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    Abstract 

The U.S. crop insurance program has major policy implications in terms of resource allocations, with 

government subsidies playing a major role. Efficient implementation of crop revenue insurance contracts 

requires accurate measures of risk for both crop prices and yields.  In addition, rating methods should 

consider the natural hedge between prices and yields. Empirical evidence shows that crop prices tend to 

be positively skewed with fat tails while crop yields tend to exhibit negative skewness. This paper 

analysis is two-fold. It first studies crop prices using a Burr distribution, with parameters that capture 

skewness and kurtosis (fat tails), providing a better fit than normal or log-normal distributions currently 

being used.  It then uses a copula method to measure the correlation between crop prices and yields - for 

the study of crop revenue insurance. Results indicate a smaller probability of payout than present methods 

being used, having direct implications on the design and rating of crop and revenue insurance contracts. 

 

Key Words: Crop insurance, Burr XII distribution, Copula methods, indemnity payouts 

______________________________________________________________ 

Hernan A. Tejeda is a Graduate Research Assistant in the Departments of Economics and Agricultural and Resource 

Economics at North Carolina State University. Corresponding author, email: hatejeda@ncsu.edu and/or at P.O. Box 

8110, Raleigh, NC, 27695 

 

Barry K. Goodwin is William Neal Reynolds Distinguished Professor in the Departments of Economics and  

Agricultural and Resource at North Carolina State University.  

 

mailto:hatejeda@ncsu.edu


3 
 

Introduction 

Crop insurance is of critical importance in the farming business to properly address production and/or 

revenue shortcomings for farmers and/or crop producers. Since the inception of the Federal Multiple-Peril 

Crop Insurance (MCPI) program in 1938 by means of the Crop Insurance Act, there has been continuous 

updating of federal programs to improve the application and efficiency of its use. For extensive coverage 

of the history of Federal MPCI through each decade until the mid 1990‟s, see Goodwin and Smith (1995). 

Another means of supporting crop producers during unanticipated devastating events has been to provide 

aid through federal disaster relief programs. For the theory of relation between this federal disaster aid 

and crop insurance, see Goodwin and Smith (1995), and for an overall historical review, see Goodwin and 

Vados (2007).  Regarding the MCPI, the latest program change occurred in 2000, with the enactment of 

the Agricultural Risk Protection Act (ARPA). This change includes comprehensive sections in crop 

insurance coverage and agricultural assistance by increasing government subsidies, among others. For 

details see the Agriculture Risk Protection Act - Public Law 106–224; 2000 

A major problem with the use of crop insurance has been the excessive payouts compared to the premium 

rates paid by farmers, see Goodwin and Smith 1995, and Goodwin 2001; generating substantial losses to 

the federal government. Many of these losses are a result of the premium subsidies paid by the 

government; hence a proper calculation of the premium rates is critical to an efficient implementation of 

any crop insurance program.  

Currently, the primary crop revenue insurance programs in place are the Crop Revenue Coverage (CRC) 

and Revenue Assurance (RA) programs, which calculate premium rates considering the estimated joint 

distributions of yields and crop prices. These rating methods must give consideration to the correlation 

between prices and yields and the natural hedge that is implied by them.  It is important to mention that 

presently all crop revenue insurance programs are under review to assess their future implementation. 

Basically, these programs will undergo changes such that they will all be incorporated into a single 
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package - offering crop revenue insurance. Details for this are available through USDA. This study aims 

to provide a new perspective in the method of analyzing crop revenue through the joint relation between 

crop yields and prices. 

In the present case of CRC, premium rate calculations assume crop prices follow a normal distribution1 

and for the case of RA, premium rates are calculated under the assumption that crop prices follow a log-

normal distribution. For extensive details of these methods and discussion of their shortcomings see 

report GAO 98-111. Despite these assumptions, empirical evidence and conventional wisdom holds that 

prices tend to have a positively skewed distribution, with fatter (kurtosis) tails than Normal distributions. 

See Goodwin and Ker (2002) for an extensive review. This is one aspect of the premium rate calculation 

which will be addressed in this paper. Another aspect that will be addressed is how the premium rates are 

currently calculated for each revenue insurance program. We also compare this to a proposal for a 

different method considering a better depiction of the relation between crop prices and yields.  

This paper begins by adopting a Burr type XII distribution to characterize crop prices, and compares the 

goodness of fit to these prices relative to Normal or Log-Normal distributions. The benefit conveyed by 

the Burr distribution is that it considers parameters that capture the higher moments observed in the data, 

hence skewness and kurtosis may be properly portrayed. See Klotz and Johnson (vol. 1, 1981.) 

