. 



The - ith firm's objective (2) is written in matrix form as 

where ei is the ith unit vector and e is a column vector of l's, Ki = 
I , 

b(e ei + ei el) + 0 e. e. (so K. is a matrix with b's- on,:che-ih,:roy and 
I 1  1 --"," ...., >,. ~ .... ~ ,.-.. -. ~ . ~ . .  

column except for the (i, i) element which is 2b + 8; all other elements are 
I 

01, and S. = ei ei 6. As E -+ 0 ,  this expression approaches 
I 

we assume that q. is unconstrained so that neeative sales are possible. 
l,t -0~. ,,.,...,., ?,. .... --- . . 

:Negative prices can be interpreted as ver?,low.pzices.. When prices fall below 
. ~ .  . .~ .  .. .., . . ~ ~, 

, .... ....,... ~, ' ~ ,  

a certain level, firms would prefer to be buyers rather than sellers; they must 

bear the adjustment cost to make the transition. 

Alternatively, the model can be interpreted as a standard investment 

problem in which q. is firm i's capacity, and sales lie in the interval 
I,t 

[ O ,  qi,t]. This interpretation requires additional assumptions. Provided 

that initial capacity lies within a certain range [an n + l dimensional set) 

that depends on the market structure, fimis will produce at capacity (for an 

example of the Kash-Cournot larket, see Reynolds, 1987). Given an initial. 

condition in this range, the open-loop and feedback solutions are as shorn 

helow. The reader can either adopt the literal interpretation or regard the 

model as the standard investment problem in tqhich the initial conditions are 

such that the capacity constraint is alv:ays hindiag. 



2. Two Families of Eqr~ilibria 

We consider two families of equilibria: open loop and feedback. kfembers 

of each family are indexed by a parameter v, which describes the behavioral 

assumption that determines the outcome. This parameter is defined by v = 

or i # j and all t. In a static model, v is a constant conjec- 

the same interpretation can be adopted, but that interpretation is inapplicable 
.................................. .... ...................... 

in the feedback game. \Ve adopt the neutral ..... descriptionof v as a player's be- ......... ..... ................. ......... .......... ................... 

havioral assumption. This assumption is taken as primitive and not explained - ...-- - .il-'--X 

by strategic considerations. 

This procedure is justified on pragmatic grounds: The model is useful in 

estimation (see Karp and Perloff, 1988). The leading cases where v = -l/n, 0, 

or 1 result in the price-taking, Nash-Cournot, and collusive (for identical 

firms) equilibria, respectively. The behavioral parameter v provides a 

measure of the closeness of the observed market to a particular ideal market. 

If v = -l/n, each firm acts as if it believes its rivals will exactly offset 

its o m  deviation from equilibrium. Since the good is homogeneous, the firm 

acts as a price taker. If v = 1 and firms are identical, each firm acts as if 

its rivals will punish it for deviating from the equilibrium by making equal 

changes in their orm output. This assumption is equivalent to a market- 

sharing agreement and leads to the collusive outcome. 

In the open-loop equilibrium, each player chooses a sequence of changes in 
... 

output, u. , using a particular behavioral assumption, v. -'The eqizilibrium 1,t ;-........ . -  ...... 
~, 

..-,; ', levels can he expressed-.in--feedback f o ~ ;  in this case, strate~ies are open 
' '  

: .. , ,  . . .  

... i loop witk.xevision. Revisions are tinanticipatei!. !!%en player chodse their 
, . . --.. 



current levels, they act as if they were also making unconditional choices 

regarding future levels. 

In the feedback equilibrium, players recognize that their future choices 

will be conditioned on the future state; players select control rules rather 

than levels. The feedback equilibrium is obtained by the simultaneous solution 

of the n + 1 dynamic programing equations 5 

I '  1 '  ~ ~ ( q ~ - ~ )  = max [(a e.' q - - q X. q - - u S. u - rc 
I t  i t 1 t  2 t 1 t  ) + e 

u- 
1,t 

where qt = 9t-E + ptc. The particular behavioral assumption, v, determines 

the control rule for player i and his value function, Ji(). 

