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OPEN-LOOP AND FEEDBACK MODELS OF
DYNAMIC OLIGOPOLY

Until recently, most theoretical and empirical dynamic oligopoly models
have been open loop, although such strategies are not subgame perfect. Sub-
game perfect feedback models are more difficult to use. By comparing the
paths and the steady-state equilibria of families of open-loop to subgame
perfect feedback dynamic oligopoly models, we show where open-loop models
are the same as feedback models and where they deviate substantially.

This paper makes seven contributions to the literature. First, a new
family of dynamic oligopoly models is presented that is related to a well-
known family of static models. Second, for certain members of these families,
the open-loop and feedback paths and steady states are shown to be identical
{or very close).1 Third, the feedback model is shown to imply more com-
petitive behavior than does the open-loop model. Fourth, open-loop models
are shown to converge more rapidly. TFifth, the difference between discrete
time and continuous time models is demonstrated for the family of oligopoly
models, Sixth, the discrete time feedback model is used to show the depen-
dence of "consistent conjectures' on the length of the period of commitment.
Seventh, the effects of an increase in the number of firms or adjustment costs
is determined. |

Fershtman and XKamien [1987) and Reynolds {1987) compare the steady states
for a Nash-Cournot model for a fixed number of Eirms.z Our results differ
since we study a family of oligopoly models, analyze both the adjustment paths
and the steady states, and examine the effects of an increase in the number of

firms.
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Dynamic models must be used where there are substantial adjustment costs
in prices, training, or in capital accumulation, or where there is learning
over time. We use a variation of the well-known solution to the open-loop and
feedback linear-quadratic model {Starr and Ho, 1969) to capture these adjust-
ment lags. As we show in a related empirical paper that estimates both the
open-loop and feedback models developed here (Karp and Perloff, 1988), these
adiustment factors are important in real world oligopolistic markets. In the
presence of adjustment lags, firms have more strategic opportunities than in
static models.

The family of equilibria that we examine includes the collusive, price-
taking, and Nash-Cournot models as special cases. The justification for
including cellusive and price-taking behavior are obvicus. The Nash-Cournot
model also may be reasonably motivated. If there are discrete time periods
(such as growing seasons)} during which firms cannot vary their output levels,
it is reascnable for a firm to make the Cournmot assumption that its competi-
tors cannot respond to changes in its output level within a time period.
Nonetheless, firms can respond over time,

ve consider two possible ways in which firms may react to each other in
the long run. First, in an open-loop model, firms choose an initial set of
strategies (output levels) and stick to that path. Firms do not expect to
revise their strategies after an unexpected shock (such as bad weather) af-
fects the output levels of various firms, This failure to anticipate revi-
sion is generally irrational. Second, in a feedback model, firms react to
each other over time; this model is subgame perfect.

The open-loop and feedback models are identical where firms collude or act

as price takers. In other oligopolistic models, such as where firms make the
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Nash-Cournot assumption within a pericd, the two models imply different
" adjustment paths and steady-state output levels, and the open-loop model is
not subgame perfect.

In addition to the Nash-Cournot open-loop and feedback models, there are
many other dynamic oligopolistic games that produce output paths that lie
between those of collusion and price taking. Rather than trying to explicitly
model each of these games, we generalize our model to allow for intermediate
paths and steady-state output.

We use an index of behavioral assumptions by firms within a single time
period to approximate these other games. This index is analogous to a con-
jectural variation in a static game. In dynamic feedback models, however,
such an interpretation is inappropriate. While this index is not the explicit
outcome of a game, it alliows us to easily approximate a range of games. In
particular, the collusive, price-taking, and Nash-Cournot models are obtained
as special cases of this more general model. We treat this index as a single
parameter but, more generally, it might be a function of exogenous Variables.3

The first section describes the model. The second section demonstrates a
method of nesting price-taking, collusion, Nash-Cournot, and other cligopoly
models. ‘The third section examines the steady states and trajectories. The
following section uses the feedback model to examine static consistent con-
jecture models. Fifth, the effects of increasing the number of firms or the

adjustment costs are analyzed. Finally, a summary and conclusions are presented.

1. Definitions and the Model

We start with a discrete time model in which the length of a period is
e. As € » 0, the continuocus time model is obtained. Most of the analysis

is hased on the continuous time model.
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The industry consists of n + 1 firms where n > 1. At time t, firm i

or, equivalently, its

decides how much to produce in the current period a; ¢
3

change in output, u Since € 1s in units of time, u,

. £ = (., - q. .
1,t qi,t ql,t~€ i,t

is a rate. Firm 1 incurs a cuadratic cost of adjustment,
/ u,
{80 o + 6 l’t\\ u. £,
\ 0,1 Z J i,t

and a quadratic cost of production,

it (1)

