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Large Deviations Approach to Bayesian
Nonparametric Consistency: the Case of
Polya Urn Sampling

Abstract

The Bayesian Sanov Theorem (BST) identifies, under both correct and in-
correct specification of infinite dimensional model, the points of concentration
of the posterior measure. Utilizing this insight in the context of Polya urn sam-
pling, Bayesian nonparametric consistency is established. Polya BST is also used
to provide an extension of Maximum Non-parametric Likelihood and Empirical
Likelihood methods to the Polya case.
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Abstract investigations. Surveys of the subject include [7], [9],
[25], [23], [24], [26].

The Bayesian Sanov Theorem (BST) identifies, undery;qre formally, as in [7], consistency of a sequence

both correct and incorrect specification of infinite digs posteriors with respect to a metidccan be defined

mensional model, the points of concentration of the: toows: The sequencgr(-[X"),n > 1} is said to

posterior measure. Utilizing this insight in the conteXe §-consistent at. if there exists aQo C R® with

of Pblya urn sampling, Bayesian nonparametric consi&no) = 1 such that for® € Qo, for every neighbor-

tency is established.dia BST is also used to providengoqu of r, (U[X") — 1 asn goes to infinity. If a

an extension of Maximum Non-parametric Likelihoogssterior isd-consistent for any € @ then it is said to
and Empirical Likelihood methods to théla case. e g-consistent. There, two modes of convergence are
Keywords: PolyaL-divergence, Bayesian Maximum (A Posusually considered: convergence in probability and al-
teriori) Probability method, Maximum Non-parametric Likemost sure convergence adds usually either Hellinger
lihood method, Empirical Likelihood method distance or a metric which metricizes weak topology.

AMS: 60F10, 60F15 Freedman’s [5] classic theorem on Bayesian non-
parametric consistency fof taking on values from a
. finite setwas in [1], [2], and independently in [6] proved
1 Introduction by means of a Bayesian Sanov Theorem (BST). In [11]
the consistency was via BST established for a countable
In Bayesian nonparametric (or infinite dimensionabet of densities. BST (a.k.a. Sanov Theorem for Sam-
statistics a strictly positive prior is put over a SBt pjing Distributions) is Bayesian counterpart of Sanov
of probability distributions. In this context lat be Theorem for Empirical Measures [21], [3]. The latter
the true data sampling distribution of a random sam 5 pasic result of Large Deviations (LD) theory [4].
ple X" £ X3,Xp,...,%. Provided thar € ®, as the |p theory is a sub-field of probability theory where,
sample size grows to infinity, the posterior distribynformally, the typical concern is about the asymptotic
tion z(-[X" = x") over ® is expected to concentrateyenhavior, on a logarithmic scale, of the probability of a
in a neighborhood of the true sampling distribution given event. To promote and extend the Bayesian large
Whether and under what conditions this indeed hagsviations approach, we study Bayesian nonparamet-
pens is a subject of Bayesian nonparametric consistegYconsistency for a basic ndit+ setting, where data
*Department of Mathematics, FPV UMB, Tajowio 40, 974 01 are drawn according to multicoloroya urn scheme.
Bansk Bystrica, Slovakia; Institute of Mathematics and CS of thé/e demonstrate that data sampling distributions from
Slovakfgfgeé“ni’af;f. i‘iﬁgaesréﬁdA;)(v@'::\%:teskowaisour;exgssﬂﬁe setb asymptoticallya posterioriconcentrate on the
Egﬁ?:eoshould be ad.dressed..gSupported by V.EG.A 1/3016/06 grar?t%lya L-projection(s) of the true sampling C.iIStrIbu.II.O.n
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sented in this paper we extend EL and Maximum Nomtersection of® with the set of all possible configu-
parametric Likelihood methods to théblga sampling rations of theN-urn. Let ®y be the support of prior
case. distributionz(gV) of initial configurationgg™ of N-urn.

