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Consistency of Empirical Likelihood and

Maximum A-Posteriori Probability

Under Misspecification

Abstract

Using a large deviations approach, Maximum A-Posteriori Probability (MAP)
and Empirical Likelihood (EL) are shown to possess, under misspecification, an
exclusive property of Bayesian consistency. Under conditions of consistency,
regardless of prior the MAP estimator asymptotically coincides with EL. The
consistency property is also studied for sampling processes other than iid.



CONSISTENCY OF EMPIRICAL LIKELIHOOD AND
MAXIMUM A-POSTERIORI PROBABILITY UNDER

MISSPECIFICATION

By Marian Grendár∗ and George Judge

Bel University and University of California, Berkeley

Using a large deviations approach, Maximum A-Posteriori Prob-
ability (MAP) and Empirical Likelihood (EL) are shown to possess,
under misspecification, an exclusive property of Bayesian consistency.
Under conditions of consistency, regardless of prior the MAP estima-
tor asymptotically coincides with EL. The consistency property is
also studied for sampling processes other than iid.

1. Introduction. Owen’s [26], [27] Empirical Likelihood Theorem lays
at the ground of Empirical Likelihood (EL) approach to inference, which
is based on nonparametric likelihood ratio statistic. Building on Owen’s
result, Qin and Lawless [28] formulated EL with Estimating Equations (EE)
and demonstrated under a basic set of regularity conditions, asymptotic
normality of the resulting EL estimator. These two results turned EL into
an attractive ’orthodox’ semiparametric method of estimation and inference,
that encapsulates the Maximum Nonparametric Likelihood method (MNPL)
as a nonparametric special case.

Recently, Schennach [32] noted that the empirical likelihood function ’has
not formally been shown to have a well-defined probabilistic interpretation
that would justify its use in Bayesian inference’. The only convincing evi-
dence supporting its Bayesian use comes from [22]. In [22] Lazar listed pos-
sible ways of turning EL into a Bayesian method and used the framework of
Monahan and Boos [24] to assess by Monte Carlo simulations whether poste-
rior density obtained from applying Bayes rule with empirical likelihood can
be interpreted as the usual posterior obtained from model-based likelihood.
Owen ([27], Chap. 9) notes a similarity between the EL and the Bayesian
bootstrap [30], when in the latter, so-called non-informative Dirichlet prior
distribution is assumed, however Sethuraman and Tivary [34] argue that
such a prior is in fact highly informative. In order to provide an interpreta-
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2 M. GRENDÁR AND G. JUDGE

tion of EL, Schennach [32] proposed a specific prior over a set of sampling
distributions to get a Bayesian procedure that admits an operational form
similar to EL. In [29] a different prior over the set of probability measures
is considered and a group of EL-like methods is obtained.

In this paper, we use a large deviations approach to study Bayesian consis-
tency under misspecification, in nonparametric and semiparametric models.
The large deviations approach leads to the Bayesian Law of Large Num-
bers (BLLN) which means that in an infinite dimensional, possibly mis-
specified model Φ, the posterior weakly concentrates on L-projections of the
’true’ sampling distribution on Φ. There are two methods which comply with
BLLN and hence satisfy the consistency requirement: Bayesian Maximum
A-Posteriori Probability (MAP) and ’orthodox’ Maximum Non-Parametric
Likelihood (MNPL), or in a semiparametric model, Empirical Likelihood
(EL). Under the conditions of BLLN, regardless of prior, Bayesian MAP
asymptotically turns into MNPL/EL. MAP and EL can be viewed, in terms
of point estimation, as asymptotically identical methods. Consequently this
sheds a new light on EL. The BLLN is demonstrated for independent, iden-
tically distributed (iid) data, multicolor Pólya sampling process, and right-
censored data.

