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Do Inventory and Time-to-Delivery Effects
Vary Across Futures Contracts?

Insights from a Smoothed Bayesian Estimator

Abstract

We apply a new Bayesian approach to multiple-contract futures data to allow the in-

ventory and time-to-delivery effects on volatility to vary across contracts. We find

a varying negative relationship between lumber inventories and lumber futures price

volatility. The inventory effect is smaller for the most recent contracts possibly due to

increasing inventories over time. While this approach reveals the downward bias on

the inventory effect introduced by restricting this parameter across contracts, it does

not change the time-to-delivery effect.

Key words: volatility, theory of storage, futures markets, Bayesian econometrics,

lumber
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1. Introduction

Explaining price movements in futures markets has attracted many economists’ attention.

Several studies measure the impact of economic announcements on futures price movements.

See, for example, Leistikow (1989), Colling and Irwin (1990), Ederington and Lee (1993),

Mann and Dowen (1996), Li and Engle (1998), Isengildina, Irwin, and Good (2006), and

Karali and Thurman (2008a). Several other studies aim to explain price movements by

commodity-specific fundamentals, such as storage, seasonality, or the price movement in

a related commodity. These studies include Ng and Pirrong (1994), Pindyck (1994), and

Smith (2005). Moreover, time-to-maturity effect is seen as another factor that determines

price volatility in commodity futures markets (Samuelson, 1965). (See also, section 2.3.4 in

Garcia and Leuthold (2004) for a review of other studies on volatility of futures prices.)

Our study investigates the effects of physical lumber inventories and time remaining to

contract expiration on lumber futures price volatility as in the related work of Karali (2007)

and Karali and Thurman (2008b). As the theory of storage suggests, price movements should

be larger when inventories are small and vice versa. Like in many commodity futures markets,

lumber futures contracts with different delivery dates trade simultaneously. If time series

for each contract were analyzed separately, inventory effects could not be measured precisely

because each contract is active for only a year or so and inventories do not change much in

that time. Thus, an individual contract is traded during a roughly constant stock regime.

To capture the effect of changing inventories on price behavior we need to somehow combine

contracts and observe their changes over a period of several years. We accomplish this

by applying the Generalized Least Squares (GLS) method developed in Karali (2007). We
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analyze daily settlement prices of 77 lumber futures contracts from the Chicago Mercantile

Exchange (CME), from 1992 to 2005, and define volatility as the absolute value of log price

changes over a day.

We extend earlier work by allowing inventory and time-to-delivery effects on volatility

to vary across different contracts through a new Bayesian approach similar to the semi-

parametric smooth coefficient models of Koop and Tobias (2006). This new approach allows

estimation of contract-specific estimates which are “smoothed” across contracts through the

use of a prior distribution that centers each contract’s parameter estimates over the weighted

average of the estimates for all overlapping contracts. The approach is implemented through

an iterative process of single-contract conditional estimation that yields Bayesian posterior

estimates from the joint distribution of parameters for all 77 contracts and still accounts for

the cross-contract contemporaneous correlation of same day observations.

In conformity to the results in Karali (2007) and Karali and Thurman (2008b), we find

an inverse relationship between inventory levels and lumber futures volatility. As inventory

levels become smaller, lumber futures contracts become more volatile. For all contracts,

the estimated inventory coefficient is negative, something that is not found for classical,

unrestricted contract-specific estimates. The average across the 77 inventory coefficients is

-0.772. On the other hand, when we restrict the inventory coefficient to be the same across

all contracts through a very small prior variance on the smoothing prior, the inventory coef-

ficient becomes -0.114. This result shows using fixed multiple-contract parameter estimates

introduces a downward bias towards zero on the inventory effect. As for the time-to-delivery

effect, we again find an inverse relation between time remaining to expiration and volatil-

ity. As the delivery date approaches, lumber futures contracts become more volatile. Like
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the inventory coefficients, all of the time-to-delivery coefficients are negative. However, un-

like the inventory effect, the time-to-delivery effect parameters do not change much across

the contracts. Further, both the average across the 77 time-to-delivery coefficients and the

restricted estimate are -0.005. Thus, for this coefficient, restricting the parameter across

contracts does not introduce any bias.

The empirical results of implementing this new estimation methodology to multiple, over-

lapping contract financial data show that introducing such flexibility to parameter estimation

has important potential gains in hypothesis testing. Results show that allowing the inventory

effect to differ across contracts produces very different empirical results, with the contract-

specific estimates being significantly negative and the restricted multiple-contract estimator

being close to zero. For the time-to-delivery effect, the increased flexibility produced little

change in the parameters. This is reasonable because while the range of time-to-delivery

variable is the same for all contracts, the inventory variable changes dramatically across con-

tracts due to different time periods they cover. Thus the more flexible modeling approach

allows us to analyze varying inventory effects, possibly in a nonlinear fashion.