!%%en v = 0, the result is the feedback Nash-Cournot game. Fershtman and 

Kamien (1987) and Reynolds (1987) show that the open-loop and feedback equi- 

libria differ in this case. \"en v = -l/n or v = 1, the open-loop and feedback 

equilibria are identical since, if players either take price as given or share 

the market in each period, it does not matter whether they choose levels or 

control rules. 

3. Steady States and Paths 

'The principal differences between the open-loop and feedback equilibria 

are smarized as: 

Remark 1. For v E (-l/n, 1) and for given symmetric initial output 

level qO, output at t is greater under the feedback eauilihriui~ 

than under the open-loop eituilihri~m; convergence to steady state i s  

faster in the latter case. For v = -l/n or I ,  t h e  trajectories and 



control rules are identical under feedback and open loop. Under both 

open-loop and feedback policies, output decreases in v. 

This remark is based on a combination of analytic and simulation results 

described below. The implication is that, for v€(-l/n, I ) ,  industry profits 

are higher (and social surplus lower) under the open-loop equilibria. That 

is, feedback strategies are relatively procompetitive. 

Feedback policies require knowledge of the current state (output of all 

firms in the previous period], so a possible policy conc1usion is that this 

information should be made available. However, this conclusion ignores the 

likelihood that the degree of collusion, measured by v, may increase as infor- 

mation is shared. Riordan (1985) models a dynamic oligopoly with stochastic 

demand where firm are unable to observe their rivals' output. Fie concludes 

that aggregate output is greater in this case than in the case where firms are 

able to observe their rivals' output. Riordan's model is quite different from 

the current one; nevertheless, the conflicting conclusions illustrate the 

difficulty of a general comparison of social ~~~~~~~~~e when firms do or do not 
: ,;. 
.' 

knoIq their rivals' output. / :.- : ' ;. - : i : : 5 

Under the Nash-Cournot assumptione(v = 01,  the open-loop equilibrium can 

be obtained as the solution to a control problem (Hansen, Epple, and Roberds, 

1985). Xot suprisingly, a control approach can he used for arbitrary v. We 

use this fact to simplify simulation of the open-loop game and to illustrate 

tire relationship between the feedback game and the control problem. To this 

end, consider the standard control problem: 



subject to 

q = u, q given, 0 

where K = kl eel + (kg - kl) I; that is, K is an (n + 1) w (n + I )  natrix with 

the parameter k0 on the principal diagonal and the parameter k elsewhere. In 1 

addition, K is positive-semidefinite and 6 > 0. 

i Define Qt as aggregate output at t, i = c, 0, f; the superscripts indicate 

the paths given by the solutions to the control problem and open-loop and 
" ...- .. 

feedhack games, respectivelv. Assume that the initial output is the sane for 

all firms, qo = (e OO)/(n + 11, for each of the three cases. Then Qt is 

the solution to 

The proofs of the following three propositions are based on comparison of 

i the systems of equations that define -yi and p . The details are contained in 

Appendix I. 

Proposition 1. A sufficient condition for the open-loop and feedback 

eauilibria to be identical is v = I (cartel kith synmetric firms) or 

v = -l/n (price takers). 

Based on simulation results reported below, this condition appears to he 

necessary. 

Proposition 2. Under the Sash-Cournot assumption, ou~tpat is srra?ler 

in the open-loop equilihriun, and converges to its steady s:ate nore 

rapidly than in the feedback eqi~ilihrii.im. 



This proposition implies that the feedback Kash-Cournot equilibrium is 

farther from the ~nonopoly solntion than is the open-loop ksh-Cournot equi- 

librium. In this context, the feedback solution is relatively procompeti- 

tive. Fershtman and Kamien (1987) and Reynolds (1987) compare steady-state 

values in open-loop and feedback equilibria. Proposition 2 generalizes their 

results by comparing the entire equilibrium path. The intuition is that, 

the feedback assumption, capacity discourages rivals' investment. Therefore, 

firms have a greater incentive to invest today as a means of preempting their 

rivals' future investment. Thus, they develop larger capacities and henc 

larger output levels. 

Since Proposition 1 provides a sufficient but not a necessary condition, 

we cannot prove that the comparison in Proposition 2 also holds for v f 0. 