1.1. Problem statement and theoretical base. Given a sample of data,
selecting a sampling distribution from a set Φ of such a distributions, is an
important statistical problem. In this context Φ can be parametrized by a
finite or infinite-dimensional parameter. The flexibility of the nonparametric
(i.e., infinite-dimensional) model can be combined with advantages of finite
parametrization. For instance, assume that a researcher is not willing to
specify a parametric family q(x; θ) (θ ∈ Θ ⊆ Rm, m finite) of data-sampling
distributions, but is only willing to specify some of its underlying features.
These features, i.e., the model Φ(Θ), can be characterized by Estimating
Equations (cf. [12], [23], Chap. 11): Φ(Θ) ,

⋃
Θ Φ(θ), where Φ(θ) , {q(x; θ) :∫

q(x; θ)uj(x; θ) = 0, 1 ≤ j ≤ J}, θ ∈ Θ ⊆ RK , and J – the number of
estimating functions u(·) – need not be equal to the number K of parameters.
In general, a feasible set Φ(Θ) of nonparametric sampling distributions which
are indexed by a parameter θ, can be formed in a way other than by EE.
The purely nonparametric Φ is contained in Φ(Θ) as a special case. The
problem of selection of sampling distribution from Φ(Θ) can be considered
also in Bayesian framework, where if a prior distribution Π over the set Φ(Θ)
is assumed, a prior distribution Π(θ) over Θ is induced.

In practice, the ’true’ data sampling distribution r(X; θ) need not belong
to the model set; i.e., the model can be misspecified. Assuming the Bayesian
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framework, it is of interest to know the sampling distribution(s) on which
the posterior measure concentrates, as n, the sample size gets large. Impor-
tance of the frequentist concept of consistency for Bayesian statistics can be
justified both from subjectivist and objectivist Bayesian positions; cf. [38]
or [11], Chap. 4.

We use a Large Deviations (LD) (cf. Ben-Tal, Brown and Smith [1], [2],
Ganesh and O’Connell [9]) approach to Bayesian nonparametric consistency.
The approach results in a Bayesian Sanov Theorem (BST) and its corollary
the Bayesian Law of Large Numbers (BLLN) which establishes the consis-
tency. LD theory is a sub-field of probability theory where, informally, the
typical concern is about the asymptotic behavior, on a logarithmic scale,
of the probability of a given event. The Bayesian Sanov Theorem identi-
fies the rate function governing exponential decay of the posterior measure,
and this in turn identifies the sampling distributions on which the posterior
concentrates, as those distributions that minimize the rate function. Cur-
rently used approaches to Bayesian nonparametric consistency (cf. [37]) do
not recognize this concentration of the posterior measure as a solution of
the optimization problem.

The Bayesian Law of Large Numbers may be, informally, stated as follows:
if the prior over a set Φ of sampling distributions, which might not include
the ’true’ distribution with pdf r, satisfies certain conditions, then the pos-
terior asymptotically concentrates (a.s. r∞) on weak neighborhoods of the
L-projections of r on Φ. L-projection q̂ of r on Φ is q̂ = arg infq∈Φ L(q || r),
where L(q || r) is the L-divergence of pdf q wrt r. In the case of iid sampling,
L(q || r) = −

∫
r log q.

If the conditions of the BLLN, called Schwartz conditions, are satisfied,
then it can be shown (cf. Lemma 2.2, Sect 2.1) that distributions that max-
imize the nonparametric likelihood asymptotically (a.s. r∞) turn into L-
projections. Hence, selecting Maximum Non-Parametric Likelihood (MNPL)
sampling distribution(s) complies with BLLN. In similar manner, it can be
shown (cf. Lemma 2.1, Sect 2.1) that also distributions with the highest value
of posterior probability asymptotically (a.s. r∞) turn into L-projections.
Hence, selection of Maximum A-posteriori Probable (MAP) distributions
also satisfies the consistency requirement. To sum up, under misspecification
MNPL and MAP are the only two methods with the Bayesian nonparametric
consistency property. Selection of a posterior mean, or sampling distribution
that minimizes say Kullback Leibler distance I(q || r) =

∫
q log q

r wrt q, in a
misspecified case, would in general, violate the BLLN.

The BLLN directly applies also to ’semiparametric’ models Φ(Θ), where
it achieves consistency under misspecification for MAP and the Empirical
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Likelihood.
Lemmas 2.1 and 2.2, which are a by-product of the BLLN, make it possible

to address in a new way the lack of probabilistic Bayesian interpretation,
mentioned by Schennach. The lemmas demonstrate that EL (or MNPL) and
MAP estimators asymptotically coincide.