2. Theoretical Propositions

Karali and Thurman (2008b) present a simple three-period storage model, which originated

in Williams and Wright (1991). They derive the analytical solutions for optimal storage rules

and perform a simulation study to show the decreasing and nonlinear relationship between

the expected absolute price changes and the inventory levels. More specifically, for various

levels of initial carry-in, they derive price paths for many realizations of a random shock, and
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compute the average price path in each period to represent the conditional mean of price in

that period, Et(Pt+1|St). To motivate our theoretical propositions, we replicate their figure

here. As seen in figure 1, when inventory levels become larger, the expected magnitude

of price movement becomes smaller. They also show that the price response of a futures

contract to a shock declines with time to delivery. As in their work, we test these hypotheses

using the following linear model of volatility:

| ln Fi,t − ln Fi,t−1| = ai + biSt + ciTTDi,t + εi,t, (1)

where ln Fi,t is the natural logarithm of the price of futures contract i on day t, St is the

physical inventory level on day t, and TTDi,t is time to delivery, the number of trading days

remaining to contract i’s expiration on day t. We hypothesize that:

∂(| ln Fi,t − ln Fi,t−1|)/∂St = bi < 0, (P1)

∂(| ln Fi,t − ln Fi,t−1|)/∂TTDi,t = ci < 0, (P2)

ai 6= aj, bi 6= bj, and ci 6= cj. (P3)

3. Data and Econometric Issues with Overlapping Contracts

The U.S. Census Bureau releases Monthly Wholesale Trade Reports in which the Lumber &

Other Construction Materials inventory series (NAICS 4233) are included. These series are

published in current dollars, and therefore we divide them by the Lumber Producer Price

Index published by the Bureau of Labor Statistics to create inventory series in constant

5



dollars. We use a cubic spline method to interpolate the resulting monthly series to obtain

estimated daily inventories, which are shown in figure 2.

For the price data, we use daily settlement prices of lumber futures contracts, which are

traded at the CME. The delivery months are January, March, May, July, September, and

November. We study only the contracts that have full trading histories during our inventory

data period, and this results in a sample period of July 14, 1992-November 15, 2005 with a

total of 77 contracts. We trim the data set to include 170 observations for each contract—the

number of trading days of the shortest-lived contract. On the CME, at any point in time,

a total of seven contracts are listed, each with a different delivery date up to 14 months

into the future. Due to our trimming procedure, the number of contracts on any given day

in our sample varies from one to five. Note that all observations for a single contract are

numbered from one to 170 in trading days, not actual days; no distinction is made to adjust

for weekends or holidays.

Because information flows to the market affect, to some degree, all lumber contracts,

price observations from the same calendar date will be correlated with each other. It is

useful, however, to organize the data by matching observations in terms of TTD. To see

this more clearly, consider the following structure of the data:

y1,1 y1,2 · · · y1,44 · · · y1,86 · · · y1,129 · · · y1,170

y2,1 · · · y2,43 · · · y2,86 · · · y2,127 y2,128 y2,129 · · · y2,170

y3,1 · · · y3,44 · · · y3,85 y3,86 y3,87 · · · y3,128 y3,129 · · ·

y4,1 · · · y4,42 y4,43 y4,44 · · · y4,85 y4,86 · · ·

y5,1 · · · y5,42 y5,43 · · ·
.
..

· · · · · · · · ·

· · · · · ·

· · · y77,170,
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where yi,j indicates the jth observation on contract i. Here each row gives 170 observations

on one of the 77 contracts, and each column corresponds to a calendar date within the sample

period. When we line up data according to TTD, we obtain the following structure:

y1,1 · · · y1,44 · · · y1,86 · · · y1,129 · · · y1,170

y2,1 · · · y2,44 · · · y2,86 · · · y2,129 · · · y2,170

y3,1 · · · y3,44 · · · y3,86 · · · y3,129 · · · y3,170

y4,1 · · · y4,44 · · · y4,86 · · · y4,129 · · · y4,170

y5,1 · · · y5,44 · · · y5,86 · · · y5,129 · · · y5,170

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

y77,1 · · · y77,44 · · · y77,86 · · · y77,129 · · · y77,170

,

where boxed entries represent an example of observations from the same day and which,

as a result, are correlated with each other. In this setting, the first column contains data

on all contracts when there are 169 trading days to their expiration, and the last column

shows data on all contracts when they expire. Because all boxed entries come from the same

calendar day, they will be correlated with each other. This is only one example. During the

sample period, at most five contracts were traded on a given day and on some days, three

or four were traded. The pattern of correlated observations is irregular and is impossible to

represent in a general form.

To account for contemporaneous correlation from the volatility model | ln Fi,tij
−ln Fi,tij−1

| =

αi+βiStij
+γiTTDi,tij

+εi,tij
, i = 1, 2, · · · ,m and j = 1, 2, · · · , ni, we construct residual vectors

for contracts traded on the same calendar date. Here, m = 77, the total number of contracts

in our sample, ni = 170 for all i, the number of observations on contract i, and the subscript

tij denotes the jth trading day of futures contract i. For example, the residual vector ei,`

contains residuals for contract i that come from the calendar dates on which contract ` was
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also traded. After defining residual vectors for all overlapping contracts, we stack the vectors

that have the same discrepancy in delivery month. For instance, to construct the residual

vector for four-month-apart contracts, we combine the vector that contains residuals for

March 1994 contract that come from the trading days on which July 1994 contract was also

traded with the one that contains, say, residuals for September 1996 contract that come from

the days on which January 1997 contract was also traded. Thus, to estimate the correlation

between contracts that are four months apart, ρ4, first we run the regression equation




e1,3

e2,4

e3,5

...

e74,76

e75,77




= ψ4




e3,1

e4,2

e5,3

...

e76,74

e77,75




+




ν1,3

ν2,4

ν3,5

...