The second analysis considers the use of a Copula method to assess the relation between crop prices and 

their yields. Copulas are a convenient statistical method of measuring the correlation between variables 

by just considering the marginal distributions of these variables or their non-parametric marginal 

distributions (in the empirical case of having a large number of observations). In other words, there is no 

need to have previous knowledge of the degree of correlation between the data sets and their distributions, 

in order to calculate their joint distributional relation through a copula. As for the marginal distribution of 

                                                            
1 In rigor, prices are assumed to distribute as a truncated normal (see pg. 52, GAO 98-111) 
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the crop yields, these are modeled through a Beta distribution - as they tend to be left or negatively 

skewed. See Goodwin and Ker (2002), and Gallagher (1987). 

Empirical Methods 

The Burr type XII distribution considered for modeling the crop prices has the following characteristics: 

(3 parameters – 2 shape, 1 scale) 

c.d.f.        for y   and  

p.d.f.  

The parameters of this distribution are estimated via a Maximum likelihood method as per Watkins 

(1999) and Johnson (2003). Another distribution of the Burr family – the Burr type III distribution, where 

the variable considered is the inverse of the previous Burr type XII, was also estimated via the method of 

moments, see Lindsay et. al (1996).  A comparison of results by simple mapping - revealed that the Burr 

type XII distribution characterized better the data.  

The Normal and log-Normal distributions respectively; have the known characteristics below: 

c.d.f.  )       for y  

p.d.f.  

Log – Normal: 

c.d.f.  )       for          

                                           );     
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 p.d.f.  

Both Normal and log-Normal distributions are also calculated via maximum likelihood, and their 

likelihood results are contrasted to that obtained with the Burr type XII distribution. A test of Voung – see 

Voung  (1989), which is a non-nested test is made here to ascertain the improvement of the Burr XII 

distribution over the previous two distributions. 

Separately, a Beta distribution is used to model the crop yield data as it is usually negatively skewed. As 

mentioned above, this parametric distribution delivers appropriate results in the case of having limited 

amounts of data. However, for the alternative of having large amounts of observations, then non-

parametric methods may be more suitable - see Goodwin and Ker (1998). 

A copula method is then used to assess the correlation between these two variables, crop prices and their 

yields. A copula is basically a function that „couples‟ together a multivariate function to their one-

dimensional marginal distributions. Or in other words, a copula is a multivariate distribution function that 

has one-dimensional marginal functions that are uniform on the interval [0,1]  - see Nelsen 1999. 

Formally defining this previous concept: 

Definition of a Copula (by Sklar’s theorem):   (see Embrechts et. al, Chapter 8, 2003).  

Let H be an n-dimensional distribution function with marginals .  

Then there exists an n-copula  such that for all x in  

 . 

For  being all continuous, then  is unique. Conversely, if  is an n-copula and 

 are (cumulative) distribution functions, then the function H defined above is an n-

dimensional (cumulative) distribution function with marginals .   
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i.e. for a univariate distribution function , the generalized inverse of , is: 

 for all t in [0,1]. Then for any  in [0,1 , 

 

Elliptical copulas (Normal or t-student) are restricted to radial symmetry and don‟t have a closed form.  

The Normal Copula distribution is (see Freez and Valdez 1998): 

          for   

 Yet a different type of copulas is also available. These are the Archimedian type copulas, and they may 

be preferred in our analysis because they have a closed form and also capture asymmetric correlation 

between the tails of the marginal distributions (i.e. different dependence at one end of the tail than at the 

other end).  See Embrechts et al. (Chapter 8. 2003). 

Archimedian Copulas: - Not Derived Directly by applying Sklar‟s theorem to multivariate distributions. 

See Embrechts et. al (Chapter 8. 2003). 

Let  and  be continuous random variables, with joint bivariate distribution  and marginal distribution 

functions  and , respectively.  

Consider a strictly increasing continuous function  such that  and , and 

suppose that (see Nelsen 1999): 

 ;       in particular for all 0  

i.e.  

If we let  = - log    for  (i.e.  is a convex decreasing function s.t. ), then 

the previous equation becomes: 

 ;  is the joint distribution of as mentioned before. 
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Arranging for copulas, the distribution becomes:  

 [       

and is generally referred to as an “Archimedian” Copula. (Note that  =  - both referred 

to as Archimedian Copula, being  a convex decreasing function).  

Three typical Archimedian Copulas considered are:  

i. Clayton family: where  ; for , then 

;       yet becomes: 

     for  

 

ii. Frank family: where  -- 1)/( ); for , then: 

                        

                    Such that by Frechet-bounds: 

                           

 

iii. Gumbel family: where  ; for then  

 

 

 

 

 

Lower tail dependence is captured by the Clayton family for  - which due to its limited parameter 

space, results in this copula only capturing positive correlation for such lower tail dependence. see Freez 

and Valdez (1998). Upper tail dependence is captured or reflected in the Gumbel family for   , which 

once again due to its parameter space, holds only for positive codependence. Nonetheless, negative 

dependence may be obtained in both previous copulas by initially pre-multiplying either series by -1. That 

is the pair (-X, Y) or (X, -Y) may be modeled as a joint distribution. In addition, all three models include 
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the special case for independent marginal distributions between x and y, which is at i.e, for  

all three Copula families become: see Genest & Rivest, (1993): 

  

 

The Frank family is the only type of Archimedian copula that holds for radial symmetry. see Embrechts 

et. al (Chpt 8, 2003). Yet it permits regularly both positive and negative correlations. Hence this Frank 

family copula will be used in our modeling, along with an elliptical (regular) normal copula for 

comparison. 