In other words, if the Schwartz conditions are satisfied, then regardless
of the prior used in Bayesian nonparametric model, the Bayesian MAP es-
timator asymptotically turns into MNPL estimator; or EL estimator in the
semiparametric case. However, it should be added with the same breath that
distributional asymptotic properties of MNPL and MAP might be different,
since the Bernstein - von Mises theorem does not apply even for a simple
infinite dimensional models; cf. Freedman [8].

1.2. Organization of the paper. In Sect. 2.1 formal framework is estab-
lished and Bayesian nonparametric consistency is defined. There, also L-
divergence is introduced and the BST and BLLN theorems are proven for
the iid case. In Sect. 2.2, the BST and the BLLN for the semiparametric
model, based on Estimating Equations, are discussed. It is shown there that
the L-projection, singled out by the BLLN, is an asymptotic form of the EL
and MAP estimators. In order to further explore consistency under misspec-
ification and expand the scope of the related asymptotic connection between
MNPL/EL and MAP, we prove the BLLN also for multicolor Pólya sampling
process (Sect. 2.3) where using the BLLN suggests two possible variants of
MNPL; and for right-censored data (Sect. 2.4), showing that Kaplan Meier
estimator is asymptotic form of Bayesian MAP. In Section 3, a few open
problem are briefly formulated.

2. Bayesian LLN’s, MNPL, EL and MAP. The BLLN is a Corol-
lary of a Sanov Theorem for Sampling Distributions which we call the baye-
sian Sanov Theorem (BST), for short. The BST is Bayesian counterpart of
a Sanov Theorem for Empirical Measures (cf. [31], [3] Sect. III, VII and
references cited therein). The latter, as well as its corollary, the Conditional
Law of Large Numbers, are basic results of Large Deviations (LD) theory
(cf. [3], [5]). The LD theorems for empirical measures have a bearing for the
Relative Entropy Maximization method, and, as it was recognized in [19],
also for its estimating equations extension: Exponential Tilting [15], [18],
aka Maximum Entropy Empirical Likelihood [23]. In fact, the work [19] of
Kitamura and Stutzer served as a starting point for our attempt to provide
a similar underpinning to the MNPL and EL methods. It turned out, that
this is only possible in a Bayesian framework.
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2.1. BLLN for iid sampling. Let P be the set of all probability measures
on (R,B), which are dominated by the Lebesgue measure. Let X1, X2, . . .
be iid random variables, that take values in (R,B), with probability density
function (pdf) r, where probability densities are denoted by lower case. P
is endowed with weak topology. Let Φ ⊆ P. It is assumed that r, the true
sampling distribution, is not necessarily in Φ. Let σ(P) be a Borel σ-field
on P. A positive prior Π is put on (P, σ(P)) that is strictly positive over Φ.
The prior combines with data Xn

1 , X1, X2, . . . , Xn to define the posterior
distribution

Πn(Q|Xn
1 ) =

∫
Q e−ln(q)Π(dq)∫
Φ e−ln(q)Π(dq)

,

where ln(q) , −
∑n

i=1 log q(xi) (log means the base e); Q ⊆ Φ.
Let d be a metric on P. The sequence {Πn(·|Xn

1 ), n ≥ 1} is said to be
d-consistent at r, if there exists a Ω0 ⊂ R∞ with r(Ω0) = 1 such that for
ω ∈ Ω0, for every neighborhood U of r, Πn(U |Xn

1 ) → 1 as n goes to infinity.
If a posterior is d-consistent for any r ∈ Φ then it is said to be d-consistent.
If the consistency holds for Hellinger distance, then the posterior is strongly
consistent. If convergence holds in weak topology, the posterior is said to be
weakly consistent. In [36] a decision-theoretic argument is proposed, in favor
of weak consistency. Surveys of Bayesian nonparametric consistency can be
found in [11], [10], [38].

To the best of our knowledge, Ben-Tal, Brown and Smith [1] were the
first to use an LD approach to Bayesian nonparametric consistency. The
authors showed consistency for X taking values from a finite set X and
possibly misspecified model. Recently, independently Ganesh and O’Connell
[9] established the first formal BST, for finite set X and a well-specified
model. Here we develop the BST and the BLLN for X = R and a possibly
misspecified model. Using techniques other than LD, consistency in Hellinger
distance and under misspecification was studied by Kleijn and van der Vaart
[20].