Firm i's revenue in period t is Pi ¢ A3 ¢ €~ Given an instantaneous interest
b >

- - . -TE . . . PR

rate of v, the one-period discount rate is e T , and the objective of firm i is

to maximize its discounted stream of profits,

1,1

~r(t-1)e 8 / 7
e | (pi,t "% 7 %,t) %t o, v 8T Uit

e u. 1
E %

t=1

|

For simplicity, we set a; =a and assume 8y 5 = 0 =28 The last
»

0,17
equality implies that adjustment costs are minimized when there is no adjust-
ment, As a result, the steady-state levels of output in the open-loop, col-

lusive, noncooperative Nash-Cournot, and price-taking equilibria are equal to

their static analogs. This equality holds for general cost and revenue func-

3
tions and not simply the guadratic ones assumed here.”
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where e. is the ith unit vector and e is a column vector of 1's, Ki =
N | 1 ' '
ble e + e e') + 8 e; e; {so K; is a matrix with b's on the ith:row and
colum except for the (i, i) element which is 2b + 8; all other elements are

T

0), and S, =e; e 8. As e~ 0, this expression approaches

dt. (2b)

%a certain level, firms would prefer to be buyers rather than sellers; they must
gﬁééfm¥ﬁé adjustment cost to make the transition.

Alternativelv, the model can be interpreted as a standard investment
preblem in which % ¢ is firm i's capacity, and sales lie in the interval
fo, qi,t}‘ This iﬁterpretation requires additional assumptions. Provided
that initial capacity lies within a certain range {an n + 1 dimensional set}

that depends on the market structure, firms will produce at capacity (for an

example of the Nash-Cournot market, see Revnolds, 1987}. Given an initial
condition in this range, the open-loop and feedback solutions are as shown
helow. The reader can cither adopt the literal interpretation or regard the

model as the standard investment problem in which the initial conditions are

such that the capacity constraint is alwavs hinding.



2. Two Families of Eguilibria

We consider two families of equilibria: open loop and feedback. Members

of each family are indexed by a parameter v, which describes the behavioral

assumptioﬂ that determines the outcome. This parameter is defined by v =

dﬂ

i t/a . for i# jeand all t. In a static model, v is a constant conjec-

tural varlatlon. Slnce the epen loop game is equzvalent to a static problem,

the same znterpretatlon can, be adopted but that 1nterpretat10n is inapplicable

in the feedback game. We adopt the neutral description of v as a player s be—

havieral assumption. This assumption is taken as primitive and not explazned

g
e St ettt s

by strategic considerations.

This procedure is justified on pragmatic grounds: The model is useful in
estimation (see Karp and Perloff, 1988). The leading cases where v = -1/n, 0,
or 1 result in the price-taking, Nash-Cournot, and collusive (for identical
firms) equilibria, respectively. The behavioral parameter v provides a
measure of the closeness of the cbserved market to a particular ideal market.
If v = -1/n, each firm acts as if it believes its rivals will exactly offset
its own deviation from equilibrium. Since the good is homogeneous, the firm
acts as a price taker. If v = 1 and firms are identical, each firm acts as if
its rivals will punish it for deviating from the equilibrium by making equal
changes in their own cutput. This assumption is equivalent to a market-
sharing agreement and leads to the collusive cutcome.

In the open-loop equilibriwm, each plaver chooses a sequence of changes in

cutput, Ui ¢ using a particular behavioral assumption, v. Tha equllzhrium

p—

leveis can be expressed-in feedback form; in this case, s*rateszes are open

: anp with.revision. Revisions are unanticinated. when players chodse their



current levels, they act as if they were also making unconditional choices
© regarding future levels.

In the feedback equilibrium, players recognize that their future choices
will be conditioned on the future state; players select control rules rather

than levels. The feedback equilibrium is obtained by the simultaneous solution

of the n + 1 dynamic programming equationss
J( );max{aef —iYK "-}—G'S U)E*‘E’f‘raj{ )-} (3)
it 7T [ 1% T 7% N % T T Y %)
i,t

*UeE. The particular behavioral assumption, v, determines
the control rule for player i and his value function, Ji().

When v = 0, the result is the feedback Nash-Cournot game, Fershtman and
Kamien (1987) and Reynolds (1987) show that the open-loop and feedback equi-
libria differ in this case. When v = -1/n or v = 1, the open-loop and feedback
equilibria are identical since, if players either take price as given or share
the market in each period, it does not matter whether they choose levels or

contrel rules.

3. Steady States and Paths

The principal differences between the open-loop and feedback equilibria

are summarized as:

Remark 1. For v € (-1/n, 1) and for given symmetric initial output
level Gy, output at t is greater under the feedback eguilibrium
than under the open-loop equilibriam;’tbnvérgence to steady state is

faster in the latter case. For v = -1/n or 1, the trajectories and



-8-

control rules are identical under feedback and eopen loop. Under both

open-1loop and feedback policies, output decreases in v,

This remark is based on a combination of analytic and simulation results
described below. The implication is that, for vée{-1/n, 1}, industry profits
are higher (and social surplus lower) under the open-loop equilibria. That
is, feedback strategies are relatively procompetitive.