ν74,76

ν75,77




(2)

and then reverse the roles of the dependent and independent variables and run the regression

again. We compute the square root of the product of estimated coefficients from these two

regressions to obtain ρ4. We repeat the same procedure to compute correlation coefficients

between two-month apart, six-month apart, and eight-month apart contracts. Because in

our data at most five contracts are traded on a given day, the most distant pair of contracts

is eight months apart. The correlation and variance-covariance matrices of OLS residuals

from the above specification are:
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ρ =




1 0.75 0.61 0.46 0.13

0.75 1 0.75 0.61 0.46

0.61 0.75 1 0.75 0.61

0.46 0.61 0.75 1 0.75

0.13 0.46 0.61 0.75 1




, Σ =




0.87 0.63 0.52 0.41 0.20

0.63 0.87 0.63 0.52 0.41

0.52 0.63 0.87 0.63 0.52

0.41 0.52 0.63 0.87 0.63

0.20 0.41 0.52 0.63 0.87




. (3)

Notice that this method assumes both covariance stationarity over time and identical

covariances between contracts that have the same discrepancy in delivery month. That is,

the correlation between the March and May contract residuals is assumed to be the same as

that between the May and July contract residuals.

We next use the Cholesky decomposition of the contemporaneous covariance matrix, Σ,

to obtain a GLS transformation of the data set. This eliminates contemporaneous correlation

among residuals.

4. Empirical Model and Bayesian Estimation

A linear volatility regression equation, with separate coefficients for each contract, is given

by:

|%∆Fi,tij
| ≡ |100× (ln Fi,tij

− ln Fi,tij−1
)| = αi + βiStij

+ γiTTDi,tij
+ εi,tij

,

i = 1, 2, · · · ,m, j = 1, 2, · · · , ni. (4)

Because contracts partially overlap in time, tij, the jth trading day of contract i, has a

different range for each contract. Delivery date, Ti, is also different for each contract. Because
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there are 170 observations per contract, delivery date for contract i is ti170 or tini
. Summary

statistics of the variables are presented in table 1.

When we combine all contracts, the 77 regression equations in equation (4) can be written

in matrix form as:

y = Xθ + ε, (5)

where

y ≡




y1

y2

...

ym




, X ≡




ι 0 · · · 0 S1 0 · · · 0 TTD 0 · · · 0

0 ι · · · 0 0 S2 · · · 0 0 TTD · · · 0

...
...

...
...

...
...

...
...

...

0 0 · · · ι 0 0 · · · Sm 0 0 · · · TTD




,

θ ≡




α

β

γ




, ε ≡




ε1

ε2

...

εm




,

and

yi =




|100× (ln Fi,ti1
− ln Fi,ti1−1

)|

|100× (ln Fi,ti2
− ln Fi,ti2−1

)|
...

|100× (ln Fi,tini
− ln Fi,tini−1

)|




, Si =




Sti1

Sti2

...

Stini




,TTD =




169

168

...

0




, ι =




1

1

...

1




, εi =




εi,ti1

εi,ti2

...

εi,tini




,

for i = 1, 2, · · · ,m, and
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α =




α1

α2

...

αm




, β =




β1

β2

...

βm




,γ =




γ1

γ2

...

γm




.

If we define

θi =




αi

βi

γi




, Xi =

[
ι Si TTD

]
,

the equation for each contract can be shown in a more compact way as:

yi = Xiθi + εi, i = 1, 2, · · · ,m. (6)

In related work, Karali (2007) finds that not all coefficient estimates have the expected

signs when parameters are allowed to vary across contracts, as in equation (4). Then, she

imposes restrictions on coefficients and forces all contracts to have the same parameter for

each variable. This results in a positive and significant intercept, and negative and significant

inventory and TTD coefficient estimates. However, the F-tests show that data reject these

equality restrictions and that a less extreme restriction is appropriate.

In this study, we fill this gap and extend the earlier work by allowing the inventory

and time-to-delivery effects to differ across contracts via a Bayesian approach. With this

approach, parameter estimates are contract specific and “smoothed” via a prior distribution

that centers each contract’s parameter estimates over the weighted average of the estimates
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of all contracts. By choosing weights that give higher relative importance to nearby (and

overlapping) contracts, the parameters are made to vary “smoothly” across contracts.

Our benchmark model uses a weighting scheme for prior means that forces the param-

eters of adjacent contracts to be close and decline as the discrepancy between contracts

increases. Specifically, our model uses the following weighting matrix: wi = |` − i|−1, for

i, ` = 1, 2, · · · ,m, and wi` = 0 when i = `. For instance, for the 5th and 35th contracts:

w5 =

[
1
4

1
3

1
2

1 0 1 1
2

1
3

1
4
· · · 1

72

]
,

w35 =

[
1
34

1
33

· · · 1
2

1 0 1 1
2
· · · 1

42

]
. (7)

The graphical representation of weighting matrices for various contracts is given in figure 3.1

The logic behind this weighting matrix is that adjacent contracts are more likely to move in

a similar way than do the distant ones because they are traded in the same time period and

are subject to same shocks. Also, note that when, for example, the 35th contract is traded

neither the 1st nor the 77th contract is active. Therefore this weighting matrix puts declining

weights on contracts as they become more separated in time.