The key quantity that governs the LD exponential decay of the poste-
rior Πn(Q|Xn

1 ) is in the iid case the L-divergence of q ∈ P wrt p ∈ P:
L(q || p) , −

∫
p log q; cf. [13]. In the discrete case L-divergence appears

in Freedman’s ([7], Thm 1) as ’entropy’. If p is an empirical pmf, then L-
divergence appears as Kerridge’s inaccuracy [17], [21], which is just the neg-
ative of the nonparametric likelihood. The L-projection q̂ of p on Q ⊆ P is
q̂ , arg infq∈Q L(q||p). The value of L-divergence, at an L-projection of p on
Q, is denoted by L(Q||p).

Finally, let for p, q ∈ P, ε > 0, Bε(q, p) , {q′ ∈ P : L(q′ || p)− L(q || p) <
ε}. For A ⊆ P, Bε(A, p) , {q ∈ P : L(q || p)− L(A || p) < ε}.
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Using this notation, the BST can be stated as follows:

Theorem 2.1. (BST) Let Xn
1 be i.i.d. r. Let Q, Φ be open in weak

topology; Q ⊂ Φ ⊆ P. Let L(Q || r) < ∞; for any ε > 0, let Π(Bε(Q, r)) > 0
and Π(Bε(Φ, r)) > 0. Then for n →∞,

1
n

log Πn(q ∈ Q|Xn
1 ) = −{L(Q || r)− L(Φ || r)}, a.s. r∞.

Proof. For S ⊆ P, ln(S) , infq∈S ln(q). Let for ε > 0, Bn
ε (S) , {q :

ln(q)− ln(S) < ε}. Then
∫
A e−ln(A)Π(dq), A = {Q,Φ}, can be bounded as:

e−ln(A)−εΠ(Bn
ε (A) ∩A) ≤

∫
A

e−ln(q)Π(dq) ≤ e−ln(A).

By lower-semicontinuity of L-divergence in weak topology and Strong
Law of Large Numbers (which can be applied, since L(Q || r) < ∞, by
assumption), 1

n ln(A) → L(A || r), a.s. r∞, as n → ∞. Thus, it holds:
lim supn→∞

1
n log

∫
A eln(q)Π(dq) ≤ −L(A || r). So, lim supn→∞Πn(Q|Xn

1 ) ≤
−{L(Q || r)− L(Φ || r)}. By the same argument (SLLN and continuity), for
sufficiently large n, Π(Bn

ε (A)) > 0, since Π(Bε(A, r)) > 0 by assump-
tion. As Bn

ε (A) ∩ A 6= ∅, thus limn→∞
1
n log Π(Bn

ε (A) ∩ A) = 0. Hence,
lim infn→∞Πn(Q|Xn

1 ) ≥ −{L(Q || r)− L(Φ || r)}.

The posterior probability Πn(Q|Xn
1 ) decays exponentially fast with the

decay rate L(Q || r)−L(Φ || r). The BST implies the Bayesian Law of Large
Numbers (BLLN).

Theorem 2.2. (BLLN) Let Φ ⊆ P be open in weak topology. Let 1) for
every q ∈ Φ, Π(Bε(q, r)) > 0, 2) L(Φ || r) < ∞. Let U ,

⋃
k W (q̂k, ε), be

union of weak ε-balls W (q̂k, ε) centered at L-projections q̂k, k = 1, . . . , κ,
κ < ∞, of r on Φ. Then,

lim
n→∞

Πn(q ∈ U |Xn
1 ) = 1, a.s. r∞.

Proof. Let Q ⊂ Φ be open sets in weak topology. First, let Q be any
set such that ∞ > L(Q || r) > L(Φ || r). Then assumptions of the BST are
satisfied, and the theorem implies that Πn(Q|Xn

1 ) → 0, a.s. r∞, as n →∞.
Note that L(Q || r) = ∞ for such Q that the L-projection q̂Q of r on Q
has support that is smaller than the support of r. However, for such a q̂Q,
the posterior probability would be zero. The posterior thus concentrates on
L-projections of r on Φ, provided that their support is not smaller than that
of r. This is guaranteed by the assumption L(Φ || r) < ∞.
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The BLLN Theorem is an extension of Schwartz’ consistency theorem
[33], to the case of a misspecified model. Assumptions 1 and 2 of the BLLN,
called hereafter Schwartz conditions, reduce in the well-specified case to the
Kullback Leibler support condition (cf. [33], [11], Thm. 4.4.2).