Feedback policies require knowledge of the current state {output of all
firms in the previous period)}, so a possible policy conclusion is that this
information should be made available. However, this conclusion ignores the
likelihood that the degree of collusion, measured by v, may increase as infor-
mation is shared. Riordan {1985) models a dynamic oligopoly with stochastic
demand where firms are unable to observe their rivals' output. He concludes
that aggregate output is greater in this case than in the case where firms are
able to observe their rivals' cutput. Riordan's model is quite different from
the current one; nevertheless, the conflicting conclusicns illustrate the
difficulty of a general comparison of social welfare when firms do or do not
know their rivals' output. 5*?‘§3*’% i%

Under the Nash-Cournot assumption”fv = (), the open-loop equilibrium can
be obtained as the solution to a control problem (Hansen, Epple, and Roberds,
1985). Not suprisingly, a control approach can be used for arbitrary v. We
use this fact to simplify simulation of the open-loop game and to illustrate
the relationship hetween the feedback game and the control problem. To this

end, consider the standard control problem:

.
J{q) = max fz emrt% ae' g - %'Q’ Kg “'% u' u gdt (4)
uwo L -



subject to

q = U, qO given,

the parameter_kongn the principal diagonal and the parameter k1 elsewhere. In

addition, K is positive-semidefinite and § > 0.

Define Qé as aggregate output at t, i = ¢, 0, f; the superscripts indicate

the paths given by the sclutions to the control problem and open-locp and
feedback games, respectively. Assume that the initial ocutput is the same for
all firms, q, = (e QO)/(n + 1}, for each of the three cases. Then Q, is

the sclution to

0 =Yi+ oiQi/’é. - (%)

The proots of the following three propositions are based on comparison of
the systems of equations that define v' and p'. The details are contained in

Appendix I.

Proposition 1. A sufficient condition for the cpen-loop and feedback

equilibria to be identical is v = 1 (cartel with symmetric firms) or

v = -1/n {price takers).

Based on simulation results reported below, this condition appears to be

necessary.

Propesition 2. Under the Nash-Cournct assumption, output is smaller

in the open-loop equilibrium and convergzes to its steady state more

rapidly than in the feedback equilihrium,
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This proposition implies that the feedback Nash-Cournot equilibrium is
- farther from the menopoly solution than is the open-loop Nash-Cournot equi-
librium. In this context, the feedback sclution is relatively procompeti-
tive. Fershtman and Kamien (1987) and Reynolds {1987} compare steady-state
values in open-loop and feedback equilibria., Proposition 2 generalizes their
results by comparing the entire equilibrium path. The intuition is that, uﬁaé%
the feedback assumption, capacity discourages rivals' investment. Therefore, ;‘Af

firms have a greater incentive to invest today as a means of preempting their:

rivals' future investment. Thus, they develop larger capacities and hencﬁwwﬂfd

larger output levels.
Since Proposition 1 provides a sufficient but not a necessary condition,
we cannet prove that the comparisen in Proposition 2 also holds for v # 0.

Extensive simulation, however, supports the intuition that the result does

hold for v # 0. Figure la graphs the feedback and open-loop steady~statew{

]

§=5,8= .95, ¢=1, 8 =0). Figure 1b shows the difference between cpen
loop and feedback is largest when the market is nearly competitive (v = -.7 in
the base case}. These simulation results suggest that the assumption of cpen-
loop strategies is less serious when the market lies between Nash-Cournot and
collusive than when it lies between Nash-Cournot and competitive.

To illustrate the relative rates of adjustment, we use g Nash-Cournot
duopoly model. With the base parameters, the steady state for the Nash-
Cournot open-loop model is 8.492, and the corresponding feedback steady-state

output is 9.087. That is, where 8 = 0 (marginal production cost, net of

adjustment cost, is constant}, the feedback steady state is 7 percent higher
than the open-loop steady state. By choosing different parameter values for

the open-loop and feedback models, the steady states can be made egual. For
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example, if we use the base parameters and hold 8 = 0 in the open-loop model
- but set § = ,7917 in the feedback model, both steady states egual 8.492.
Thus, with a slightly different short-run marginal cost curve, the two models
can produce the same steady state.

These models can be distinguished empirically by determining the slope of
the marginal cost curve, 0, or observing the adjustment paths. Table 1
shows that, although the open-loop with 6 = 0 and the feedback model with
9 = ,7917 produce the same steady state, the feedback model adjusts more
rapidly. In the first period, output in the feedback model is 1.6 percent
higher than in the open-loop model. Note this result on rates of adjustment
does not contradict Proposition 2 since 6 differs between the two models
here.

To show the trajectories more clearly for the four leading models,
Figure 2 increases § from the base level to 150, Figure 2 shows how both
the paths and the steady states vary with v and the type of strategy used.

As noted above, the open-loop equilibrium can be obtained by solving a

control problem:

-

Proposition 3. Aggregate output in the open-loop equilibrium and

the control problem are the same if and only if kD + nkI = {2 +
n{v+1)]b+asa, If kO = {2 +nv) b+ 8 and k, = b, the levels of
output for the two problems are the same even if the n + 1 firms have

different initial levels of output.