We specify prior distributions on the regression parameters as:

p(θi) ∼ N(θi, σ
2
i Vi), i = 1, 2, · · · ,m, (8)

where N denotes the multivariate normal distribution, θi is the prior mean of the ith con-

tract’s regression parameters, and σ2
i Vi is the prior variance-covariance matrix. We specify

1The weighting matrix of each contract follows this pattern. The weights are normalized when construct-
ing prior means.
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the prior distribution of σ2
i as an inverse gamma, or its inverse as:

p(σ−2
i ) ∼ G(si

−2, di), i = 1, 2, · · · ,m, (9)

where G denotes the gamma distribution, si
−2 is the prior mean for the inverse error variance,

and di is the prior degrees of freedom parameter. The prior means of the parameters, θi, for

contract i is computed as:

θi =

∑m
`=1 wi`θ

0

∑m
`=1 wi`

, (10)

where θ0 is the matrix of starting values. We assume that the likelihood function for each

contract follows a standard form after the GLS transformation, and is represented by

Li(y
∗
i |θi, σ

2
i , X

∗
i ) = (2πσ2

i )
−ni/2 exp{−0.5σ−2

i (y∗
i −X∗

i θi)
′(y∗

i −X∗
i θi)},

i = 1, 2, · · · ,m, (11)

where ∗ denotes the transformed data. It can be shown that the joint posterior is

p(θi, σ
2
i |y∗

i , X∗
i ) ∼ NG

(
θi, Vi, si

2, di

)
, i = 1, 2, · · · ,m, (12)

where NG denotes the joint normal gamma distribution, and

θi = Vi

(
Vi

−1θi + (X∗
i

′X∗
i )θ̂i

)
, (13)

Vi =
(
Vi

−1 + X∗
i

′X∗
i

)−1
, (14)

si
2 = di

−1
[
di si

2 + (ni − ki)s
2
i + (θ̂i − θi)

′ (Vi + (X∗
i

′X∗
i )−1

)−1
(θ̂i − θi)

]
, (15)

di = di + ni, (16)

θ̂i = (X∗
i

′X∗
i )−1X∗

i
′y∗

i , (17)

s2
i =

(
1

ni − ki

)
ε∗

i
′ε∗

i . (18)
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We set Vi = Iki
, di = 5, si

2 = 0.8σ2
y, where ki is the number of regressors for contract i

and equal to three for all i. The algorithm for implementing the smoothed Bayesian estimator

can be found in the appendix.

5. Empirical Results

The posterior means, standard errors, and 95% highest posterior density regions from (8)-

(16), with the prior weighting matrix wi = |`− i|−1, are presented in table 2. Further, figure

4 shows the posterior means and 95% posterior density regions for each parameter. All of

the intercept estimates are positive and the density region does not include zero (figure 4(a))

unlike the results in Karali (2007). There, it is reported that 56 of 77 intercept estimates

are positive and 17 of those are significant at 5% level, 52 of 77 inventory coefficients are

negative and only 13 of those are statistically significant, and 72 of 77 time-to-delivery

coefficients are negative and 60 of those are significant with classical methods. As table 2

shows, the average posterior mean of the intercept parameter across all contracts is 5.153

with an average posterior standard deviation of 0.918.

The posterior mean of the inventory parameter, βi, is negative for each contract as the

theory of storage suggests. The average posterior mean of inventory parameter across the 77

contracts is -0.772 with an average posterior standard deviation of 0.206. As seen in figure

4(b), the 95% highest posterior density regions exclude zero for all contracts. Further, it

is seen in table 2 that contracts traded in the beginning of the sample period have larger

inventory effects. The reason is that lumber inventories increase over time (see figure 2). This

result is consistent with the theory of storage. As inventories are smaller, price volatility is
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higher. On the other hand, with larger inventories, price volatility is lower because any shock

in the market would have been absorbed by inventories. The high posterior probabilities of

negative inventory effects are shown in figure 5(a), showing the near certainty of the negative

signs.

For all contracts, we find a negative time-to-delivery effect on price volatility. As contracts

approach delivery, futures price volatility increases—an empirical support of the Samuelson

effect. The average posterior mean of time-to-delivery parameter across the 77 contracts

is -0.005 with a posterior standard error of 0.001. Only 5 of the 77 95% highest posterior

density upper limits are positive. Figure 5(b) shows the posterior probabilities of negative

time-to-delivery effects. These probabilities are near unity for all but a few contracts.

Setting the prior variance for θ controls how restricted the parameters are. With a larger

variance, parameter estimates are allowed to change across contracts more freely. When a

small prior variance is used, this restricts the parameters to be more equal across contracts.

The results from a very small prior variance will be similar to the classical results with only

three parameters estimated.