The Kendall‟s Tau coefficient is used as a dependence, association or correlation measure between the 

marginal distributions in a copula. This is a rank coefficient that doesn‟t depend on the specification of 

the marginal distributions, but only on the copula used. The coefficient‟s population version is the 

probability of concordance (i.e. positive relation) minus the probability of discordance (i.e. inverse 

relation). See Nelsen, (1999) 

 )   

 

For the Normal (Elliptic) Copula: see Freez and Valdez (1998) 

    with : the parameter of the Copula. 

For the Frank (Archimedian) family: see Genest (1987): 

Frank family:  

with , 

 



10 
 

Data 

Modeled prices consist of monthly averages of daily February future prices for corn and soybean - for 

delivery in December and November, respectively. This is data from the Chicago Board of Trade and the 

observations are from 1959 to 2007 obtained through CRB. Crop yields data are observations from a 

regular corn and soybean producing county in Iowa – Kossuth, obtained from the NASS of the USDA. 

These yields are calculated over the acres planted, and not harvested, so as to obtain a realistic view of the 

ex-ante conditions during planting. Only the corn crop had all the recorded years (1927 - 2007) for acres 

planted, so a proxy obtained from these planted acres for corn, in combination with the acres harvested 

for soybean - was used to estimate the missing records of planted acres for soybean (1927-1969). The 

yearly crop data, from 1927 through 2007, has been de-trended by following a regular procedure 

consisting in regressing the yields through two time regressors – one linear and one squared (better fit 

than plain linear), such that each observation is afterwards transformed relative to the predicted value of 

the latest data observation (2007).  i.e.  ; with  t = 1927,……2007; T = 2007 

The reason for the error term „adjustment‟ is that yield changes (or trend deviations) occur at higher 

yields, as data tends to show - see Goodwin and Mahul (2004), Goodwin and Ker (1998), Gallagher 

(1987). The data for crop prices was de-trended in a similar form.  

In the case of RA insurance, ex-ante crop prices are considered in the same manner (i.e. February future 

prices with delivery in December and November for corn and soybean, respectively); however only data 

from mid 1980‟s onward is used.  

Summary measurements for the data are in Table 1. 
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Results 

The Burr distribution provided a better overall fit for the crop prices when compared to the Normal 

distribution and the log-Normal distribution. By using a method of Maximum Likelihood estimation - see 

Watkins 1999 & Johnson 2003, the following was obtained and contrasted to Normal, and Log-Normal 

distributions: 

Burr Distribution (Standard deviation in parenthesis):  

 Parameters:  Corn   Soybean 

                 7.466   21.938 

    (5.3637)   (4.5814) 

   1.578   0.105 

    (1.0827)   (0.01998) 

   252.452  329.224 

    (46.883)   (12.355) 

 

Normal Distribution:  

 Parameters:  Corn   Soybean 

                  235.44   519.98 

  2,364.64  14,013.83 

 

Log-Normal Distribution: 

 Parameters:  Corn   Soybean 

               1.69308  1.8285 

   0.0388   0.0364 
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The Vuong test is used to compare these non-nested models, by calculating the log of their likelihood 

ratio. The log ratio calculated is: 

   

Then the statistic calculated for testing the non-nested hypothesis of Model 1 vs. Model 2 is: 

  

Where the following results are obtained: ( :  

 :   Corn   Soybean  

     0.3431   2.4815 

  62.3386   67.6529 

 

The Burr distribution is significantly better than the Normal distribution for the case of soybeans, yet it is 

not conclusive for the case of corn; perhaps more data may help to improve this assessment (only 48 

observations are considered). However, the Burr distribution is significantly better than the Log-Normal 

distribution in both cases of corn and soybean prices. This confirms what had been stated before 

regarding the Burr distribution, having parameters than can estimate higher moments of the data 

(specifically third and fourth moments), is able to better capture the skewness and kurtosis (fat tails) that 

the crop price data have.  

 

Crop yields have been modeled via a Beta distribution, making use of previous literature mentioned that 

confirms its proper goodness of fit.  
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Estimated parameters obtained via maximum likelihood are:  

Beta Distribution:  

 Parameters:  Corn   Soybean 

                 11.871   19.611 

    5.574   9.993 

     252   72 

 

As mentioned before, two different Copula methods were used to model the correlation between the 

marginal distributions of our crop yields and crop prices. These are an Elliptic Copula – the Normal, and 

an Archimedian Copula – The Frank family.  