For the Nash-Cournot case (v = 0}, Proposition 3 has been proved by
Hansen, Epple, and Roberds {1985). For the price-taking case (v = -1/nJ,

the integrand in {4) gives social surplus; this reproduces the well-known



Table 1

Traiectories for Nash-Cournot Models

Period Open Loop Feedback
5 =0 5= 7917

0 1.600 1.0600

1 7.435 7.552

2z 8.369 8.374

3 8,476 8.477

4 8,490 8.490

5 8.491 §.491

6 8.402 8.492
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result that the competitive equilibrium can be obtained by solving the social
" planner's problem. For the collusive case (v = 1)}, the control problem that
matches the open-loop game has kG ={2+n)b+ 5, kl = b; whereas the control
problem for the mconopolist sets ko = 72h + 8, k1 = ¢2b. Therefore, the collu-
gsive game gives rise to the monopoly solution only if all firms produce equal
guantities. Analogously, in static games, a conjectural variation of one
produces the monopoly solution only in a symmetric equilibrium.

Replacing the feedback game with a control problem requires knowing the
solution to the game rather than merely the parameters of the game. Although
of no computational assistance, the device is of interest for two reasons.
First, it leads to the recognition that the feedback equilibrium with a homo-
geneous good is observationally eguivalent to a particular open-loop game with
heterogeneous goods.6 This equivalence has obvicus econometric implications
(Karp and Perloff, 1988},

Second, the device provides some intuition about why it is difficult to
prove the feedback game is stable. Given the solution tc the feedback game,
it is possible to construct a K matrix such that the steady-state control rule
of the resulting control problem is equal to the control rule of the game.
However, the K matrix need not be positive definite, which violates cne of the
sufficiency conditions used to prove stability in the control problem. Details

of this argument are provided in Appendix IT.

4., Consistent Conijectures

ie remarked zbove that the parameter v could he interpreted as a con-
jectural variation and that the more neutral description of "behavioral

assumption' was adopted to emphasize that v is intended to describe, not
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explain, an cbserved equilibrium. If, however, one wishes to interpret v as a
- conjectural variation, it is natural to ask if it can be made endogenous, as
has been done in static games, by imposing consistency on the conjectures
(Laitner, 1980; Bresnahan, 1981; Kamien and Schwartz, 1983; and Perry, 1982).
In the static models, plavers with consistent beliefs are correct about both
levels and the slopes of reaction functions in equilibrium. The same pro-
cedure can be applied directly to open-loop games because they are essentially
static.

The interpretation in the feedback game is slightly different. At the
beginning of a period of length ¢, players anticipate an equilibrium in the
current period that depends on lagged quantities; they expect that any devia-
tion from this equilibrium will be met by an instantaneous response from their
rivals. If the conjectural response is optimal (to a first-order approxima-
tion), then conjectures are said to be consistent.

The following proposition states the dependence of the consistent conjec-

tural variation on =, the length of each period.

Proposition 4. In the discrete time feedback game, the consistent

conjecture depends on s--the length of time between decisions. As
¢ » 0, the consistent conjecture goes to 0. As g » «, the game
becomes static; if ¢ = 0, that model reduces to the case of linear
demand and constant marginal cost discussed by Bresnmahan (1981},

where the consistent conjecture is -1/m.

The proot is in Appendix I.
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The proposition shows that, even within the confines of this very restric-
- tive model, any constant conjecture between 0 and ~1/n is consistent depending
on the length of time between adjustments. A static model favors the price-
taking sclution, while a model that permits continuous adjustment favors the
Nash~Cournot solution.

The intuition for this result is based on the dynamic programming
equation {2}. A change in Uy (from equilibrium), say, Aaj, results in a change

J
consists of two compenents: the reduction of his profits in the current period

in qj of ﬁuja. Agent i's loss from a failure to respond to a change in u,

and the present value of the loss of finding himself with a suboptimal a in
the subsequent period. Both of these components depend on Auje and on €
directly, since the current period's profits are a flow of profits times €
and next pericd's value function is discounted by e '®. When e is large, for
given Auj, the first component dominates; and it is clear that agent i can
suffer a substantial loss from not responding to a change in uj. That is,
it pays to respond, so the slope of i's reaction function and, hence, the
value of j's consistent conjecture should be large in absolute value. When
e is small, a given Auj has a negligible effect on i's payoff and can essen-
tially be ignored, so the consistent conjecture is small.