The next Lemma points out that the Bayesian Maximum A-Posteriori
Probability (MAP), which selects q̂MAP , arg supq∈Φ Πn(q |Xn

1 ) satisfies
the BLLN.

Lemma 2.1. Let Φ ⊆ P be open and Schwartz conditions be satisfied.
Then, as n → ∞, the set of MAP distributions M , {q̂MAP : q̂MAP =
arg supq∈Φ Πn(q |Xn

1 )} converges (a.s. r∞) to the set of L-projections of r
on Φ.

Proof. Thanks to the Strong LLN (SLLN), which can be applied under
the Schwartz condition 2, conditions for infimum of minus the logarithm of
the posterior probability (positivity of which is guaranteed by the Schwartz
condition 1) turn into those for L-projections.

Directly from the Strong LLN it follows that the Maximum Non-Parametric
Likelihood (MNPL), that selects q̂MNPL , arg infq∈Φ ln(q), satisfies the BLLN.

Lemma 2.2. Let Φ ⊆ P be open and Schwartz condition 2 be satisfied.
Then, as n →∞, the set of MNPL distributions converges (a.s. r∞) to the
set of L-projections of r on Φ.

The lemmas also mean that the MNPL and the MAP methods asymp-
totically select the same sampling distribution(s).

Next, we turn to semiparametric setting.

2.2. BLLN for the semiparametric Φ(Θ). Let X be random variable with
pdf r(X; θ) parametrized by θ ∈ Θ ⊆ RK . A Bayesian specifies a model Φ(Θ)
(cf. Sect. 1.1) and puts a positive prior Π over Φ(Θ), which in turn, induces
a prior Π(θ) over Θ; see Florens and Rolin [6], where also several models are
worked out, using a Dirichlet process prior. If requirements of the BLLN are
satisfied, then the posterior Πn(·|Xn

1 ) concentrates on weak neighborhoods
of L-projections q̂ of r on Φ(Θ)

q̂(x; θ̂) = arg inf
q(x;θ)∈Φ(θ)

inf
θ∈Θ

L(r || q(x; θ)).

The most common form of Φ(Θ) is the one defined by Estimating Equa-
tions (cf. Sect 1.1). In this case Φ(Θ) is also known as a linear family of distri-
butions, that we denote as L(u). The L-projection of r on L(u) can be found
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by means of the following Theorem 2.3. To state it, we introduce a Λ family
of distributions and recall a concept of support of a convex set. Let Λ be a
family of pdf’s: Λ(r, u, λ, θ) , {p ∈ P : p = r[1−

∑J
j=1 λjuj(·; θ)]−1, λ ∈ RJ}.

The support S(C) of a convex set C ⊂ P is just the support of the member
of C for which S(·) contains the support of any other member of the set.

Theorem 2.3. Let Φ = L(u). Let r ∈ P be such that S(r) = S(L). Then
the L-projection q̂ of r on Φ is unique and belongs to the Λ(r, u, λ, θ) family;
i.e., L(u) ∩ Λ(r, u, λ, θ) = {q̂}.

Proof. In light of Theorem 9 of [4] it suffices to check that q̂ = r[1 −∑J
j=1 λjuj(·; θ)]−1, with λ such that q̂ ∈ L(u), satisfies:

∫
S(r) r

(
1− q′

q̂

)
= 0,

for all q′ ∈ Φ, which is indeed the case.

The estimator θ̂ can, thanks to convex duality, be obtained as

θ̂ = arg inf
θ∈Θ

sup
λ∈RJ

L(r || q(x;λ, θ)),

where q(x;λ, θ) ∈ Λ(r, u, λ, θ). Since r is in practice not known, Kitamura
and Stutzer [18] suggested that L(r || q(x;λ, θ)) be replaced by its estimate
L̂(q(x;λ, θ)) , − 1

n

∑n
i=1 log q(xi;λ, θ). The resulting estimator

(2.1) θ̂EL , arg inf
θ∈Θ

sup
λ∈RJ

L̂(q(x;λ, θ))

is just the Empirical Likelihood (EL) estimator [28], [27], since (2.1) is a con-
vex dual problem to the following optimization problem, by means of which
EL is usually defined: q̂EL(x; θ̂EL) = arg supq(x;θ)∈Φ(θ) supθ∈Θ

∑n
i=1 log q(xi; θ).