Extensive simulation, however, supports the intuition that the result does 

hold for v # 0. Figure la graphs the feedback and open 

output as a function of v (using "base parameters" 

b = 5,  B = .95, ~1 = 1, 8 = 0). Figure lb shows the difference between open 

loop and feedback is largest when the market is nearly competitive (v = -.7 in 

the base case). These simulation results suggest that the assumption of open- 

loop strategies is less serious when the market lies between Sash-Cournot and 

collusive than when it lies between Xash-Cournot and competitive. 

To illustrate the relative rates of adjustment, we use a Xash-Cournot 

duopoly model. With the base parameters, the steady state for the Kash- 

Cournot open-loop model is 8.492, and the corresponding feedback steady-state 

oritpr~t is 9.087. That is, rillere 4 = 0 (marginal produc-i-ion cost, net of 

adjustment cost, is constant), the feedback steady state is 7 percent higher 

than the open-loop steady state. By choosing different parameter values for 

the open-loop and feedhack n~odels, the steadv states can he made equal .  For 
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example, if we use the base parameters and hold 0 = 0 in the open-loop model 

but set 0 = .7917 in the feedback model, both steady states equal 8.492. 

Thus, with a slightly different short-run marginal cost curve, the two models 

can produce the same steady state. 

These models can be distinguished empirically by determining the slope of 

the marginal cost curve, 8, or observing the adjustment paths. Table 1 

shows that, although the open-loop with 8 = 0 and the feedback model with 

8 = .7917 produce the same steady state, the feedback model adjusts more 

rapidly. In the first period, output in the feedback model is 1.6 percent 

higher than in the open-loop model. Kote this result on rates of adjustment 

does not contradict Proposition 2 since 0 differs between the two models 

here. 

To show the trajectories more clearly for the four leading models, 

Figure 2 increases 5 from the base level to 150. Figure 2 sho~vs how both 

the paths and the steady states vary with v and the type of strategy used. 

As noted above, the open-loop equilibrium can be obtained by solving a 

control problem: 

Proposition 3. Aggregate output in the open-loop equilibrium and 

the control problem are the same if and only if k,, + nkl = [2 + 

n(v + 111 b + 6. If kg = (2 + nv) b + 0 and kl = b, the levels of 

output for the two problems are the same even if the n + 1 firns have 

different initial levels of output. 

For the Qsh-Cournot case !v = O ) ,  Pronosition 3 has heen proved by 

:!ansen, Epple, and iioberds (1985).  For the price-taking case [ v  = -l/n), 

the integrand in (4) gives social surplus; this reproduces tile well-known 



Table 1 

Trajectories for Nash-Cournot Models 

Period Open Loop Feedback 
6 = 0  5 = .7917 
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result that the competitive equilibrium can be obtained by solving the social 

planner's problem. For the collusive case (v = 11, the control problem that 

matches the open-loop game has kg = ( 2  + n) b + 6, kl = h; whereas the control 

problem for the monopolist sets kg = 2h + 6, kl = 2b. Therefore, the collu- 

sive game gives rise to the monopoly solution only if all firms produce equal 

quantities. Analogously, in static games, a conjectural variation of one 

produces the monopoly solution only in a synnnetric equil.ibrium. 

Replacing the feedback game with a control problem requires knowing the 

solution to the game rather than merely the parameters of the game. Although 

of no computational assistance, the device is of interest for two reasons. 

First, it leads to the recognition that the feedback equilibrium with a homo- 

geneous good is observationally equivalent to a particular open-loop game with 

heterogeneous goods.' This equivalence has obvious econometric implications 

(Karp and Perloff, 1988). 

Second, the device provides some intuition about why it is difficult to 

prove the feedback game is stable. Given the solr~tion to the feedback game, 

it is possible to construct a K matrix such that the steady-state control rule 

of the resulting control problem is equal to the control rule of the game. 

However, the k' matrix need not be positive definite, which violates one of the 

sufficiency conditions used to prove stahility in the control probleni. Details 

of this argument are provided in Appendix 11. 

4. Consistent Conjectures 

Ke remarked above that the parameter v could he interpreted as a con- 

jectural variation and that the more neutral description of "behavioral 

assumption" was adopted to e:~phasize that v is intended to describe, not 



explain, an observed eqr~ilibritim. If, however, one wishes to interpret as a 

conjectural variation, it is natural to ask if it can be made endogenous, as 

has been done in static games, by imposing consistency on the conjectures 

(Laitner, 1980; Eresnahan, 1981; Kamien and Schwartz, 1983; and Perry, 1982). 

