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ABSTRACT 
 
 

While agricultural production statistics are reported on a geopolitical – often national - 
basis we often need to know the status of production or productivity within specific sub-regions, 
watersheds, or agro-ecological zones. Such re-aggregations are typically made using expert 
judgments or simple area-weighting rules. We describe a new, entropy-based approach to 
making spatially disaggregated assessments of the distribution of crop production. Using this 
approach tabular crop production statistics are blended judiciously with an array of other 
secondary data to assess the production of specific crops within individual ‘pixels’ – typically 25 
to 100 square kilometers in size. The information utilized includes crop production statistics, 
farming system characteristics, satellite-derived land cover data, biophysical crop suitability 
assessments, and population density. An application is presented in which Brazilian state level 
production statistics are used to generate pixel level crop production data for eight crops. To 
validate the spatial allocation we aggregated the pixel estimates to obtain synthetic estimates of 
municipio level production in Brazil, and compared those estimates with actual municipio 
statistics. The approach produced extremely promising results. We then examined the robustness 
of these results compared to short-cut approaches to spatializing crop production statistics and 
showed that, while computationally intensive, the cross-entropy method does provide more 
reliable estimates of crop production patterns.  

 

Key Words: Entropy, cross entropy, remote sensing, spatial allocation, production, crop 
distribution  
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ASSESSING THE SPATIAL DISTRIBUTION OF CROP PRODUCTION 
USING A CROSS-ENTROPY METHOD 

Liangzhi You and Stanley Wood1 
 
 

1.  INTRODUCTION AND RATIONALE 

Internationally comparable series of annual crop production data are available at a 

national scale from FAO and USDA. While very rich in their commodity coverage, these 

data give no clue as to the geographic distribution of production within country 

boundaries. Periodic attempts at compiling sub-national data have been made by, for 

example, centers of the CGIAR (e.g., Carter et al. 1992; CIAT 1996; CIP 1999; Ladha et 

al. 2000; ILRI 2001; IFPRI 2001), by FAO (Gommes 1996), and by the Famine Early 

Warning System (FEWS) in parts of Africa (http://www.fews.net). With the exception of 

the on-going mandate of FEWS to compile sub-national agricultural production and 

market data in many parts of sub-Saharan Africa, all of these were limited, one time 

efforts. The enormous gaps in the geographic, time period, and crop coverage of sub-

national data collections are unlikely ever to be filled. But even where sub-national data 

are available, they are often still inadequate in terms of providing sufficient spatially 

disaggregated insights into the location of production. Obtaining sub-national agricultural 

production data for, say, Lampung province in Indonesia, the state of Rondonia in Brazil, 

or the Valle de Cauca department in Colombia, would still reveal nothing about spatial 

variability of production within those areas of many thousand square kilometers. Yet to 

compile all such data globally, or even regionally, represents a formidable data discovery 

                                                 
1  Liangzhi You and Stanley Wood are Senior Scientist and Scientist respectively in the Environment and 
Production Technology Division at the International Food Policy Research Institute in Washington, DC. 
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and harmonization challenge.2 To address this situation, the approach described in this 

paper seeks to generate plausible estimates of the distribution of crop production at the 

scale of individual pixels (notionally of arbitrary scale but in this application of some 80 

km2), through judicious triangulation amongst a range of accessible evidence. If spatial 

disaggregations can be made with some confidence, we remove one of the major 

analytical weaknesses of meso- and macro-scale agricultural studies – the inability to 

objectively re-aggregate production statistics into any other geography than the national 

or sub-national administrative boundaries for which published statistics exist. This has 

been a thorn in the flesh of the most attempts to analyze production and productivity by 

agro-ecological zones or watersheds, e.g., the agricultural research priorities study of 

Davis, Oram, and Ryan (1987), the CGIAR’s Regional AEZ strategies of the 1990s (TAC 

1992), the global food perspective studies of FAO (Alexandratos 1996; Bruinsma 2003), 

and IFPRI (Rosegrant et al. 2001), and agroecosystem assessments (e.g., Wood, 

Sebastian, and Scherr 2000).  