Analogous to Lemma 2.2 it can be shown that the EL estimator q̂EL(x; θ̂EL)
asymptotically (a.s. r∞) turns into an L-projection of r on Φ(Θ). The same
holds for the MAP estimator

q̂MAP(x; θ̂MAP) = arg sup
q(x;θ)∈Φ(θ)

sup
θ∈Θ

Πn(q(x; θ)|xn
1 ).

Hence, the EL and the MAP estimators are consistent under misspecifica-
tion. This provides a basis for the EL approach as well for the Bayesian
MAP estimation.

In the univariate case, BST and BLLN (Thm 2.1, 2.2), X can be replaced
by a multivariate random variable and the theorems remain valid. Conse-
quently, the extension to Φ, constructed by multivariate EE, is also direct.
As an example, consider the linear regression model Y = α + βX + ε, with
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stochastic X. In EE this is usually approached through estimating equa-
tions: Φ(θ) = {q(x, y; θ) :

∫
q(x, y; θ)[Y − (α + βX)] = 0,

∫
q(x, y; θ)X[Y −

(α+βX)] = 0}, θ , (α, β) ∈ R2 ≡ Θ, which are based on the gaussian model
score equations. The multivariate BLLN shows that the posterior asymptot-
ically concentrates on the L-projections of r on Φ =

⋃
Θ Φ(θ). Again, there

are two methods which comply with the BLLN: EL and MAP.

2.3. BLLN for Pólya sampling. In this section we prove the BST and
the BLLN for multi-color Pólya urn - a simple sampling process where data
are neither identically nor independently distributed. The theorems can be
directly used also in a corresponding semiparametric Φ(Θ) setting.

The probability of a sample Xn
1 being drawn from a multicolor Pólya urn

with parameter c ∈ Z and initial configuration q(N) , (α1, . . . αm)/N , is
log Π(Xn

1 | q(N); c) ,
∑m

i=1

∑ni−1
l=0 [log(αi + jc)− log(N + jc)]; this is mean-

ingful if −n c ≤ min(α1, . . . , αm). We embed the sampling scheme into a
Bayesian nonparametric setting. To this end, let P(X ) be set of all prob-
ability mass functions with the support X = {x1, . . . , xm}. Let Φ ⊆ P(X )
and let Φ(N) denote intersection of Φ with the set of all possible config-
urations of the N -urn. Let Φ(N) be the support of the prior distribution
Π(q(N)) of initial configurations q(N). Let r(N) be the true initial config-
uration, where r(N) is not necessarily in Φ(N). As before, we are inter-
ested in the LD asymptotics of the posterior distribution Πn(q(N) |Xn

1 ; c).
Asymptotic investigations of posterior consistency will be carried on under
the following assumptions: 1) n and N goes to infinity in such a way that
β(n) , n

N → β ∈ (0, 1) as n →∞, 2), r(N) converges in the total variation
metrics to r ∈ P(X ) as n →∞. Topological qualifiers are meant in topology
induced on the m-dimensional simplex by the usual topology on Rm.

The exponential decay of posterior is governed by Pólya L-divergence.
For p, q ∈ P(X ), the Pólya L-divergence Lc

β(q || p) of q with respect to p is

Lc
β(q || p) , −

m∑
i=1

pi log(qi + βcpi) +
1
βc

m∑
i=1

qi log
qi

qi + βcpi
.

By the continuity argument, L0
β(q || p) , −

∑m
i=1 pi log qi− 1. The Pólya Lc

β-
projection q̂ of p on Q ⊆ P(X ) is q̂ , arg infq∈Q Lc

β(q || p). The value of
Lc

β-divergence at an Lc
β-projection of p on Q is denoted by Lc

β(Q||p).

Theorem 2.4. Let Q ⊂ Φ be an open set. Let β(n) → β ∈ (0, 1),
r(N) → r as n →∞. Let Lc

β(Q||r) < ∞. Then, for n →∞,

1
n

log Πn(q(N) ∈ Q |Xn
1 ; c) = −

{
Lc

β(Q || r)− Lc
β(Φ || r)

}
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with probability one.