In the static models, players with consistent beliefs are correct about both 

levels and the slopes of reaction funcrions in equilibrium. The same pro- 

cedure can be applied directly to open-loop games because they are essentially 

static. 

The interpretation in the feedback game is slightly different. kt the 

beginning of a period of length E, players anticipate an equilibrium in the 

current period that depends on lagged quantities; they expect that any devia- 

tion from this equilibrium will be met by an instantaneous response from their 

rivals. If the conjectural response is optimal (to a first-order approxima- 

tion), then conjectures are said to be consistent. 

The following proposition states the dependence of the consistent conjec- 

tural variation on E, the length of each period. 

Proposition 4. In the discrete time feedback game, the consistent 

conjecture depends on €--the length of time between decisions. As 

E + 0, the consistent conjecture goes to 0. .As E + -, the game 

becomes static; if 6 = 0, that model reduces to the case of linear 

demand and constant marginal cost discussed by Rresnahan (1981), 

where the consistent conjecture is -l/n. 

The proof is in Appendix I. 



The proposition shows that, even within the confines of this very restric- 

tive model, any constant conjecture between 0 and -l/n is consistent depending 

on the length of time between adjustments. A static model favors the price- 

taking solution, tihile a model that permits continuous adjustment favors the 

Nash-Cournot solution. 

The intuition for this result is based on the dynamic programming 

equation (2). A change in u. (from equilibrium), say, Au ., results in a change 
3 3 

in q .  of ~U.E. Agent i's loss from a failure to respond to a change in u. 
3 I 1 

consists of two components: the reduction of his profits in the current period 

and the present value of the loss of finding himself with a suboptimal q. in 
1 

the subsequent period. Both of these components depend on AU.E and on E 
3 

directly, since the current period's profits are a flow of profits times E 

- rc and next period's value function is discounted by e . iilien E is large, for 

given Ju., the first component dominates; and it is clear that agent i can 
J 

suffer a substantial loss from not responding to a change in u.. That is, 
3 

it pays to respond, so the slope of its reaction ft~nction and, hence, the 

value of j's consistent conjecture should be large in absolute value. When 

E is small, a given Au. has a negligible effect on its payoff and can essen- 
3 

tially be ignored, so the consistent conjecture is small. 

In view of Proposition 4, it is not surprising that, for given 

v E: (-l/n, 11, the equilibrium output depends on E in the feedback game; 

output is independent of E for the open-loop game. Consider, for example, 

the Nash-Cournot case where v = 0. [Jnder the feedback model, a firm expects 

its rivals to react to its current decision only after an interval of ;. 
- 

Its current decision, therefore, depends an E. bor the open-loop model, a 

firm expects no response on :lie ?art of its rivals (for v = 01, and the 



equilibrium is, therefore, independent of E. For the base parameters with 

v = 0, when t- goes from 1 (yearly adjustnent) to .25 (quarterly adjustment), 

steady-state feedback output increases 5 percent. When E decreases from 1 

to .083 (monthly adjustment), steady-state feedback output increases by 7 

percent. The tendency for steady-state output to decrease in E (for v = 0) 

held throughout the simulations. This tendency is consistent with Reinganum 

and Stokey's (1985) observation on the importance of the period of commitment 

in dynamic games. 

5 .  Yumber of Firms and Adjustment Costs 

As the number of firms, n + 1, increases, the equilibrium trajectories 

change. Bv setting t) = 0 and normalizing so that 6 = in + 1) c where 

c > 0 is constant, the price-taking and collusive equilibria are invariant 

to n. .As n becomes large, the adjustment cost for each firm becomes infinite 

so each firm makes only infinitesimal adjustments and thus captures only an 

infinitesimal share of the market. Thus: 

Proposition 5. Given 13 = 0 and the normalization 6 = (n + 1) c, 

the open-loop and feedback Nash-Cournot converge to the competitive 

equilibrium as n + m. 

This proposition can be proven by examining the equations that determine 

the stationary control rules. The following argiwent provides a heuristic 

proof. From Proposition 2, the open-loop and feedback equilibria are iden- 

tical for v = -1in which goes to 0 as n + =. The open-loop model is a 

static sane for which it is well knotin that the msh-Cournot equilibrium 

converFes to the competitive eqtiilihriu~a as n + -. 