For comparison, we report the averages of the estimates across all contracts with the

benchmark prior variance, V B = I (the last row of table 2), and with a small prior variance,

V S = 10−8I, in table 3. It can be seen that the small prior variance puts downward

bias towards zero on both the intercept and the inventory effect. Specifically, the intercept

estimate falls from 5.153 to 2.199, and the inventory effect from 0.772 to 0.114 in magnitude.

The time-to-delivery effect is not affected by this restriction. These results are reasonable

because while the time-to-delivery variable is fixed for all contracts, the inventory variable

changes across contracts as a result of the different time periods they span. Similarly, the
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intercept estimates are capturing the changes in other economic variables over time, and

thus restricting the parameter does introduce a bias.

We use alternative weighting matrices to test the robustness of our results to prior mean

specification. Figure 6 shows the graphical representation of prior weights for the 35th

contract, where wB = |` − i|−1 (our benchmark model), w1 = |` − i|−2, w2 = ι′m, and

w3 = (m− |`− i|)/(m− 1). We report the average posterior means and standard deviations

of the parameters across all contracts obtained with these prior weights in table 4. Further,

the posterior mean of each parameter for the 5th and 35th contracts are reported. As seen

in the table, our estimates do not change much with different prior weights. Therefore, we

conclude that our results are robust to prior specification with respect to the weighting of

the prior mean.

6. Concluding Remarks

We implement a new Bayesian estimation methodology to investigate if the effects of lumber

inventories and time remaining to delivery on lumber futures price volatility vary across

contracts. We find negative inventory and time-to-delivery effects and these effects, indeed,

do vary across futures contracts. While contracts traded in the beginning of our sample

period exhibit larger inventory effects, contracts traded towards the end of our sample period

exhibit smaller inventory effects. This may be a result of increasing lumber inventories

over time. Consistent with the theory of storage and previous studies, the price variability

decreases in higher inventory regimes.

This new method reveals a downward bias towards zero on the inventory effect introduced

16



by restricted multiple-contract estimator. When the parameters are allowed to vary across

contracts the average inventory effect is much larger than the restricted effect. However,

there is no bias to the time-to-delivery effect and the increased flexibility produced little

substantive change in the results. This is reasonable because the inventory variable changes

dramatically across contracts due to different time horizons they cover while the time-to-

delivery variable does not. Thus the more flexible modeling approach reveals a time-varying

inventory effect.
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Table 1: Summary Statistics of Daily Variables

N=13,090 %∆Fi,ti
j

|%∆Fi,ti
j
| Inventories TTD

Mean -0.0105 1.2433 4.6154 84.50

Median 0 0.9739 4.3835 84.50

Min -7.8560 0 3.1054 0

Max 14.1945 14.1945 7.5337 169

Std. Deviation 1.6097 1.0225 0.9541 49.08

Notes: %∆Fi,ti
j

= 100× (ln Fi,ti
j
− ln Fi,ti

j−1
) and |%∆Fi,ti

j
| = |100× (ln Fi,ti

j
− ln Fi,ti

j−1
)|, i = 1, 2, · · · , m, j = 1, 2, · · · , ni.

m = 77 and ni = 170 for all i. The subscript tij denotes the jth trading day of futures contract i. The variable ln Fi,ti
j

is the

natural logarithm of the price on day tij of the ith futures contract. Inventories are measured in billions of 1982 dollars.
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Table 2: Benchmark Model