Proof. The proof is constructed separately for c > 0, c < 0, c = 0.
For c 6= 0 ∧ ηc /∈ (Z−)m ∧ η /∈ Z−, log Π(Xn

1 | q(N); c) can equivalently be
expressed as log(Γ(η)/Γ(η+n))+

∑m
i=1 log(Γ(ηqi +ni)/Γ(ηqi)), where Γ(·) is

the Gamma function and η , N/c. For 0 < a < b, the ratio Γ(b)/Γ(a) can be
upper-bounded by bb−1/2/aa−1/2eb−a and lower-bounded by bb−1/aa−1eb−a,
cf. [16]. Then, Πn(q(N) ∈ Q |xn; c) can be upper-bounded by Un (depen-
dence of q on N is made implicit):

Un =
∑

q∈Q Π(q)
∏m

i=1 e−n l(qi,
1
2n

)∑
q∈Φ Π(q)

∏m
i=1 e−n l(qi,

1
n

)

and lower-bounded by Ln in similar way; to get Ln just replace 1/2n with
1/n in Un. There, l(qi, α) , −[(γi − α) log γi + (γi + νn

i − α) log(γi + νn
i )],

γi , qi

β(n)c , α ∈
{

1
n , 1

2n

}
and νn is the empirical measure induced by the

sample Xn
1 .

Next, we use simple bounds to upper bound Un by Ūn

Ūn =
∏m

i=1 e−n l(q̂i(Q, 1
2n

), 1
2n)

π(q̂(Φ, 1
n))

∏m
i=1 e−n l(q̂i(Φ, 1

n
), 1

n)
,

and to lower bound Ln by Ln; to get Ln just replace 1/2n with 1/n in Ūn.
There, q̂(·, α) , arg infq∈·

∑m
i=1 l(qi, α).

By the Strong Law of Large Numbers for Pólya Sampling, νn → r, almost
surely, as n → ∞. The Pólya L-divergence is continuous in q and Q is
open, by assumption. Thus, 1

n log Ūn converges, with probability one, to
−

{
Lc

β(Q || r)− Lc
β(Φ || r)

}
, as n → ∞. This is the same as the ’point’ of

almost sure convergence of 1
n log Ln and the Theorem for c > 0 is thus

proven.
For c 6= 0 ∧ (1 − ηq) /∈ (Z−)m ∧ (1 − η) /∈ Z−, log Π(Xn

1 | q(N); c) can
equivalently be expressed as log(Γ(1 − η − n)/Γ(1 − η)) +

∑m
i=1 log(Γ(1 −

ηqi)/Γ(1 − ηqi − ni)). The proof then can be constructed along the same
lines as for c > 0. The case of c = 0 is straightforward.

From the Pólya BST (Thm 2.5), the BLLN for Pólya sampling directly fol-
lows. It is worth noting that the MNPL in Pólya sampling can be constructed
in two ways: either via maximization of Π(Xn

1 | q(N); c), or by maximization
of negative of Lc

β(q||νn) wrt q, where νn is empirical pmf induced by sample
Xn

1 . The methods could be called ’exact’ and ’asymptotic’ MNPL, respec-
tively. Both the methods comply with Pólya BLLN, as does the Bayesian
MAP.
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2.4. BST for right-censored data. Right-censoring of a r.v. X by a r.v.
Y (both on (R,B)) can be described by the following hierarchical model:
δ ∼ Ber(α), α ,

∫
F0(y) dG0(y); if δ = 0 then X ∼ F0; if δ = 1 then

X = (Y,∞) where Y ∼ G0; X’s are conditionally independent. A Bayesian
puts positive prior over the set Φ of distributions of X. Let the prior over
distributions of Y be without loss of generality concentrated at G0. We are
interested in the exponential decay of the posterior

Πn(F ∈ Q |Xn
1 ) =

∫
Q e−ln(F,n1)Π(dF )∫
Φ e−ln(F,n1)Π(dF )

,

where ln(F, n1) , −
∑

i:δi=0 log F ({Xi})−
∑

i:δi=1 log F ((Yi,∞)), Q ⊂ Φ, F0

is not necessarily in Φ, and n1 is the number of non-censored data, out of n
observations. The decay is governed by the L-divergence of F wrt (F0, G0)
for right-censoring

L(F || (F0, G0)) , −
[
α

∫
log F (x) dF0(x) + (1− α)

∫
log F ((y,∞)) dG0(y)

]
.