Table 2 shows the effects of an increase in the number of firms for the 

base case on the steady-state output in the Nash-Cournot model using the 

normalization that 6 = c(n + 1). The Nash feedback output increases more 

rapidly than does the Nash open-loop output as the ntrmher of firms increases. 

Reynolds (1987) shows that, as 6 + 0, the open-loop and feedback 

Nash-Cournot models do not converge. Proposition 5 shows that, as both 6 

and the number of firms go to infinity, the two steady states do converge. 

Simulation results show that increasing 6 while holding n constant causes 

the steady-state feedback output to increase. Pis mentioned above, the steady- 

state output under the open-loop model is independent of 6 due to the as- 

smption that adjustment costs are minimized %hen adjustment is 0. Recall the 

intuition for Proposition 2: In the feedback game, current investment serves 

as a deterrent to rivals' future investment but increases output. This deter- 

rence is enhanced the greater the adjustment cost. A larger adjustment cost 

moves the feedback steady state farther from the open-loop steady state. A 

larger value of 6 also makes it more costly to invest in deterrence (if 

current output lies below the steady state), which works against the first 

effect. The net effect on the Sash-Cournot feedback steady state in this 

example is small: Increasing S by 400 percent in the base case causes the 

steady-state output to increase by 2.5 percent. 

6. Summary and Conclusions 

Since feedback models are difficult to use, many researchers have relied 

on open-loop rode1s. Our analysis indicates that if behavior is "close" to 

price taking or collusive, then the trajectories and steady states will be 

very sin.ilar to those o f  the feedhack model. !$lien oligopolists are not 



Table 2 

The Ef fec t  of Increasing t h e  Nrmber o f  
Firms on 'Industry Outputa 

I'tnnber of Nash-Cournot 
f i rms  (n + 1 )  Tipen Loop Feedhack 

1 
(monopoly) 12.74 12.74 

m 

( p r i c e  t a k e r s )  25.48 25.48 



cooperative or price takers, both the paths and the steady states differ. The 

difference between the two models, in our simulations, were greater Eor more 

competitive behavior than for more collusive behavior. The feedback model 

implies more competitive behavior and slower adjustment in general. 

Based on the subgame perfect feedback model, constant marginal (production) 

costs, and linear demand, the consistent conjectures model depends on the 

length of time periods. As these become shorter, the consistent conjecture is 

tile Nash-Cournot. As they become longer and the game becomes static, the 

consistent conjectures approach price taking as predicted in the static model 

1 iterature. 

Increasing the number of firms, of course, leads to more competitive 

behavior. Increasing the adjustment costs increases the hash-Cournot 

steady-state output slightly. 



Appendix I 

Proof of Propositions 

i We show that p , i = c ,  o, f, is the negative root of 

C 
(pC12 - r6 0 - 6(k0 + n kl) = 0 ( A 1  . l a )  

where 

2 
d v )  E -[npl(l - 2 2 n v )  + n  p l  "1 + n v  - 

i o1 and z are defined below. The parameters y are given by 

and 

where 

A 

nip,! + nvz)  h [i - v ) ( l  + nv) 
$(i?) f , 6 

and h is defined below. 



The Control Problem 

The maximized value of (3 )  i s  

where y and h a r e  s c a l a r s  and H is a matr ix with o o  on t h e  p r i n c i p a l  diagonal 

and p I  elsewhere. The con t ro l  r u l e  is: 

I 
u = -;(he b + H q ) .  (A1.3) 

The a lgebra ic  R i c a t t i  system is:  

-r6H = 6K - HH 

rhhe = 6ae + Weh. 

Writing these  i n  terms of t h e  t h r e e  unknowns, p o ,  pl ,  and h g i v e s  

Define p C 
= Po + n P I ,  Y = (n  + 1) h.  Multiply (A1.4b) hy n and add t o  

( 4 I . 4 a )  t o  ob ta in  iAI . la ) ;  ( A 1 . 4 ~ )  implies (AT.2a). 