Estimations were made by two different maximum likelihood methods as per Yan, 2007 (see Appendix 1 

for details). Following results were obtained (see Appendix 2 for various parameter calculation results):  

Elliptic (Normal) Copula: 

    Corn   Soybean 

Kendall‟s Tau   -0.06745   -0.08893 

Log-Likelihood   -2282.175  -2780.231 

Theta (  -0.077167  -0.130798 

 

Archimedean – Frank Copula: 

    Corn   Soybean 

Kendall‟s Tau   -0.08987   -0.17771 

Log-Likelihood   -2279.137  -2791.327 

Theta (  -0.79886   -1.6466 
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In the case of corn, the results for the co-dependence factor - Kendall‟s tau, show only a small difference 

between the two copula methods used (-0.09 vs. -0.07), having the frank copula a bit higher inverse 

relation. In addition, the maximum likelihood values obtained for each method are quite similar, having a 

difference of about 0.1%.  

For the case of soybean, the Kendall‟s tau obtained is significantly more negative in the case of the Frank 

copula. This difference is almost a 100%, as it goes from -0.089 in the normal copula to -0.178 in the 

Frank copula. Also, the maximum likelihood is a bit better for the case of the Frank copula, having a 

small edge of about 0.3% (-2791.3 vs. -2780.2 for a normal copula).  

The co-dependence (or correlation) factor or value, such as Kendall‟s tau or Spearman‟s rho, calculated 

for each copula can vary across these, as mentioned before. In other words, for the same marginal 

distributions, different values of Kendall‟s tau may be obtained from different copulas as in our prior 

case, see Nelsen (1999). In this study, a larger inverse relation was obtained with the Frank copula.  For 

graphs denoting this inverse relation between crop prices and yields, see Appendix 3, which includes 

three dimensional plots and contour graphs at different level curves for the copula parameter (theta or 

rho). 

According to Kendall‟s Tau of correlation coefficient, there is an inverse relation obtained between the 

two marginal distributions, as anticipated. In addition, by simply comparing log-likelihoods (or by AIC 

criteria: both methods have same number of parameters) - the Frank archimedian copula seems to 

characterize slightly better the relationship between prices and yields.  

Discussion  

The shortcomings and difficulties pertaining to the current crop revenue insurance methods listed 

previously (i.e. CRC and RA) have been noted extensively in the literature (see GAO 98-111, Goodwin 

and Smith 1995, Goodwin 2001). The perennial excessive payouts compared to the premiums paid is a 

point that we address here by analyzing a different method for calculating these premiums. In first term, 
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the crop prices have been better characterized by using a Burr distribution instead of the normal or log-

normal distribution regularly used in the present CRC and RA methods, respectively. Second, the level of 

relation between crop prices and yields has been gauged by applying copula methods to the marginal 

distributions of crop prices and yields, making use of the Burr distribution for prices and the Beta 

distribution for yields. The aim of the study is to provide some tools for practical analysis and use in the 

new methods of crop revenue insurance that will be soon offered  

In order to assess a potential application of the studied copula methods to the case of crop revenue 

insurance, a simple analysis will be made by comparing both Normal (elliptical) and Frank (archimedian) 

type copulas assuming a situation in which a payout may be necessary. This may be the case when the 

crop price has fallen below a certain level, and/or the crop yield has fallen below a certain level, such that 

the combination of these cases – despite their inverse relation, results in revenue which is below the 

minimum insured.  

This expected payout function may be represented as follows, assuming U: yield and V: price (see 

Embrechts et. al, and Goodwin): 

( , [ ]  

The expected payout can introduce the use of the copula method for the probability term on the right, 

enabling the application of the pair wise rank correlation provided by the marginal distributions of U and 

V. In other words, since it is difficult to estimate with accurateness a proper joint distribution for U and V, 

we replace that function by its copula, calculated previously. The second term on the right is just the 

difference between the minimum insured revenue level and the expected revenue level obtained, given its 

below that minimum revenue level. 

Hence the probability for a payout can be estimated through: 
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Being the copula given for any  [0,1 : 

  with  for all t in [0,1].  

From our previous calculation of copulas we have: 

i. Normal:        

 

ii. Frank:        

 

With  distribution of crop yields. 

  distribution of crop prices. 

 

By setting specific minimum yields ( ) and prices ( , such that their product results in a 

minimum insured revenue level, we are able to measure the probabilities of being below that point 

through the use of our copula function. This may be done through simulation providing a better portrayal 

of instances when payouts may necessary. 

Specifically we take both copulas previously calculated for each crop, and we separately simulate 100,000 

observations to obtain estimated crop yields and prices that belong to the specific copula. Once these 

simulated prices and yields are obtained, we take their product as the revenue, and calculate particular 

minimum revenues for which the insurers would receive a payment if they are below it. Minimum 

revenues were estimated at 70%, 75% and 80% of the expected revenue, for each copula and crop. So 

there are three different minimum revenue scenarios for four different copula scenarios. These scenarios 

were compared to the case were prices and yields are assumed to be unrelated or independent. This latter 

is the case for the theta or rho parameter being equal to zero for both copulas. 
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Frank Copula Normal Copula Independent 

Expected Rev: 0.238 0.243 0.250 

Corn Min rev. %Δ wrt Indpdt. Min rev. %Δ wrt Indpdt. Min rev. 