With proper ground-truthing it is technically feasible to discriminate the 

cultivation of some types of crops or production systems, such as paddy rice, plantations, 

and orchards, using high-resolution satellite imagery. In temperate regions it is also easier 

to detect areas under annual crop cultivation that lie fallow during the cold/dry seasons. 

But national land cover mapping studies usually discriminate only “cropland” at best, and 

instead focus on the delineation of types and sub-types of “natural” ecosystems that are 

often more homogeneous over larger physical extents, and of more direct interest to the 

                                                 
2 A particular challenge is to compile regional estimates of the spatial variation of crop production using 
national agricultural surveys and censuses. While such surveys typically allow for greater spatial resolution 
of crop distribution, the sampling frameworks employed still limit the spatial scale at which results can be 
generated within acceptable levels of statistical confidence, and they are seldom carried out at less than ten 
year intervals.  
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forestry, wildlife, or environmental agencies who usually undertake such work. The 

global 1km land cover database (IGBP 1998) does contain some crop-specific 

agricultural land cover interpretations in its regional and pre-classified background data 

(the Seasonal Land Cover Regions), but they are few and inconsistently applied. This 

global dataset does, however, provide a relatively detailed picture of where 

(undifferentiated) croplands may be found, and this serves as the first approximation of 

the spatial boundaries within which our crop-specific distribution takes place.  

Figure 1--The task of spatial crop allocation 
 
 
 
 
 
 
 
 

 

 

 

Figure 1 shows, diagrammatically, the challenge faced by the spatial allocation 

approach. The bold closed-curve shows the boundary of the geographical area within 

which we wish to make a plausible assessment of the spatial patterns of production of 

individual crops. These areas are typically the administrative (geopolitical) statistical 

reporting units (SRUs) for which we have been able to obtain production statistics, and 

may be national or sub-national e.g. states, departments, districts, or counties. The SRU is 

divided into many grid cells (pixels) whose actual sizes depend upon the resolution of 

key spatial data layers such as land cover, but that typically range from 500m x 500m to 

10km x 10km for regional studies. Armed with production statistics for each SRU, the 

non-agricultural land 
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task of the spatial allocation model is to distribute the reported production of individual 

crops amongst the pixels so as to best imitate the “real-world” production geography. 

Some pixels may be allocated no crops, others only a single crop, while the remainder 

will contain multiple crops.  

The paper is organized as follows. The next section describes the types of 

information we use in the spatial allocation process. Section 3 introduces the allocation 

approach – the cross-entropy method. In this section we first introduce the entropy 

concept, and then describe the spatial allocation model in detail. Section 4 applies our 

model to data compiled for Brazil, a very large and agroecologically diverse country. We 

then describe the application of the model and evaluate the accuracy of the allocation 

results. In addition, we also compare the current model with simpler crop allocation 

methods. Section 5 discusses the results and describes on-going efforts to further develop 

the spatial allocation model.  

 

2.  INFORMATION USED TO ASSESS THE SPATIAL DISTRIBUTION OF 
PRODUCTION 

The goal of the allocation is to spatially disaggregate SRU tabular statistics and 

assign them to specific “pixels” within a gridded map of the SRU. The information used 

to guide the spatial allocation comes in various forms. 