Contract αi se(αi) Lαi
Uαi

βi se(βi) Lβi
Uβi

γi se(γi) Lγi
Uγi

1 5.266 0.708 3.869 6.664 -0.916 0.199 -1.309 -0.524 -0.008 0.001 -0.011 -0.006
2 5.565 0.879 3.831 7.300 -0.909 0.263 -1.429 -0.390 -0.005 0.001 -0.008 -0.003
3 5.898 1.014 3.897 7.899 -1.134 0.291 -1.709 -0.559 -0.002 0.001 -0.004 0.001
4 5.414 1.045 3.352 7.477 -0.882 0.294 -1.464 -0.301 -0.002 0.001 -0.005 0.000
5 5.612 0.922 3.792 7.432 -1.049 0.275 -1.593 -0.505 -0.001 0.001 -0.003 0.001
6 5.153 0.983 3.213 7.094 -0.928 0.319 -1.557 -0.299 -0.004 0.001 -0.006 -0.001
7 5.458 0.965 3.553 7.363 -1.127 0.310 -1.740 -0.515 -0.004 0.001 -0.007 -0.001
8 4.950 1.025 2.928 6.973 -0.778 0.305 -1.381 -0.175 -0.006 0.001 -0.009 -0.004
9 5.313 0.957 3.425 7.202 -0.979 0.269 -1.511 -0.448 -0.004 0.001 -0.006 -0.001
10 5.247 0.877 3.516 6.978 -0.941 0.245 -1.424 -0.457 -0.004 0.001 -0.006 -0.002
11 5.285 0.965 3.381 7.190 -0.993 0.274 -1.534 -0.453 -0.001 0.001 -0.003 0.001
12 5.156 0.779 3.619 6.693 -1.005 0.216 -1.431 -0.578 -0.002 0.001 -0.004 -0.000
13 4.719 0.882 2.978 6.460 -0.758 0.230 -1.213 -0.303 -0.004 0.001 -0.007 -0.002
14 5.374 0.874 3.648 7.099 -0.967 0.219 -1.400 -0.535 -0.002 0.001 -0.005 -0.000
15 5.376 0.961 3.479 7.273 -0.785 0.241 -1.261 -0.309 -0.007 0.001 -0.009 -0.004
16 5.122 0.927 3.292 6.952 -0.852 0.247 -1.341 -0.364 -0.003 0.001 -0.006 -0.001
17 5.301 1.160 3.011 7.591 -0.863 0.312 -1.480 -0.246 -0.005 0.001 -0.008 -0.002
18 4.943 0.946 3.076 6.810 -0.854 0.241 -1.331 -0.378 -0.004 0.001 -0.006 -0.001
19 5.162 0.823 3.538 6.786 -0.856 0.201 -1.253 -0.458 -0.004 0.001 -0.005 -0.002
20 5.100 0.944 3.237 6.963 -0.848 0.231 -1.303 -0.393 -0.005 0.001 -0.008 -0.003
21 5.293 0.822 3.670 6.916 -0.949 0.213 -1.370 -0.528 -0.004 0.001 -0.006 -0.002
22 5.295 0.761 3.793 6.797 -0.971 0.198 -1.362 -0.580 -0.004 0.001 -0.006 -0.002
23 5.193 0.931 3.355 7.032 -0.808 0.246 -1.295 -0.322 -0.007 0.001 -0.001 -0.005
24 5.134 0.923 3.313 6.955 -0.919 0.252 -1.417 -0.421 -0.005 0.001 -0.008 -0.003
25 5.161 0.900 3.385 6.938 -0.941 0.241 -1.416 -0.465 -0.004 0.001 -0.006 -0.002
26 5.114 0.914 3.311 6.918 -0.949 0.234 -1.411 -0.487 -0.004 0.001 -0.007 -0.002
27 5.195 0.812 3.592 6.799 -0.913 0.201 -1.311 -0.515 -0.006 0.001 -0.008 -0.004
28 5.062 0.762 3.557 6.567 -0.800 0.186 -1.167 -0.434 -0.009 0.001 -0.011 -0.008
29 5.190 0.774 3.662 6.718 -0.932 0.188 -1.302 -0.561 -0.006 0.001 -0.008 -0.004
30 5.137 0.797 3.564 6.710 -0.927 0.195 -1.313 -0.541 -0.003 0.001 -0.005 -0.002
31 5.180 0.804 3.594 6.767 -0.826 0.191 -1.204 -0.449 -0.006 0.001 -0.008 -0.004
32 5.115 0.883 3.374 6.857 -0.896 0.204 -1.298 -0.493 -0.003 0.001 -0.005 -0.009
33 5.497 0.796 3.926 7.068 -0.808 0.177 -1.157 -0.459 -0.008 0.001 -0.010 -0.006
34 5.212 0.844 3.547 6.878 -0.845 0.188 -1.216 -0.474 -0.005 0.001 -0.007 -0.003
35 5.345 1.240 2.898 7.792 -0.821 0.286 -1.385 -0.256 -0.006 0.001 -0.009 -0.003
36 4.991 1.200 2.624 7.359 -0.939 0.284 -1.500 -0.378 -0.003 0.001 -0.006 -0.000
37 5.132 0.780 3.592 6.672 -0.897 0.187 -1.266 -0.527 -0.005 0.001 -0.007 -0.003
38 4.926 0.784 3.379 6.472 -0.892 0.181 -1.249 -0.535 -0.003 0.001 -0.005 -0.001
39 4.933 0.871 3.214 6.652 -0.819 0.201 -1.216 -0.421 -0.006 0.001 -0.008 -0.004
40 5.136 0.763 3.629 6.643 -0.844 0.181 -1.202 -0.487 -0.006 0.001 -0.008 -0.004
41 5.250 0.900 3.474 7.027 -0.807 0.204 -1.210 -0.404 -0.005 0.001 -0.007 -0.003
42 4.927 0.892 3.166 6.689 -0.864 0.207 -1.274 -0.455 -0.002 0.001 -0.004 -0.000
43 5.133 0.739 3.674 6.592 -0.906 0.164 -1.230 -0.581 -0.004 0.001 -0.006 -0.002
44 4.898 0.707 3.502 6.294 -0.754 0.147 -1.044 -0.463 -0.006 0.001 -0.008 -0.004
45 5.175 0.750 3.695 6.656 -0.691 0.148 -0.984 -0.398 -0.008 0.001 -0.010 -0.006
46 5.220 0.791 3.659 6.781 -0.716 0.157 -1.026 -0.407 -0.008 0.001 -0.010 -0.006
47 5.128 0.772 3.604 6.653 -0.749 0.159 -1.062 -0.436 -0.005 0.001 -0.007 -0.003
48 5.036 0.876 3.307 6.765 -0.703 0.182 -1.062 -0.344 -0.005 0.001 -0.007 -0.002
49 5.092 0.851 3.413 6.772 -0.627 0.170 -0.962 -0.291 -0.008 0.001 -0.010 -0.006
50 5.068 0.916 3.260 6.877 -0.530 0.181 -0.887 -0.174 -0.009 0.001 -0.012 -0.007
51 5.141 0.838 3.486 6.795 -0.568 0.180 -0.923 -0.213 -0.008 0.001 -0.010 -0.006
52 5.307 1.120 3.095 7.518 -0.722 0.231 -1.179 -0.265 -0.006 0.001 -0.009 -0.003
53 5.283 1.033 3.244 7.323 -0.641 0.206 -1.048 -0.235 -0.006 0.001 -0.008 -0.003
54 5.305 1.190 2.957 7.653 -0.674 0.237 -1.141 -0.207 -0.006 0.001 -0.008 -0.003
55 5.199 1.140 2.950 7.449 -0.643 0.228 -1.092 -0.193 -0.004 0.001 -0.007 -0.001
56 5.181 1.167 2.878 7.485 -0.690 0.230 -1.144 -0.237 -0.003 0.001 -0.006 -0.001
57 5.154 1.087 3.009 7.299 -0.695 0.209 -1.108 -0.283 -0.006 0.001 -0.009 -0.004
58 5.243 1.002 3.266 7.220 -0.698 0.194 -1.081 -0.314 -0.004 0.001 -0.006 -0.002
59 5.105 0.918 3.294 6.917 -0.701 0.178 -1.053 -0.350 -0.005 0.001 -0.007 -0.002
60 5.073 0.840 3.415 6.731 -0.728 0.163 -1.050 -0.406 -0.004 0.001 -0.006 -0.002
61 5.115 1.028 3.086 7.145 -0.590 0.188 -0.962 -0.218 -0.007 0.001 -0.009 -0.004
62 5.080 0.753 3.593 6.567 -0.628 0.133 -0.891 -0.365 -0.005 0.001 -0.007 -0.003
63 5.205 0.875 3.477 6.933 -0.579 0.157 -0.889 -0.269 -0.008 0.001 -0.010 -0.006