70% 0.167 -4.80% 0.170 -2.80% 0.175 

75% 0.179 -4.80% 0.182 -2.80% 0.188 

80% 0.190 -4.80% 0.194 -2.80% 0.200 

      

 
Frank Copula Normal Copula Independent 

Expected Rev: 0.228   0.239   0.250 

Soybean Min rev. %Δ wrt Indpdt. Min rev. %Δ wrt Indpdt. Min rev. 

70% 0.160 -8.80% 0.167 -4.40% 0.175 

75% 0.171 -8.80% 0.179 -4.40% 0.188 

80% 0.182 -8.80% 0.191 -4.40% 0.200 
 

 

See Appendix 4 for plots depicting the minimum revenue level for each copula method. From the 

previous table, in both cases of Frank copula, there is a larger difference of revenue payment compared to 

the case of the price and yield variables not being related; specifically, 4.8% and 8.8% less minimum 

revenue for corn and soybean, respectively. Hence, the minimum revenue for both crops is less with the 

application of the copula method, than in the case of assuming crop yields and prices being independent 

or having a positive relation. This result is anticipated, responding to the previous inverse relation 

between prices and yields. At the same time, this means that there are fewer instances in which a payout 

may be necessary, because the minimum revenue would be below the case considering there is no relation 

between price and yield. 

This is a very relevant finding when comparing to the present situation of CRC insurance, for example, 

where a payment may occur if there is no drop in yields, but there is a drop in prices. See GAO 98-111. 

The same occurs in the case of RA. Both these revenue insurance cases would pertain to the insured 

farmer facing no relation between their actual anticipated yields and a drop in price; hence obtaining an 

indemnity which would be higher than in the case of the revenue insurance copula method. The latter 
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method considers the inverse relation between crop prices and yields, hence there is less chance of 

excessive payouts.   

Conclusions 

A critical issue regarding crop insurance coverage has been the excessive amounts of indemnity payouts 

compared to premiums charged, many times exceeding ratios of 2:1. This factor is compounded by the 

fact that the resources involved are in the hundreds of millions of dollars, with large amounts being 

subsidized by the government. In order to gauge a better alternative to the current methods available, 

which are in the process of being replaced, two aspects have been studied. 

First a Burr distribution was used to characterize crop prices, and compared its goodness of fit versus the 

current normal and lognormal distributions currently being used in crop revenue insurance. Corn and 

Soybean future prices were used, in accordance with the practices of the current CRC and RA programs. 

This resulted in a better fit of the Burr distribution when compared to the log-normal, and an initial better 

fit when compared to the Normal, though more data may be need for this latter case, since for the corn 

crop there was not a significant difference in fit.  

Second, two different copula families – Normal (elliptical) and Frank (archimedian) were used to measure 

the correlation between these crop prices and their yields. Crop yields were modeled with a Beta 

distribution, and the copula method made use of the price and yield distributions to provide a correlation 

level among them, using Kendall‟s tau as means of correlation coefficient. The MLE method was used to 

calculate the copula method‟s best fit. Results show that there is a negative correlation between the price 

and yield distributions, as anticipated, and they were corroborated by two different estimation MLE 

methods. An analysis of the implications of these results was made by calculating probabilities of 

indemnity payouts, and the extent of increased degree of certainty they provide in calculating the required 

premiums was presented.   
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Further Analysis 

Various avenues may be pursued as topics of future research. One direct calculation could be made by 

using other copula distributional families, such as the t-copula, which has different dependence in the 

tails, and gauge their level of fitness and correlation. Another venue is to directly calculate premium rates 

based on the previous relations obtained through the copula method, with prices and yields. Another 

expansions may include calculating copula methods for other crops such as wheat, or others.  
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Table 1. 

 

 

 

 
 Prices2 (n=47) 

 
Yields3 (n=81) 

 
Corn Soybean 

 
Corn Soybean 

 
Regular Detrend Regular Detrend 

 
Regular Detrend Regular Detrend 

Mean 221.68 235.44 510.7 519.98 
 

89.2 171.76 29.1 47.71 

Stand. Dev 71.3 48.63 178.03 118.38 
 

45.32 28.24 11.45 6.14 

Max 376.57 353.04 826.43 883.54 
 

185.68 229.16 54.41 64.87 

Min 110.19 147.65 207.62 312.96 
 

19.93 80.23 11.12 24.08 

Predicted T 234.08 
 

512.17 
  

171.29 
 

47.65 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                            
2 Price unit in Cents per bushel (bu). Minimum contract is for 5,000 bushels. 
3 Bushels per Planted acre. 
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Appendix #1: Copula estimation via two different MLE methods (Using R-code), both arrive at very 

similar results: see Yuan, J. 2007 

One Step method: 

Take n independent realizations from a multivariate distribution, {( . 