In view of Proposition 4, it is not surprising that, for given
v € (-1/n, 1}, the equilibrium output depends on ¢ in the feedback game;
output is independent of ¢ for the open-lcop game. Consider, for example,
the Nash-Cournot case where v = 0. Under the feedback model, a firm expects
its rivals to react to its current decision only after an interval of g,

Its current decision, therefore, depends on €. Tor the open-loop model, a

firm expects no response on the part of its rivals (for v = 0), and the
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equilibrium is, therefore, independent of €. For the base parameters with

- v = (0, when ¢ goes from 1 (yearly adjustment) to .25 {quarterly adjustment),
steady-state feedback output increases 5 percent. When ¢ decreases from 1

to .083 (monthly adjustment}, steady-state feedback output increases by 7
percent. The tendency for steady-state output to decrease in e (for v = 0)
held throughout the simulations. This tendency is consistent with Reingamm
and Stokey's {1985) observation on the impertance of the period of commitment

in dynamic games.

5. Number of Firms and Adjustment Costs

As the mumber of firms, n + 1, increases, the equilibrium trajectories
change. By setting ® = 0 and normalizing so that § = (n + 1) ¢ where
¢ > 0 is constant, the price-taking and ccllusive equilibria are invariant
to n. As n becomes large, the adjustment cost for each firm becomes infinite
so each firm makes only infinitesimal adjustments and thus captures only an

infinitesimal share of the market. Thus:

Proposition 5. Given & = 0 and the normalization § = (n + 1) ¢,

the open-loop and feedback Nash-Cournot converge to the competitive

equilibrium as n » o,

This proposition can be proven by examining the equations that determine
the stationary control rules. The following argument provides a heuristic
proot. From Proposition 2, the open-loop and feedback equilibria are iden-
tical for v = -1/n which goes toe 0 as n + =, The open-loop model is a
static game for which it is well known that the Nash-Cournot equilibrium

converges to the competitive equilibrium as o » =,
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Table Z shows the effects of an increase in the number of firms for the
" base case on the steady-state output in the Nash-Cournot model using the
normalization that 8§ = ¢(n + 1), The Nash feedback output increases more
rapidly than does the Nash open-loop output as the number of firms increases.
Revnolds (1987) shows that, as § - 0, the open-loop and feedback
Nash-Cournot models do not converge. Proposition 5 shows that, as both §
and the number of firms go to infinity, the two steady states do converge.
Simulation results show that increasing § while holding n constant causes
the steady-state feedback output to increase. As mentioned above, the steady-
state output under the open-loop model is independent of § due to the as-
sumption that adjustment costs are minimized when adjustment is 0. Recall the
intuition for Proposition 2: In the feedback game, current investment serves
as a deterrent to rivals' future investment but increases ocutput. This deter-
rence is enhanced the greater the adjustment cost. A larger adjustment cost
moves the feedhack steady state farther from the open-loop steady state. A
larger value of & also makes it more costly to invest in deterrence (if
current output lies below the steady state), which works against the first
effect. The net effect on the Nash-Cournot feedback steady state in this
example is small: Increasing § by 400 percent in the base case causes the

steady-state output to increase by 2.5 percent.

6. Summary and Conclusions

Since feedback models are difficult to use, many researchers have relied
on open-loop models. Our analysis indicates that if behavior is "'close" to
price taking or collusive, then the trajectories and steady states will be

very similar to those of the feedhack model. When oligopolists ave not
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Table 2

The Effect of Increasing the Number of
Firms on Industry Output?

Number of Nash-Cournot
firms {n + 1) Open Loop Feedback
1

( monopoly) 12.74 12.74

2 16.98 17.48

3 19,11 19.92

4 20,38 21.35

5 21.23 22.27

10 25,16 24.16

15 23.88 24,74

{price :akers) 25.48 25.48

dParameters: a = 250, b = 10, B = .95, and
§=2.5(n+1).
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cooperative or price takers, both the paths and the steady states differ, The
~ difference between the two models, in our simulations, were greater for more
competitive behavior than for more collusive behavior. The feedback model
implies more competitive behavior and slower adjustment in general,

Based on the subgame perfect feedback medel, constant marginal (production)
costs, and linear demand, the consistent conjectures model depends on the
length of time periceds. As these become shorter, the consistent conjecture is
the Nash-Cournot. As they become longer and the game becomes static, the
consistent conjectures approach price taking as predicted in the static model
literature.

Increasing the number of firms, of course, leads to more competitive
behavior. Increasing the adjustment costs increases the Nash-Cournot

steady-state output slightly.



22~

Appendix I

Proof of Propositions

We show that 91, i=c¢, 0, f, is the negative root of

(6% - 18 0 - slky +n k) = 0 (AT.1a)
042 0 B
(") - 16 p” ~68{b[2+nlv+1)]+8} =0 (AT.1b)
£.2 . f )
(o 3" ~ 16 p - &{bl2 + nlv + 1)1 + 6} = nlv) (Al.1c)
where
7 trd
v} = ~{np§(1 -V + v - nvz) + n2 Py 2(1 + nv - v° - nv°)
+ ns 22(v + VZ + nvz - ZVZ ~ nvs)];
09 and z are defined below. The parameters yi are given by
Celnxla (AI.2a)
{ré§ - 07}
Ve lorla (AI.2b)
{(ré - 07)
and
Yf _n+1)1a ;‘g(v)] (A1.2¢)
(rs - o)
where
n(ﬁl} + vz} h (1 - v(1 + nv)
o{v) = ’

=
)

~

and h is defined helow,
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The Control Problem

The maximized value of {3) is
1
y+§ﬁ‘@4—{§) q'Hg

where y and h are scalars and H is a matrix with Cq on the principal diagonal

and 0q elsewhere., The control rule is:

u = £(he + Hq). (AL.3)
The algebraic Ricatti system is:
-réH = §K - HH
réhe = dae + Heh.