The Open-Loop Game 

Define Ti c as a column vector with 1 in the - ith position and v in 

every other position; player i behaves as if au/aui = V. and his objective is 
I 

to maximize (lb) . The open-loop current value Haniltonian, rvi, is : 

where Xi is i's shadow value of the state q. The necessary conditions for 

an interior solution are: 

The first-order conditions (AI.Sa, b) are obtained as the limiting form, as 

E - O ,  of the first-order conditions to the discrete open-loop problem. Try 

a solution of the form, A. = h. + H.q; for a steady-state control rule, h. = 
1 1 I 1 

H. = 0 for all i. "Guess" that Hi is a matrix with I-Ii(i, i) = po, I-[.(i, j) = 
I 1 

cl, Hi(j, i) = il for all j # i, and Hick, s) = z for all k, s # i ;  hi is an 
* 

n - 1 c o l m  vector with hi(i) = h, hi(j) = h for all j # i. Certain symbols, 

such as pO, and h, were used to describe the control problem. The dupli- 

cation is intended to emphasize the similarity of the various problems. Xote 

that i i .  is asynmetric. 
1 

Solve (-41.5a) to obtain 

.. r 1 
n + nvh 1 ! 

i! . = 
I d 
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Stack up the n + 1 necessary conditions of the form (A1.5~) to mite u = ,. A 

(h* + H*q)/G where h* = (h + nvh) e and H * ( i ,  i )  = p + nvpl, iIR(2, s) = 0 

o1 + nvz, for all 2 # s. Substitute this solution into (AI.Sb) together with 

H. = 0 = h. to obtain the system 
1 1 

-r67:FTi = Y~(GK. - FI. H*) 
1 1  1 

A 

p0 + 
O~ + nvz, and h + nv$: 

A 2 2 -r&(PO + nvp,,) = 6 [ ( 2  + nv) b + 6 1  - (pO + nvpl) - n(pI + nvz) , ( ~ 1 . h )  

and ,. 
(h + nvh) = a6 

A 2 .  (A1 .6c) 
( 6  - p0 - nviI - 6 - n vz )  

Define 2 = p0 + nvGl + wi + n vz. Multiply (AI.6b) by n and add to (AI.6a) 
A 

to obtain fA1.lb). Define yo = (n + 1) (h + nvh) to obtain (AI.2b). Propo- 

sition 3 fcllows from inspection of the control rules ( tZT.3)  and (A1.5~) and 

comparison of 1 and (AI .6 ) .  

The Feedback Game 

The stationary dpamic programing equation For player i is 



The parentheses on the left side gives Ji(q), i's value function. The 

necessary condition for an interior maximum is 

1 ui = -(h. + H. q)' 7.. 
6 1 1 1 

(A1 '7) 

Substitute (AT. 7) into the dynamic programming equation and equate coeffi- 

cients to obtain the system 

- -1 
j in+l \ 

0 = r 6 H i + G K .  + H .  v. v. H. - H .  H -  C H.V.e:;H. 
1 1 1 1 1  1 \ j=1 3 I I,, jjzl 3 3 ;  ,I 1 

Try a solution of the form Hi(i, i) = po, Hi(i, j) = Hi( j, i) = pl for j # i, 

and Hi(s, t) = z for s # i, k # i; hi(i) = h, hi(j) = f~ for j # i. Substitut- 

ing this trial solution into the above system results in 

2 2 2 0 = r6pl + Gb - nvpl - (n - 1) pl - ?pl po + [(nv) 
pl 

(AT. 8b) 
2 - (n - 1) nvpl - npl - n "1 Z ,  

and 



,. A * 

0 = -r&h + (h + nvh) nz(l - v) + (pO + nplv) h 

+ fpl + nzv) [h + [n - 1) h]. 

This derivation of system (AI.8) implicitly assumes that stationary 

control rules exist. This was not at issue for the three leading open-loop 

equilibria. In those cases the equilibrium trajectory could be generated by a 

control problem in which K, the metric on the state, was positive semidefinite 

(positive definite except where 8 = 0 and the market was either collusive or 

price taking, in which oases kg = kl). Standard results ensure the sta- 

bility of the Ricatti system and of the system given by ( 4 )  under these condi- 

tions. Similar results for the feedback game have, to our knowledge, not been 

obtained. 

System (AI.8) sets the vector of time derivatives (iO, jl, i)' equal to 0. 