Our de-trended yield and price data may still be considered „sequentially‟ correlated, hence not formally 

independent; yet estimation through this method may be considered as a second-best approach with 

respect to a different method that doesn‟t make use of this.  

Assume the multivariate distribution may be specified by  marginal cumulative distributions cdf  & 

density distributions pdf ; and a copula with density .  

Consider  the vector of marginal parameters and  the vector of copula parameters. The parameter 

vector to be estimated is . The loglikelihood function is: 

 

Being the ML estimator of : 

                                                where  is the parameter space.  

Two Step method: 

Considering a substantial increase in the dimensions ( ) of the Multivariate distribution, the previous 

method may be more difficult. Hence a two step optimization method may be more expeditious and reach 

similar results, proposed by Joe and Xu, 1996.  

This method, called inference functions for margins (IFM) estimates the marginal parameters  

 in a first step: 

  

And then estimates the parameters of association  given by  , by: 

  

When each marginal distribution  has its own parameter set  , such that , then 

the first step involves a MLE for each margin : 
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One Step Results: 

Normal Elliptical        

Both ML estimations are based on  500 observations taken from the copula with known marginals Beta 

and Burr XII – according to their respective parameter results.  

Corn Crop:        Soybean Crop: 

Margin  1 : Beta – Crop yields      

                Estimate  Std. Error    Estimate  Std. Error 

m1.shape1  9.588089   3.6169760  m1.shape1  16.832515         8.712091 

m1.shape2   5.543283    0.8138692  m1.shape2  10.841455         2.212099  

m1.ncp      3.823379 10.7764578  m1.ncp      7.127001           25.965249 

Margin  2 : Burr XII – Crop Prices 

            Estimate  Std. Error    Estimate  Std. Error 

m2.shape1  6.993879   0.4441981  m2.shape1   24.84527114     3.64096331 

m2.shape2  1.750277   0.3779837  m2.shape2  0.08770315      0.01458844 

m2.scale   261.663379 12.0750284  m2.scale    329.72494610  3.91907059 

Copula:       Copula:  

         Estimate   Std. Error     Estimate   Std. Error 

rho.1 -0.07716675 0.04450274   rho.1   -0.1307984        0.04439401 

The maximized loglikelihood is  -2282.175  The maximized loglikelihood is  -2780.231 

The convergence code is  0  

 a.00 - Kendall’s Correlation Coefficient:  a.00 - Kendall’s Correlation Coefficient: 

 -0.0674469      -0.08892986 
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One  Step Results: 

Frank Archimedian 

Both ML estimations are based on  500 observations taken from the copula with known marginals Beta 

and Burr XII – according to their respective parameter results. 

 

Corn Crop:       Soybean Crop: 

Margin  1 : Beta – Crop yields                    

    Estimate  Std. Error    Estimate  Std. Error 

m1.shape1  10.329336   3.6197203  m1.shape1  17.552994         7.159249 

m1.shape2   5.129206   0.7478332  m1.shape2  9.408260    1.795189 

m1.ncp      1.979075 10.7298615  m1.ncp      2.152311   21.601034 

 

Margin  2 : Burr XII – Crop Prices 

             Estimate  Std. Error    Estimate  Std. Error 

m2.shape1  6.954176   0.4161142  m2.shape1   19.6338025 2.54723236  

m2.shape2  1.700168   0.3212506  m2.shape2  0.1122604 0.01706057 

m2.scale   257.574265 10.4289894  m2.scale    328.1138322 4.47971444 

Copula:       Copula: 

        Estimate  Std. Error    Estimate  Std. Error 

param   -0.7988675    0.2768432  param   -1.646662    0.2770623 

 

The maximized loglikelihood is  -2279.137  The maximized loglikelihood is  -2791.327  

The convergence code is  0  

  

a.00 - Kendall’s Correlation Coefficient:   a.00 - Kendall’s Correlation Coefficient: 

 -0.08987575      -0.1777154 
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Appendix 2.- 

Results Burr Beta Corn - Frank 
   

Normal 
    

            
Rho Rho-Hat Std.Error Max likelhd K Tau 

 
Rho Rho-Hat 

Std.Erro
r Max likelhd K Tau 

 -5 -4.89158 0.34074 -2137.356 -0.44943 
 

-0.3 -0.3064 0.04043 -2229.142 -0.2041 
 

 
-5.87449 0.36782 -2093.084 -0.51024 

  
-0.2867 0.04118 -2178.069 -0.1908 

 