Writing these in terms of the three unknowns, Ops P1» and h gives

180, = 6k - pg ) np§ (AT.4a)
~r§pl = § kl - 2{-){} 301 - (n - 1) Q? (Ai.fib}
ad
= s . Al.4
(8 =5y - ney) (AL.4c)

Define ¢ = e * N oy, v“ = (n+ 1) h. Multiply (AI.4b) by n and add to

(AI.4a) to obtain (Al.la); {Al.4c) implies (AI.2a).
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The Open-Loop Game

. —_— + . - . o, . .
Define v € R" 1 as a column vector with 1 in the ith position and v in

every other position; player i behaves as if SH/Sui = ?i and his obiective is

to maximize {1b). The open-loop current value Hamiltonian,%é}, is:

Jo, ! 1 s !
o= a e q -y q' hi q ~-% u' Si u + li u

where Ay is i's shadow value of the state q. The necessary conditions for

an interior solution are:

5%
§E; = -uy + v, Ay =0 (AI.5a)
ﬁi} . N , e
" 55 * vilhy - rh) = v.(-ae; + K.q). (AI.5b)

i

The first-order conditions (AI.5a, b) are obtained as the limiting form, as

M

+ 0, of the first-order conditions to the discrete open-loop problem. Try
a soluticn of the form, Ai = hi + Hiq; for a steady-state control rule, ﬁi =
zfzi = 0 for all i. '"Guess" that H, is a matrix with H(i, i) = o5, H.(i, ) =
Py Hi(j’ i) = 51 for all j # i, and Hi(Q, s) =z for all &, s # i3 hy is an
n + 1 column vector with hi(i) = h, hi{j) = 1 for all i # i. Certain symbols,

such as p,, o,, and h, were used to describe the control problem. The dupli-
0> Py P

cation is intended to emphasize the similarity of the various problems., Note

that Hi is asymmetric,

Solve {Al.5a) to obtain

{AI.5c)
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It

Stack up the n + 1 necessary conditions of the form (AI.5c) to write u

(h* + H*q)/§ where h* = (h + nvh) e and He(i, i) = og * nvgl, H%(2, s)
Py * TVZ, for all & # s. Substitute this solution into (AI.5b) together with

Hi = 0 = hi to obtain the system

ot %
- = - *
réviHi vi(ﬁKi Hi H%)

and

H

ot 1
révihi vi(aSei + Hi h#},

These two systems give three equations for the three unknown functions,

og ¥ nvgl, Dy * vz, and h + nvh:

~ré{pO + nvpl) = §[{2 + nv) b+ 6] - (pO + nvpl)2 - n(pl + nvz)z, {Al.62a)

~r5{pl + nvz) = §h - Z(pO + nvgl) (pl +qnvz) - {n - 1) (01 + nvz)z, {AI.6h)

and

(h + nvg) = (AT.6c)

ad

(rs - Pg - nv51 - nél - nzvz)

.

Define po =0y ¥ nvél * oyt Wz, Multiply (AI.6b) by n and add to (Al.6a)
to obtain (AI.1b). Define YO = (n + 1} (h + nvh) to obtain (AI.2b). Propo-

sition 3 fellows from inspection of the control rules (AI.3Z) and (AI.S5c) and

comparison of {Al.4)} and {AI.6).

The Feedhack Game

The stationary dynamic programming eguation for player i is
' 1 P
rivy, * hi g+ = q' Hi q)=max ae. a -

\\
: .

H

-y

2 th 1) ul
Lo+ P 1 .
u} 1 1 q o

e b
ol o

L -
5 qé.iq



26~

The parentheses on the left side gives Ji(q), i's value function. The

necessary condition for an interior maximum is

u, =

i (hi + H q) V.. {A1.7)

1

Of pust

Substitute {AI.7) into the dynamic programming equation and equate coeffi-

cients to obtain the system

' (Q""l ¥ \\ '/ n+l '\.
0 = vsH, + 8K, +H, v. v. H. - H.l ¢ e.v.H. -l 5 H.V.e. H
i i i1 L it o, i ,
\\ 321 ‘, 3 -}/f \321 } J ..//
1 ;f/n+1 !\

/n+l .
0 = ~-r8h, + Sae, - H. v. Vv, h, +i £ H.V.e. h. + H.(\ Loes v h;).
i i S S S S i i 3 1
\i=1 17 %/ ]