A necessary and sufficient condition for the system to be locally stable, and 

thus a necessary condition for the existence of a stationary feedback control 

rule, is that the real parts of the characteristic roots of the Jacobian of 

(AI.8), evaluated at the steadv state, be positive (recall that the system is 

solved backward in time). 

To ensure that comparison between open-loop and feedback equilibria are 

meaningful, we make two further assumptions. 

Assumption 1. Stationary feedback rules exist; i .e., the system, -(iO, 

@I' , is stable, 

Assm~tion 2. The vector 4, generated by the eyililibriin feedback 

rules, converges for arbitrary o0. 



2 Define pf = p0 + n(1 + 17) pl + n vz. Vultiply (AI.8b) and (A1.8~) by 
7 

n(l + v) and n-v, respectively, and add to (AI.8a) to obtain (A1.l~). 
A 

Define yf = (n + 1) (h + nvh). Multiply (A1.W) by nv and add to (A1.9a) 

to obtain (111.2~). 

Proposition 1 follows immediately from comparison of (AI.lb) and (AI.lc), 

of (i\I.Zb) and (AI.Zc), and from the fact that q(v) = @(v) = 0 for v = 

-l/n or v = 1. 

We show that 

This inequality, together with (AI.lb) and (A1.1~) and (A1.2b) and (AI.Zc), 

and the definition of 9' and pf establish Proposition 2. 

We first establish that F,,(?~ + nz) > O SO that q(0) < 0; then comparison 

of (AI.lb) and (A1.1~) implies p' < pf < 0. First, note that pl < 0. To 
7 

verify this inequality, use the facts that arJ./(aq. aq .) = Q i # i, and 
1 1 3  1' - - 2 

aL~./;iqi = p0 where J.(q) was defined as agent its value function. Define 
I 1 

Gi(q.) as the optimal (for agent i) initial condition for qi given q.. There- 
J I 

fore, dG./dq. = -p /p By .Issumption 2 and equation (AI.71, pO c 0. Suppose 
1 3  1 0' 

p > 0; this implies that an increase in the initial level of q. would cause 
1 3 

agent i to hant to begin with a higher level of sales. tio~~ever, for large 

enough q., price is negative and it is clear that agent i would prefer to 
3 

begin iqith a lower level of q i ;  hence, p c 0 as stated. 1 

It is now necessary to show that p + nz < 0 .  Solve (A1.8~) with v = 0 to 1 
7 

ohtair! z = p;/[r& - Zoo - 2(n - 1 )  so p + nz = ;, [r6 - 2p0 - (n - 2) 1 1 

ir6 - is - Zjn - 1 )  c,]. Tine denominator is ohvious1~- positive, and Tor 0 A 

n - > 2 rhe numerator is clearly negative. For- rt = 1, use Assrnnption Z and 
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equation (41.10) to obtain p i  - p: > 0. Since p 
1' ?0 c 0 ,  this implies 

po < pI, which implies r6 - 2p 0 + 
> 0. Therefore, pI + nz < 0 for all 

n, and ~(0) < 0 as stated. 

To conplete the proof, rerqrite (AI.9) for v = 0 as 

A 

Using previous results, all elements of this matrix are positive so h and h 

must have the opposite sign. 

To establish the second inequality in (AI.101, we need only show < 0. 

1Jse (A1.9al and (AI.9b) and the results of the previous paragraph to verify 

that h and 11 must have the opposite sign. Since h = 3Ji(0)/3qi, h  ̂ = 8Ji(0)/8q. 
A 3 '  

j # i, h < 0 < h isould imply that, if all agents begin the game with 0 sales 

so that initial price is positive, agent i would prefer to begin with negative 

sales and have his rival(s1 begin with positive sales. Since this must be 

false, we conclude h > 0 > h, so @(0)  > 0, completing the proof of 

Proposition 2. 

To prove Proposition 4, write the first-order condition to player i's 

discrete tire dynamic programing problem as 

Si z e -YE( ( h i  + H a )  + (ae. - K i q )  E 
1 I 



The consistent conjecture is obtained by differentiating i's first-order 

condition with respect to u. using aui/au. = v and setting the result to 0: 
-1 

J J 
v .  C .  T. = 0. \\'hen E = 0, this expression reduces to -v 6 = 0 which implies 
1 1 1  1 

v = 0. For E = 0, the condition for consistency of conjectures can be 

mitten as 

which requires 

, 
If this equation holds in the limit as E -+ -, it is necessary thatTi K. i .  E 

- 1 1  

1 + (n + 1) v + nv2 = 0, which requires that v = -l/n or v = -1. Since v = -1 

for n < 1 results in negative profits, it must be the case that v = -l/n. 