 
-4.48190 0.32708 -2160.083 -0.42964 

  
-0.2696 0.04161 -2242.094 -0.1569 * 

 
-4.96769 0.33983 -2124.339 -0.45925 

  
-0.3160 0.04055 -2187.173 -0.1950 

 
            -3 -2.84543 0.29645 -2151.196 -0.29345 

 
-0.2 -0.2357 0.04211 -2249.808 -0.1509 * 

 
-3.32521 0.30373 -2171.87 -0.33408 

  
-0.2528 0.04207 -2216.702 -0.1630 

 

 
-2.69791 0.29641 -2227.717 -0.27743 

  
-0.2329 0.04235 -2237.304 -0.1378 

 

 
-3.19362 0.31074 -2201.612 -0.31421 

  
-0.2304 0.04216 -2239.865 -0.1609 * 

            -2 -2.16985 0.28224 -2270.434 -0.23137 * -0.15 -0.1108 0.04417 -2210.227 -0.0767 
 

 
-2.19223 0.28364 -2193.242 -0.23322 

  
-0.1162 0.04418 -2216.727 -0.0755 * 

 
-2.21766 0.28713 -2242.464 -0.23163 * 

 
-0.0840 0.04471 -2252.544 -0.0495 * 

 
-2.03552 0.28661 -2201.187 -0.21605 

  
-0.1440 0.04378 -2215.346 -0.1038 

 
            -1 -0.98479 0.27073 -2246.901 -0.10825 

 
-0.1 -0.1135 0.04428 -2257.053 -0.0705 

 

 
-1.03786 0.26653 -2231.647 -0.11671 

  
-0.1557 0.04354 -2257.641 -0.0809 

 

 
-1.27044 0.27703 -2264.5 -0.13587 * 

 
-0.0986 0.04440 -2257.597 -0.0669 * 

 
-0.91790 0.26955 -2262.579 -0.09945 * 

 
-0.0663 0.04505 -2276.029 -0.0434 * 

            -
0.75 -0.79887 0.27684 -2279.137 -0.08988 * -0.05 -0.0040 0.04470 -2229.841 0.0001 

 

 
-0.74716 0.27798 -2259.575 -0.07779 

  
-0.1484 0.04406 -2248.057 -0.0994 

 

 
-1.25368 0.28027 -2258.553 -0.13303 

  
-0.1003 0.04456 -2236.901 -0.0817 

 

 
-1.09866 0.27058 -2270.498 -0.12184 * 

 
-0.0772 0.04450 -2282.175 -0.0674 * 

            -0.5 -0.46999 0.269527 -2271.459 -0.05419 * 
      

 
-0.66675 0.266219 -2276.008 -0.07546 * 

      

 
-0.54270 0.271863 -2248.582 -0.05784 

       

 
-0.19054 0.264969 -2251.489 -0.01889 
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Results Burr Beta Soybean - Frank 
  

Normal 
    

            Rho Rho-Hat Std.Error Max likelhd K Tau 
 

Rho Rho-Hat Std.Error Max likelhd K Tau 
 -8 -8.43286 0.44770 -2479.117 -0.62018 

 
-0.5 -0.4507 0.03576 -2619.598 -0.2832 

 

 
-7.81429 0.42624 -2482.854 -0.59356 

  
-0.4456 0.03609 -2713.94 -0.2851 

 

 
-7.71796 0.42230 -2543.013 -0.59660 

  
-0.5222 0.03249 -2726.879 -0.3507 

 

 
-7.81605 0.43352 -2438.745 -0.58871 

  
-0.5595 0.03031 -2652.884 -0.3781 

 
            -5 -5.11138 0.34856 -2615.552 -0.46034 

 
-0.3 -0.3395 0.03957 -2724.852 -0.2167 

 

 
-5.11138 0.34856 -2615.552 -0.39527 

  
-0.3204 0.04028 -2692.837 -0.1951 

 

 
-4.07331 0.32226 -2641.919 -0.39296 

  
-0.3089 0.04058 -2761.229 -0.1868 * 

 
-4.76770 0.34487 -2573.277 -0.42703 

  
-0.3347 0.03950 -2753.209 -0.2030 * 

            
-2 -1.53019 0.27593 -2711.205 -0.16752 

 

-
0.25 -0.2227 0.04243 -2741.291 -0.1381 * 

 
-2.15697 0.28922 -2757.247 -0.22455 

  
-0.2553 0.04159 -2710.894 -0.1680 

 

 
-2.20348 0.28575 -2712.739 -0.23117 

  
-0.2685 0.04177 -2719.647 -0.1718 

 

 
-1.90631 0.27903 -2726.567 -0.20452 

  
-0.1962 0.04271 -2772.676 -0.1253 * 

            -1.5 -1.15187 0.26585 -2778.078 -0.13063 
 

-0.2 -0.2424 0.04198 -2713.825 -0.1475 
 

 
-1.46727 0.27813 -2761.454 -0.15700 * -0.2971 0.04101 -2713.679 -0.1930 * 

 
-1.66505 0.27921 -2753.13 -0.17941 

  
-0.2116 0.04322 -2750.007 -0.1368 * 

 
-1.64666 0.27706 -2791.327 -0.17772 ** -0.2778 0.04158 -2700.298 -0.1652 

 
            