Try a solution of the form Hi(i, i) = Dy Hi(i’ j) = Hi(j, i) = Py for j # i,
and Hi(s, 2) =z for s # 1, & & i3 hi(i) = h, hi(j) =h for j # i. Substitut-

ing this trial solution into the azbove system results in

0 = répo + &§(2b + 8) - pé - [2n - (nv)z} p% - an Vo, Z, {AI.82)

¢ = r@pl + &b - nvp% - (n - 1) a% - 201 Py * [(nv)z Py

(AI.8b)
Z
- {n - 1) nvpy - moy - nzvl 2,
2
0 =1éz - p] -~ 2z py - 2(n - 1) zey - Invzfey + (n- 1) 2] + (nvz}z, (Al.8c)
0 = ~-rédh + Sa + (h B3 nyh) n@l(i - V) + (QQ + HQEV} h + ﬂ(gl + QZV) h’ (g}_ga}

and
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0 = -r8h + {h + nvh) nz{1 - v) + (QG + nplv) h
(AI.9b)
+ (pz +nzv) [h + (n - 1) hl.

This derivation of system (AI.8) implicitly assumes that stationary
control rules exist. This was not at issue for the three leading open-loop
equilibria. 1In those cases the eguilibrium trajectory could be generated by a
control problem in which K, the metric on the state, was positive semidefinite
(positive definite except where 8 = 0 and the market was either collusive or
price taking, in which cases ky = kl). Standard results ensure the sta-
bility of the Ricatti system and of the system given by (4) under these condi-
tions. Similar results for the feedback game have, to our knowledge, not been
obtained.

System (AI.8) sets the vector of time derivatives (58, 51, z)' equal to 0.
A necessary and sufficient condition for the system to be locally stable, and
thus a necessary condition for the existence of a stationary feedback control
rule, is that the real parts of the characteristic roots of the Jacobian of
{AI.8), evaluated at the steady state, be positive (recall that the system is
solved backward in time}.

To ensure that compariscon between open-loop and feedback equilibria are

meaningful, we make two further assumptions.

Assumption 1. Stationary feedback rules exist; i.e., the system, *(éG,

-

b1 z)7, is stable,

Assumption 2. The vector g, generated by the equilibrium feedback

rules, converges for arbitrary Aqe
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Define pf =g+ n{l + v) oyt nvz, Multiply {AI.8b) and (AI.S8c) by

2

0
v, respectively, and add to (AI.8a) to obtain (AI.lc).

n(l + v} and n
Define yf = (n + 1) (h + nvh). Multiply (AI.9b) by nv and add to (AI.9%a)
to obtain (AI.2c).

Proposition 1 follows immediately from comparison of (AL.1b) and (Al.lc),
of {AI.2b) and (AI.2c), and from the fact that n(v) = ¢(v) = 0 for v =

-1/nor v = 1.

We show that
n{0) < 0 < ¢(0J. (AI.10)

This inequality, together with (AI.1b) and {Al.lc) and {AI.2b) and (AI.2c),
and the definition of pe and pf establish Proposition Z.
We first establish that pl(pl + nz} > 0 so that n{0) < 0; then comparison

0 < pf < 0. First, note that pl <0, To

of (AI.1b) and (Al.lc) implies p
verify this inequality, use the facts that 8231/(8qi aqj) =05 ] # 1, and
azji/ﬁqé = 0g where Ji(q) was defined as agent i's value function. Define
ai(qj) as the optimal {for agent i) initial condition for q; given Q- There-
fore, d@i/dqj = ~91/QO. By Assumption 2 and equation {AI.7}, ey < 0. Suppose
Py > 03 this implies that an increase in the initial level of qj would cause
agent 1 to want to begin with a higher level of sales. However, for large
enough qj’ price is negative and it is clear that agent i would prefer to
begin with a lower level of G5 hence, 09 < {} as stated.

t is now necessary to show that p, + nz < 0. Solve (AT.8c) with v = 0 to
obtain z = Q?/{I@ - Zpg - 2{n - 1) 01] S0 py *+ nz = ;1[r§ - Zgg - {n - 2) p}}f

[ré - 2o, - 2{n ~ 1) p,]. The denominator is obviously positive, and for
0 1 Y ,

n > £ the numerator is clearly nepative. For n = 1, use Assumption 2 and
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equation (AIl.10} to obtain c% - Qi > 0. Since B1s 0p < 0, this implies

Py < P which implies ré§ - 290 + Py > 0. Therefore, ey + Nz < 0 for all

n, and n{0) < 0 as stated.

To complete the proof, rewrite (AI.9) for v = 0 as

g

ré - P - ney 1oy

oy
U U |

"(91 + nz) ré - 0q - (n-1) 01

e i

[
[T m———y

Using previous results, all elements of this matrix are positive so h and h
must have the opposite sign.