The paper is organized as follows. Firsglya urn LetrN be the true initial configuration d-urn where
sampling is briefly described. Next, the urn is embed® is not necessarily ifby. FromrN a sequence”
ded into a Bayesian setting. Thélfa L-divergence, is drawn according to thed®a sampling scheme, that
which governs the exponential decay of posterior proe characterize by the parameterConsequently, un-
ability, is introduced next and then a Bayesian Sander this framework the bayesian arrives at the posterior
Theorem for Blya Sampling is stated and proved. lprobability distributiorv (g™ | X" = x"; ¢) of initial con-
directly implies Bayesian nonparametric consistendigurations of theN-urn.
Next, the consistency result is used to provide an exten-
sion of Maximum Non-parametric Likelihood and Em- . .
pirical Likelihood methods to thetfya sampling case.4 POIya L'dlvergence
Finally, using the Bayesian large deviations approac}*he

we provide a couple of insights into Bayesian consis- Rolya I._-divergenceLE(qH P) F’f the probability
tency. mass function (pmfg € £(%2") with respect to pmf

pe Z(Z)is

2 Multicolor P olya Urn Sampling  5(q)jp) ipi l0g(Gi + ep)+

Consider an urn containing; > 0 balls of colorsi, 1 m a
i=1,2,...,m; and letm be finite. There is a total num- + R_ZQi |Ogm~
berN 2 sM, & of balls in the urn and when it is nec- = '
essary to stress it, the urn will be called ldrurn. We
identify the set of possible colors with suppait of a m
random variablé&. A single ball is drawn from the urn, iz pilogg — 1.
recorded and then returned together with Z balls of L(d + Bepl[p) + g1 (allq + Bcp), where using
the same color. Assumingnc < min(og,op,...,0y), Standard conventions!(-||-) is the I-divergence
the drawing is repeatattimes. This sampling is knownl(a||b) £ ¥ & Iog% [3]andL(-||-) is theL-divergence
as the multicolor Blya Eggenberger (PE) urn scheme;(p||a) £ — v alogh; [10], [11]. Though base of the
c.f. [8], [22], [15]. Prominent special cases of the Plggarithm is immaterial, the natural logarithm will be
scheme areiid sampling ¢ = 0), sampling without re- |;ge(.

placement¢ = —1), and the case af= 1. The Rolya LS -projectiond’of p on </ C (%) is

Given the PE scheme, the probability(X" = . _ . ¢ C A
x| qV;c) that a sequence’ of n balls will be drawn O argine. L (qll p). The value ofl;-divergence

from initial configurationg™ of N balls is (c.f. [22], at aang—pr.oj.ection ofp on_b@.% 's denoted b)L%(;z%Hp).
[15]): Hereafter it is assumed finite.

lI>

By the continuity argument Lg(CIIIIO)
More concisely, L% (allp) =

n_ o oN. oy o ing (e +¢) - (04 + (i — 1)) :
n(X"=x"q";c) = NNTo . (Nt(-Do 5 Bf'alye5|an S_anov Theorem for
(1) Polya Sampling

where vectog consists off¥ £ %, andn; is the num-

ber of occurrences of thieth outcome from#” in the Sanov Theorem for Empirical Measures [21] is well-

samplex",i=1,2,...,m. known; reader is directed to [4], [3]. Initiated by [18],
the Sanov Theorem ford®a Sampling was recently

) ) proven in [12]. The Bayesian counterpart of Sanov

3 BayeS|an Embeddlng Theorem was to the best of our knowledge first stud-
ied in [1] and [2] and independently in [6]. Our proof

Let 22(2") be set of all probability mass functions witrof Bayesian Sanov Theorem (BST) fobliza Sampling

the supportZ”. Let ® C £(Z") and letdy denote is based on [11], and also utilizes tools from [12].




Asymptotic investigations of posterior consistency € {m Zn} and v" is the empirical measure induced
will be carried on under the following assumpt|onsn1) by the sample&™.
andN go to infinity in such away thgi(n) £ § — B € Next, we use the simple bounds of [11] to develop
(0,1) asn — oo, 2), rN converges in the total variationthe upper upper bourid,, by U, and lower bound., by