-1 -1.10853 0.26680 -2704.732 -0.12473 
 

-
0.15 -0.1931 0.04359 -2759.248 -0.1225 * 

 
-0.85754 0.26818 -2762.636 -0.09544 * -0.1031 0.04459 -2741.615 -0.0621 * 

 
-1.13774 0.27620 -2766.48 -0.12273 * -0.1341 0.04417 -2759.977 -0.0861 * 

 
-0.88314 0.26885 -2724.841 -0.10020 

  
-0.1720 0.04317 -2715.891 -0.1226 

 
            

      
-0.1 

-
0.06167 0.043938 -2754.97 -0.0234 * 

       
-0.1115 0.043238 -2754.517 -0.0753 * 

       

-
0.16992 0.043779 -2717.68 -0.0994 

 

       

-
0.11969 0.044255 -2710.982 -0.0657 

 
            

      

-
0.05 

-
0.14546 0.043579 -2775.621 -0.0833 * 

       

-
0.18739 0.043671 -2731.419 -0.1237 

 

       
-0.1308 0.044394 -2780.231 -0.0889 * 

       

-
0.18285 0.042991 -2717.087 -0.1093 
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Appendix 3. 

 

 

 

 

 

xis

y
is

z
m

a
t

Corn Normal Cpla,rho=-.075



28 
 

 

 

 

 

0.5 0.6 0.7 0.8 0.9

1
5

0
2

0
0

2
5

0
3

0
0

3
5

0

Corn Normal Cpla,rho=-.075



29 
 

 

 

 

 

 

 

 

0
.5

0
.6

0
.7

0
.8

0
.9

150200250300350

C
o

rn
 N

o
rm

a
l 

C
p

la
,r

h
o

=
-.

1

0
.5

0
.6

0
.7

0
.8

0
.9

150200250300350

C
o

rn
 N

o
rm

a
l 

C
p

la
,r

h
o

=
-.

0
7
5

0
.5

0
.6

0
.7

0
.8

0
.9

150200250300350

C
o

rn
 N

o
rm

a
l 

C
p

la
,r

h
o

=
-.

0
5



30 
 

 

 

 

 

 

xis

y
is

z
m

a
t

Corn Frank Copula,rho=-0.5



31 
 

 

 

 

0.4 0.5 0.6 0.7 0.8 0.9

1
5

0
2

0
0

2
5

0
3

0
0

3
5

0

Corn Frank Copula,rho=-0.5



32 
 

 

 

 

 

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

150200250300350

C
o

rn
 F

ra
n

k
 C

o
p

u
la

,r
h

o
=

-0
.2

5

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

150200250300350

C
o

rn
 F

ra
n

k
 C

o
p

u
la

,r
h

o
=

-0
.5

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

150200250300350

C
o

rn
 F

ra
n

k
 C

o
p

u
la

,r
h

o
=

-0
.7

5



33 
 

 

 

 

 

xis

y
is

z
m

a
t

Soybn Normal Cpla,rho=-.15



34 
 

 

 

 

0.5 0.6 0.7 0.8 0.9

3
0

0
4

0
0

5
0

0
6

0
0

7
0

0
8

0
0

Soybn Normal Cpla,rho=-.15



35 
 

 

 

 

 

 

 

0
.5

0
.6

0
.7

0
.8

0
.9

300400500600700800

S
o

y
b

n
 N

o
rm

a
l 

C
p

la
,r

h
o

=
-.

2

0
.5

0
.6

0
.7

0
.8

0
.9

300400500600700800

S
o

y
b

n
 N

o
rm

a
l 

C
p

la
,r

h
o

=
-.

1
5

0
.5

0
.6

0
.7

0
.8

0
.9

300400500600700800

S
o

y
b

n
 N

o
rm

a
l 

C
p

la
,r

h
o

=
-.

1



36 
 

 

 

 

 

 

xis

y
is

z
m

a
t

Soybean Frank Copula,rho=-1.5



37 
 

 

 

 

0.4 0.5 0.6 0.7 0.8 0.9

3
0

0
4

0
0

5
0

0
6

0
0

7
0

0
8

0
0

Soybean Frank Copula,rho=-1.5



38 
 

 

 

 

 

 

 

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

300400500600700800

S
o

y
b

e
a

n
 F

ra
n

k
 C

o
p

u
la

,r
h

o
=

-1

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

300400500600700800

S
o

y
b

e
a

n
 F

ra
n

k
 C

o
p

u
la

,r
h

o
=

-1
.5

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

300400500600700800

S
o

y
b

e
a

n
 F

ra
n

k
 C

o
p

u
la

,r
h

o
=

-2



39 
 

Appendix 4. 

 