To establish the second inequality in (AI.10), we need only show h< 0.
Use (AI.9%a) and (AI.9b) and the results of the previous paragraph to verify
that h and h must have the opposite sign. Since h = BJi(O)/aqi, h o= aJi(O)/aqj,
j i, h<0< g would imply that, if all agents begin the game with 0 sales
so that initial price is positive, agent i would prefer to begin with negative
sales and have his rival(s) begin with positive sales. Since this must be

false, we conciude h > 0 > h, so ¢(0) > 0, completing the proof of

Proposition 2.

To prove Proposition 4, write the first-order condition to plaver i's

discrete time dynamic programming problem as

where

i
i
"y
b
l
[
s
¥
[¥2]
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The consistent conjecture is obtained by differentiating it's first-order

condition with respect to uj using aui/auj = v and setting the result to O:

1

¥j B,V o= 0. when € = 0, this expression reduces to -v &, = 0 which implies

1
v = 0. For ¢ = 0, the condition for consistency of conjectures can be

written as

which requires

[H]

w! ——
If this equation holds in the limit as € »~ =, it is necessary that v Ki Vs
1 +(n+1) v+ = 0, which requires that v = -1/nor v = -1. Since v = -1
for n < 1 results in negative profits, it must be the case that v = -1/n,

This resylt is identical to Bresnahan's (1081) static result,
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Appendix IT

Relation Between the Feedback Game and a Control Problem

We illustrate the relation between the feedback game and a control problem
using a Nash-Cournot {v = 0) duopoly {n = 1). Let 51 and z solve (AI.8).
Define
"2
- 1
blxb”-?*g‘(b

and

91 Z

b,=b - > b.

Z

Specializing the control problem given in (3} by setting kg = 2by + 8,
kl = bz {and replacing a by a + 04 ﬂ/ﬁ > a) duplicates aggregate quantity in
the Nash-Cournot feedback trajectory. This result is true even if the initial
levels of output vary across firms. The feedback game with a homogenecus good
is equivalent to an open-loop game with hetergeneous goods.

The static problem provides some intuition here. Consider the two static

Nash-Cournot duopolies.

Gi: jax[a - b(qi + qj)] as

and

If the plavers are symmetric in both games and Qj is aggregate output in came

i, then 0, < 0, if and only if 3b > 2%1 + b7. It can be shown that bl and

b,, defined above, satisfy this inequality.
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Now consider two control problems with, respectively,

[ 2b+ 6 b /2by 40 b, >
Ky =1 and Ky =1
\ b 2b + 8 \\ bz Ebi + g
as metrics on the state g. Given the same price intercept, a, aggregate
output in the second control problem is larger. (Charging a to a + £q g/é
strengthens the conclusion.)

To see why the feedback game may not be stable, recall that the positive
semidefiniteness of K is one of the set of sufficient conditions for the con-
trol problem given by (3} to be stable (i.e., for the Ricatti differential
equations to converge to the stationary values). For b > 0, 6 > 0, Kl
(defined above) is always positive definite. However, there is apparently

ng guarantee that kz is positive semidefinite. As a result, sufficient

conditions for the feedback game to be stable may or may not be fulfilled.
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Footnotes

lFudenberg, Levine, and Srivastava (1984) give other types of conditions
under which the open-loop and feedback equilibria are approximately the same
with many players.

ZRoth Fershtman and Kamien (1987) and Reynolds (1987) use dynamic
linear-quadratic models. Hansen, Epple, and Roberds {1985} also use the
dynamic linear guadratic model to study varicus open-loop models as well as
the open-loop and feedback Stackelberg model. They do not compare the open-
loop and feedback in symmetric firm markets, which is the focus of this paper.
Van der Ploeg (1987) compares the steady states in a natural resources setting
with general functional forms.

3s’%nanalogous approach is used by Gallop and Roberts (1979) in a static
model.

4Treadway (1970} shows that the comparative statics of the steady state
of cost-of-adjustment models differ from those of the "corresponding' static
model. In a similar vein, Reynolds (1987) finds that the output under static
Nash-Cournot and at the steady state of the open-loop dynamic Nash-Cournot
models are different. However, under the assumption that adjustment costs are
minimized when adjustment is 0 (i.e., at the steady state), these results no
longer hold. This assumption seems reasconable if the objective is to compare
the variocus dynamic models with their static analogs.

Szt is well known that, for indefinite horizon games, there typically
exist many equilibria even when these are required to be subgame perfect. We
avoid the problem of nonuniqueness by considering the equilibrium strategies

that result from the came with finite horizon T and letting T » <,
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6Thi5 statement is actually too strong. Suppose that the game were

completely stationary and firms completely symmetric so that it was practical
to impose the restrictions implied by the constant part of the control rules.
In that case the slope coefficients of the control rules of a homogeneous firm
game with feedback strategies would be the same as the slope coefficients of
the rules of a heterogeneous {but symmetric) firm game with open-lcop strate-
gies; but the intercepts would be different so the two could still be distin~
guished. However, for the econometric work, we do not wish to impose the

restrictions on the intercepts of the control rules, so that nonstaticnarity

or firm-specific features may be included in the parameters a, Py and 60.