metrics tor € #(27) asn — o . L, as follows:
Topological qualifiers are meant in topology induced "
on them-dimensional simplex by the usual topology on O nm, e"(@ (). )
K " @), @ @eHd)
Bayesian Sanov Theorem for Blya Sampling. Let . (6} 1),1)
o/ C ® be an open set. Lg(n) — B € (0,1), N —r L,= i=1 par
as n— oo, Then, for n— oo, (@) my (@ (®.2).3)
1 N n. . _ c c where
~log(a" € o/ |X"0) = f{Lﬁ(xzf’Hr)fLﬁ(d)Hr)}
. - m
with probability one. qN(y,a) 2 arg N‘Q’up. I(qiN,oc),
Proof. The proof will be constructed separately tor aesi=
0,c<0,c=0. N Iogn(q )
N - - <, a) =arg su (g, 00) ————= | .
Forc#0A "2 ¢ (Z )m/\%¢Z , formula (1) can G°( gqu/R<Zl a

equivalently be expressed as [15]:

N r By the Strong Law of Large Numbers fobRa Sam-
(x| qN.C> (E) il ( + n.) 2) pling (which follows from [12], Thm. 2 and Borel Can-
' r(Y+n) l_l r (M) ’ telli Lemma), v — r, almost surely, as — . The
¢ PolyaL-divergence is continuous and. is open, by
whererl (+) is the Gamma function. assumption. Thu% logU;, converges, with probability
The following bounds [16] on the Gamma functiogne, to— |_c (o ||1)— L%(q;“r) . asn — oo. This is
I(-) are imposed:

the same as the 'point’ of almost sure convergence of
(b) logL, and the Theorem far > 0 is thus proven.
(b—1)logb—(a—1)loga— (b—a) < Iog@ < Forc £ 0A (1— NT.q) ¢ (Z)MA(1— %) ¢ 7, the
formula (1) can equivalently be expressed as (cf. [12]):
(b— ) logb— (a— > loga—(b—a), (3)

it M%)
which is valid for 0< a < b. (x| qV;c) = c )
Let c > 0 and note that the other restrictions under B E r (1— < — nl)
which (1) and (2) are equivalent are not active, since 4)
—nc< min(oy, a,...,am). We use the bounds in (3) Let c < 0. Note that the other restrictions under
to get the upper bound, of the probabilityz(qN € which (1) and (4) are equivalent are not active, since

o |X";¢): —nc < min(oy, o, ..., an). The proof then can be
Ny mm i@V L) constructed along the same lines asdor 0. At the
Uy = S T(AY) L, €M% final stage one arrives at an expression of the form
- N1 . o T
S o m(aN) ML, €10 i {( n)log (7_“) (ﬁ%)log(ﬁ%)}
and the lower bountl,, similarly (to getLn just replace Which, after little algebra, can be seen to be tiotyR
1/2nwith 1/nin Uy). There, L-divergence. o
The case oft = 0 (i.e., iid urn) has already been
N A N N studied in [11]. The exponential decay rate function is
G, o) = — B(n)c 9 B(n)c + L(<||r) —L(®||r), which is the same asg(sz%Hr)—
qV qV ] L3 (®||r), implied by the continuity of the élya L-
+ (ﬁ(n)c +v - > log ([S(n)c Vi > ) d|vergenceLC( [|)- O



6 Bayesian Nonparametric Con-  Forn, N not sufficiently large, there are two possi-
; ; bilities. It is possible either to select the initial con-
SIStenCy for Fblya Samp“ng figuration with highest value of the posterior probabil-
o1 NN _nroiecti n
Bayesian nonparametric consistency fasly@ sam- |tyN 7(q™|v7;c) or the Rlya L-projection of v on
SO i PN, As n — o, the two methods select the same
pling is just a corollary of the abovebRa BST. ) .
To see this let fo > 0, #/S(®) 2 {q: L&(q||r) configuration(s). Obserye thqt whe:n; 0, the Igt—
. 1 e "B ter method selects configuration(s) with the highest
Ls(®llr) > e.q€ @} value of non-parametric likelihoogl™ ; vi"logg. Polya
n . BST thus extends Maximum Non-parametric Likeli-
Corollary. Let there be a finite number ofoRa 444 (MNPL) method into the 8ya sampling: Blya

L—;(J:rojectir(])ns of ron® As n— o, 7(q € \NPL selects the urn configuration(s) with the highest
A7 (P)|x"; ¢) — 0O, with probability one. value of negative o[g(q|| V).