Continued on next page. . .
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Table 2 – Continued

Contract αi se(αi) Lαi
Uαi

βi se(βi) Lβi
Uβi

γi se(γi) Lγi
Uγi

64 5.041 0.877 3.310 6.773 -0.556 0.167 -0.885 -0.227 -0.008 0.001 -0.010 -0.006
65 5.085 1.016 3.081 7.089 -0.646 0.201 -1.044 -0.249 -0.004 0.001 -0.007 -0.001
66 4.918 1.094 2.759 7.077 -0.592 0.206 -0.999 -0.185 -0.003 0.001 -0.006 -0.000
67 4.774 1.127 2.550 6.998 -0.545 0.197 -0.933 -0.157 -0.003 0.001 -0.005 0.000
68 4.829 0.976 2.902 6.755 -0.577 0.169 -0.911 -0.243 -0.007 0.001 -0.009 -0.004
69 4.988 0.845 3.319 6.657 -0.585 0.141 -0.864 -0.307 -0.007 0.001 -0.009 -0.004
70 4.983 0.985 3.040 6.927 -0.560 0.165 -0.886 -0.234 -0.006 0.001 -0.008 -0.004
71 4.789 0.925 2.963 6.615 -0.465 0.152 -0.765 -0.165 -0.006 0.001 -0.009 -0.004
72 4.967 0.959 3.075 6.860 -0.522 0.146 -0.809 -0.234 -0.006 0.001 -0.008 -0.003
73 5.072 0.957 3.184 6.960 -0.485 0.136 -0.752 -0.217 -0.008 0.001 -0.010 -0.005
74 5.133 0.916 3.324 6.941 -0.520 0.127 -0.770 -0.269 -0.006 0.001 -0.008 -0.004
75 5.095 0.758 3.599 6.591 -0.487 0.103 -0.691 -0.283 -0.007 0.001 -0.008 -0.005
76 5.142 1.016 3.137 7.147 -0.404 0.140 -0.681 -0.126 -0.009 0.001 -0.012 -0.007
77 4.999 1.050 2.928 7.071 -0.455 0.153 -0.757 -0.153 -0.006 0.001 -0.009 -0.003

Average 5.153 0.918 3.341 6.965 -0.772 0.206 -1.179 -0.365 -0.005 0.001 -0.007 -0.003

Notes: Model: |%∆Fi,ti
j
| ≡ |100× (ln Fi,ti

j
− ln Fi,ti

j−1
)| = αi + βiSti

j
+ γiTTDi,ti

j
+ εi,ti

j
, for i = 1, · · · , m and j = 1, · · · , ni.

m = 77 and ni = 170 for all i. The subscript tij denotes the jth trading day of contract i. The variable ln Fi,ti
j

is the natural

logarithm of the price on day tij of futures contract i, Sti
j

is the lumber inventory level on day tij , and TTDi,ti
j

is the number

of remaining days to delivery for contract i on day tij . For each parameter, its posterior mean, posterior standard error, 95%

highest posterior density lower and upper limits are given, respectively.
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Table 3: Prior Variance Sensitivity