The L-projection F̂ of (F0, G0) on Q ⊆ P is F̂ , arg infF∈Q L(F || (F0, G0)),
and L(Q || (F0, G0)) denotes value of the L-divergence at an L-projection of
F0 on Q. Let Bε(Q,F0) , {F ∈ P : L(F || (F0, G0))− L(Q || (F0, G0)) < ε}.
BST for right-censoring:

Theorem 2.5. Let Xn
1 be right-censored data generated by the above

model. Let Q,Φ be open in weak topology; Q ⊂ Φ ⊆ P. Let L(Q || (F0, G0)) <
∞, and for any ε > 0, let Π(Bε(Q,F0)) > 0, Π(Bε(Φ, F0)) > 0. Then for
n →∞,

1
n

log Πn(F ∈ Q |Xn
1 ) = −{L(Q || (F0, G0))− L(Φ || (F0, G0))}.

Proof. Note that 1
n ln(F, n1) converges to L(F || (F0, G0)), with proba-

bility 1, by the SLLN. Arguments go along the lines of the proof of Theorem
2.1.

From the BST (Thm 2.6), the BLLN follows for right-censored data, in the
same way as it does for iid case from Thm 2.1. The BLLN for right censoring
demonstrates that posterior concentrates on weak neighborhoods of the L-
projections of (F0, G0) on Φ, if the ε-balls Bε(F, (F0, G0)) , {F ′ ∈ P :
L(F ′ || (F0, G0))−L(F || (F0, G0)) < ε}, have positive prior probability. This
together with assumption L(Φ || (F0, G0)), form the Schwartz conditions for
right-censoring.
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Under the Shwartz conditions, a set of Bayesian MAP estimators F̂MAP ,
arg supF∈Φ Πn(F |Xn

1 ) asymptotically coincides with a set of L-projections
of (F0, G0) on Φ. The same holds true for MNPL/EL estimator F̂EL ,
arg infF∈Φ ln(F, n1). The Kaplan Meier estimator follows from F̂EL in the
standard way, cf. [27]. Thus the BLLN makes it possible to view the Kaplan
Meier estimator as an asymptotic instance of the Bayesian MAP, and pro-
vides a probabilistic underpinning. The only available Bayesian view of the
Kaplan Meier estimator seems to be that of Susarla and van Ryzin [35]. In
[35], a Dirichlet process prior was considered in a well-specified model, and
it was shown there that the posterior mean converges to the Kaplan Meier
estimator as the parameter α of the Dirichlet process converges to 0.

3. Open problems. The distributional properties of the MNPL/EL
and MAP estimators in the misspecified model remain an open question.
Also, the development of non-informative priors in a nonparametric con-
text would be of interest and some proposals along this line can be found
in [11]. The MNPL/EL as well as MAP satisfy Bayesian consistency under
the misspecification requirement. There is also an un-conditional (’frequen-
tist’) counterpart of the requirement, which the Exponential Tilting method
satisfies; cf. [19] and introduction of Sect. 2. The problem of selecting be-
tween the two requirements, and hence between the associated methods, was
suggested in [14].
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[16] Kečkić, J. D. and P. M. Vasić. (1971). Some inequalities for the gamma function.
Publ. Inst. Math. (Beograd)(N.S.) 11:107-114.

[17] Kerridge, D. F. (1961). Inaccuracy and inference. J. Roy. Statist. Soc. Ser. B. 23:284-
294.

[18] Kitamura, Y. and M. Stutzer. (1997). An information-theoretic alternative to gener-
alized method of moments estimation. Econometrica. 65:861-874.

[19] Kitamura, Y. and M. Stutzer. (2002). Connections between entropic and linear pro-
jections in asset pricing estimation. J. Econometrics. 107:159-174.

[20] Kleijn, B. J. K. and A. W. van der Vaart. (2006). Misspecification in infinite-
dimensional Bayesian statistics. Ann. Statist. 34(2):837-877.
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