. . . %n the case ofid sampling it was observed (cf. [13])
Standard Bayesian consistency (i.e., under corr%:at the Bavesian Sanov Theorem 111 provides a prob-
specification;r € ®) follows as a special case of the yesl v [11] provi P

Corollary. abilistic Bayesian interpretation and justification of Em-

. . irical Likelihood method [19], [17] in the parame-
Informally, the posterior probability concentrates OF'er estimation context [20]. EL, viewed as estimation
the Fblya L-projections ofr on ®. Observe that the ) '

Polva L-proiection off on ® is an asvmpiotic .nstancemethod, double-maximizes the non-parametric likeli-
of ti/]e srfmjlin ' distribution Ivvith the{‘,upre%all (ovRY hood criterial function subject to parametrized con-
value of thg pogsterior probability; hencgit is asymptotlsctraints [20], [19], [17]. The above discussion thus di-
form of the Maximum A-posteriori Probable samplin réctly shows how to extend EL into thélya sampling

L $ramework: the negative ofdya L-divergence has to
distribution. - : . .
be double-maximized subject to parametric constraints.

7 MNPL and EL in P 6lya case 8 Summary

Consider the problem of selecting an initiadliza urn The main advantage of Bayesian Sanov Theorem (BST)
compositiongY from a set® of such compositions, approach to Bayesian nonparametric consistency over
when there is a sampbé (or empirical pmfyv" which the traditional one lays not that much on the technical
the sample induces) drawn from the 'true’ ufh, ac- side as on the conceptual one. BST identifies the rate
cording to PE sampling scheme with parametd®lya function governing exponential decay of the posterior
BST dictates that we select in the asymptotic case:( measure, and this in turn identifies 'points’ of concen-
0o, V' —r, B(n) — B) Llcs-projection or on®. tration of the posterior as those distributions which min-
Most commonly® is formed by moment constraintdMize the rate function. In the caseiofd. sampling the
that define a linear family of distributions’(u) £ {q: Posterior concentration ‘points’ identified by BST are
S 2 Gi(Uj(x)—aj) = 0,j = 0,1,2,...,J}, whereu; is th_ose dlstrlbutlonq\‘/vmch in the fea§|bl_e seb maxi-
a real-valued function o, up = 1 € R™, ac R¥+1, mize [rlogq. If ® is the set of all distributions (with
ao = 1. The Plya L-projection which Blya BST se- the same support), themis unique and equal. Tra-

lects in this case has the form ditional approaches to Bayesian nonparametric consis-
tency do not see the concentration point (ire.under
N Beri correct specification) as a solution of the optimization
di (ﬁ,C,A) = J U (x ) ’
eﬁCZj:OA’J (uj(x)—aj) 1 problem.
BST also shows that the ’points’ of asymptotic con-
whereA € R+ are Lagrange multipliers. centration of posterior probability are asymptotic in-

If the choice is to be made among all possigle Stances of posteriorimost probable (MAP) sampling
for a fixed, sufficiently largé\, then by Blya BST, we distributions. This fact implies that the mean posterior
should select the d¥ya L-projectiong(,c,A) of r on sampling distribution (i.e., the predictive distribution)

32(%)! which in this case is jUST, regardless of and IHence the name of the method associated with this selection
ﬁ. scheme: Bayesian Maximum Probability method; cf. [14]




is, in general, not the point of convergence under mis7] Ghosal, A., Ghosh, J. K. and R. V. Ramamoor-
specification.

In this paper we have used under th#yR sampling
scheme the Bayesian Sanov Theorem (BST) to identify
sampling distributions, on which the posterior proba-
bility asymptotically concentrates. This way, Bayesian

nonparametric consistency foblja sampling was es-

tablished both under correct specification of model as
well as under misspecification.

In [13] it was pointed out that the non-parametric
likelihood criterion, as well as methods that are baseEJQ]
on its maximization (i.e., Maximum Non-parametric
Likelihood (MNPL) and Empirical Likelihood (EL)
methods) are limited to independent sampling. Thegg
point was made on the grounds of a Bayesian large
deviations interpretation of the methods. On the same
ground the Blya extension of BST implies that under
Polya sampling it is the 8lya non-parametric likeli- [11]
hood function (i.e., negative of theédRa L-divergence)
that has to be maximized.

[12]
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