αA
i se(αA

i ) LαA
i

UαA
i

β
A
i se(β

A
i ) L

β
A
i

U
β

A
i

γA
i se(γA

i ) LγA
i

UγA
i

V B = I 5.1532 0.9180 3.3414 6.9650 -0.7718 0.2063 -1.1789 -0.3647 -0.0052 0.0012 -0.0075 -0.0030
V S = 10−8I 2.1987 0.0001 2.1985 2.1989 -0.1138 0.0001 -0.1140 -0.1136 -0.0050 0.0001 -0.0052 -0.0048

Notes: Model: | ln Fi,ti
j
− ln Fi,ti

j−1
| = αi +βiSti

j
+γiTTDi,ti

j
+ εi,ti

j
, for i = 1, · · · , m and j = 1, · · · , ni. m = 77 and ni = 170

for all i. The subscript tij denotes the jth trading day of contract i. The variable ln Fi,ti
j

is the natural logarithm of the price

on day tij of futures contract i, Sti
j

is the lumber inventory level on day tij , and TTDi,ti
j

is the number of remaining days to

delivery for contract i on day tij . For each parameter, the averages of its posterior mean, posterior standard error, 95% highest

posterior density lower and upper limits are given, respectively.
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Table 4: Sensitivity to Prior Mean Specification

αA
i se(αA

i ) α5 α35 β
A
i se(β

A
i ) β5 β35 γA

i se(γA
i ) γ5 γ35

wB 5.153 0.918 5.612 5.345 -0.772 0.206 -1.049 -0.821 -0.005 0.001 -0.001 -0.006

w1 5.191 0.918 6.801 5.497 -0.806 0.206 -1.403 -0.856 -0.005 0.001 -0.001 -0.006

w2 5.040 0.918 5.345 5.228 -0.743 0.206 -0.970 -0.794 -0.005 0.001 -0.001 -0.006

w3 5.069 0.918 5.400 5.257 -0.750 0.206 -0.986 -0.801 -0.005 0.001 -0.001 -0.006

Notes: wB = |` − i|−1, w1 = |` − i|−2, w2 = ι′m, w3 = (m − |` − i|)/(m − 1) Model: | ln Fi,ti
j
− ln Fi,ti

j−1
| = αi + βiSti

j
+

γiTTDi,ti
j

+ εi,ti
j
, for i = 1, · · · , m and j = 1, · · · , ni. m = 77 and ni = 170 for all i. The subscript tij denotes the jth trading

day of contract i. The variable ln Fi,ti
j

is the natural logarithm of the price on day tij of futures contract i, Sti
j

is the lumber

inventory level on day tij , and TTDi,ti
j

is the number of remaining days to delivery for contract i on day tij . For each parameter,

the averages of its posterior mean and posterior standard error are given as well as the posterior means for the 5th and 35th

contracts.
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SUPPLEMENTARY APPENDIX

Algorithm for Implementing the Smoothed Bayesian Estimator:

Assume the restricted OLS parameter estimates from equation (5) as the starting values, θ0,

where

θ0 =
[
θ0

1 θ0
2 · · · θ0

m

]
=




α0
1 α0

2 · · · α0
m

β0
1 β0

2 · · · β0
m

γ0
1 γ0

2 · · · γ0
m


 .

A. Outer loop: iterations (repeat until convergence)

B. Inner loop: contracts

1. Use θ0 to compute variance-covariance matrix of residuals, Σ.

2. Use Cholesky factor of Σ to apply GLS transformation to data.

3. Pull out one contract, i, from transformed data and estimate equation (6) via

OLS to obtain θ̂i, where

θ̂i =




α̂i

β̂i

γ̂i


 .

4. Compute prior mean of the parameters, θi, for contract i as:

θi =

∑m
`=1 wi`θ

0

∑m
`=1 wi`

.

5. Compute posterior mean of the parameter vector, θi, for contract i by Bayesian

estimator for normal gamma distribution:

θi = Vi

(
Vi

−1θi + (X∗
i

′X∗
i )θ̂i

)
,

where

Vi =
(
Vi

−1 + X∗
i

′X∗
i

)−1
.
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6. Compute standard errors of the posterior means for contract i:

se(θi) =
√

diag
(
si

2Vi

)
,

where diag is an operant that selects the diagonal elements of a matrix and

si
2 = di

−1
[
di si

2 + (ni − ki)s
2
i + (θ̂i − θi)

′ (Vi + (X∗
i

′X∗
i )−1

)−1
(θ̂i − θi)

]

di = di + ni

s2
i =

(
1

ni − ki

)
ε∗

i
′ε∗

i .

7. Replace starting values for contract i, θ0
i in θ0, with posterior mean, θi.

8. Go back to step 1 and repeat the same procedure for the next contract.

B′. End the loop over the contracts and go to the next step.

A′. If
‖θ(h) − θ

(h−1)‖
1 + ‖θ(h)‖

< τ,

where θ
(h)

is the posterior means of the parameters from the hth iteration, and τ is

the tolerance criteria, then stop and use θ
(h)

as the final parameter estimates. If this

convergence criteria is not met, then go to the next iteration, h + 1. The convergence

parameter τ is normally set to something between 10−3 and 10−6.
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