This result is identical to Bresnahan's (1981) static result. 



Appendix I1 

Relation Between the Feedback Game and a Control Problem 

We illustrate the relation between the feedback game and a control problem 

using a Kash-Cournot (v = 0) duopoly (n = 1). Let and solve (41.8) 

Define 

and 

Specializing the control problem given in (3) by setting kg = Zbl + 6, 
A 

kl = b2 !and replacing a by a + p h/6 > a) duplicates aggregate quantity in 1 
the Xash-Cournot feedback trajectory. This result is true even if the initial 

levels of output vary across firms. The feedback game with a homogeneous good 

is equivalent to an open-loop game witti hetergeneous goods. 

The static problem provides some intuition here. Consider the two static 

Xash-Cournot duopolies. 

If the players are symetric in both games and Q. is aggregate output in game 
1 

i, then 0 < t22 if and only if 3b > Zb 1 + h 2 '  It can he shown :!?at hl an2 \! 

h defined above, satisfy this inequality. 2' 



Now consider two control problems with, respectively, 

/2b + 6 
and 

/ 2bl + 6 " \ 1 
\ b 2b + 6 2 2bl + 6 

as metrics on the state q. Given the same price intercept, a, aggregate 
A 

oritput in the second control problem is larger. (Charging a to a + pl h/6 

strengthens the conclusion. 

To see why the feedback game may not be stable, recall that the positive 

semidefiniteness of K is one of the set of sufficient conditions for the con- 

trol problem given by (3) to be stable e .  for the Ricatti differential 

equations to converge to the stationary values). For b > 0, 6 - > 0 ,  XI 

(defined above) is always positive definite. However, there is apparently 

no guarantee that K is positive semidefinite. As a result, sufficient 2 

conditions for the feedback game to be stable may or may not be lulfilled. 



Footnotes 

lFudenberg, Levine, and Srivastava (1984) give other types of conditions 

under which the open-loop and feedback equilibria are approximately the same 

with many players. 

'~0th Fershtman and Kamien (1987) and Reynolds (1987) use dynamic 

linear-quadratic models. Hansen, Epple, and Roberds (1985) also use the 

dynamic linear quadratic model to study various open-loop models as well as 

the open-loop and feedback Stackelberg model. They do not compare the open- 

loop and feedback in symmetric firm markets, which is the focus of this paper. 

Van der Ploeg (1987) compares the steady states in a natural resources setting 

with general functional forms. 

3.~n analogous approach is used by Gallop and Roberts (1979) in a static 

model. 

4~readway (1970) shows that the comparative statics of the steady state 

of cost-of-adjustment models differ from those of the "corresponding" static 

model. In a similar vein, Reynolds (1987) finds that the output under static 

Sash-Conrnot and at the steady state of the open-loop dynamic Nash-Cournot 

models are different. However, under the assumption that adjustment costs are 

minimized %hen adjustment is 0 (i.e., at the steady state), these results no 

longer hold. This assumption seems reasonable if the objective is to compare 

the various dynamic models with their static analogs. 

'~t is well known that, for indefinite horizon games, there tvpicallv 

exist many equilibria even rszhen these are required to he subgame perfect. Ne 

avoid the aroblem of nonuniquoness by considering the equilibrirnn strategies 

that result from the game with finite horizon T and letting T + rn. 



2 .. .:. 
: I 

.. ,:.  his statement is actually too strong. Suppose that the game were 

completely stationary and firms completely symmetric so that it was practical 

to impose the restrictions implied by the constant part of the control rules. 

In that case the slope coefficients of the control rules of a homogeneous firm 

game with feedback strategies would be the same as the slope coefficients of 

the rules of a heterogeneous (but symmetric) firm game with open-loop strate- 

aies; but the intercepts would he different so the two could still be distin- 0 

wished. However, for the econometric work, we do not wish to impose the D 

restrictions on the intercepts of the control rules, so that nonstationarity 