1. Crop production statistics. The data include the harvested areas, production, and 

average yield for each crop being included in the allocation exercise. This tabular 

data is derived from international or national sources (e.g., FAOSTAT for 

national SRUs, national statistical yearbooks for first administrative level SRUs, 

and agricultural surveys for second level SRUs) 
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2. Production system structure. Agricultural production is diverse in terms of 

farming technology and the scale of the farm enterprise. Commercially-oriented  

farmers tend to use more and higher quality production inputs such as high-

yielding varieties, mechanization, irrigation, fertilizers, pesticides, credit and 

market information, while subsistence farmers often rely only on traditional 

cultivars, manual labor, and limited application of organic nutrients. The intent of 

partitioning the reported crop production amongst production system types is to 

provide some criteria that may help guide the assessment of specific production 

locations and yield variability within the SRU. Information is gathered to allow 

the partitioning of total reported production into three components: irrigated, 

rainfed – commercial, and rainfed – subsistence. Information to support the  

partitioning of production for each crop and for each SRU is gathered on an ad 

hoc basis from a diverse mix of sources such as small-scale and farming system 

studies, country reports, agriculture survey data and often expert opinion. 

3. Cropping intensity. Most production statistics report crop areas in terms of the 

area harvested. From a spatial allocation perspective and for consistency with 

satellite-derived estimates of cropland, we must convert harvested to physical 

crop areas. Cropping intensity is defined as the ratio of the harvested area to the 

physical area on which crops are grown, usually in the context of an annual 

cropping cycle. For example the irrigated rice fields of a region might be planted 

twice and produce two crops per year. Thus the 100,000 hectares of harvested rice 

reported for the SRU are obtained from just 50,000 hectares of land. Similarly, 

maize and beans may be grown in a single season rotation. Thus 50,000 hectares 
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of maize-bean fields will produce 50,000 hectares of both maize and beans during 

a given year. For each crop we assess the likely cropping intensity based on 

available secondary data and expert opinion.  

4. Cropland extent: We reclassify available satellite-derived land cover imagery so 

as to better assess the likely share of cropland in each individual pixel. Land cover 

is the most important source of data for identifying the geographic areas within 

which the crop allocation takes place. By default crop production is only allocated 

within the extent of cropland.3.  

5. Biophysical Suitability for Crop Production. The patterns and intensities of crop 

production are influenced, often significantly, by biophysical conditions. There 

are many ways to assess the biophysical suitability of a given location for crop 

production; from simple rules of thumb based on a single factor such as annual 

rainfall, to crop-specific process models that simulate crop growth on a daily basis 

using many climate, soil, plant, and management variables. For our purposes we 

adopted a globally consistent assessment approach initially developed by FAO 

(1981). FAO developed sets of crop-specific rules that used location-specific data 

on elevation, temperature, and rainfall data in order to assess the agro-climatic 

suitability of fifteen globally-important crops under low- and high-input rainfed 

conditions (FAO, 1981). This approach has since been extended in many ways 

including; irrigation as well as rainfed suitability, additional crops, consideration 

of the influence of slope and soils, and progressively more elaborate suitability 

assessment algorithms (FAO 1984, FAO/IISA 2000). We utilized the most recent 

                                                 
3 There is sometimes a need to relax this constraint if the statistical data call for more cropland to be found 
than is depicted in the land cover data. Thus, we treat the statistical data as having a higher level of 
confidence than the land cover data.  
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versions of the crop suitability data available as a 5 minute (approximately 

9kmx9km) grid globally (Fischer et al. 2000). From this dataset we utilized the 

irrigated, “high” input/technology rainfed, “low” input/technology global crop 

suitability data that include both suitable areas and potential yields.   

6. Existing crop distribution maps.  Any existing mapped data of the spatial 

distribution of individual crops based on direct field observation is a very valuable 

information source. Our “a priori” assessment of the likely distribution of 

individual crops is given a high weight in the allocation procedure. Thus, any 

credible source of information on existing crop distribution, even if it is only 

partial in its geographic coverage, helps improves our “priors” and ultimately the 

final allocation outcomes.  

 

3.  CROSS ENTROPY APPROACH 

All the above information can be brought to bear on the spatial allocation of 

agricultural production in one way or another. But we need an analytical approach that 

can utilize all such information, while recognizing that each piece may be limited, 

partially correct, and sometimes conflicting with other input data sources. Golan, Judge 

and Miller (1996) proposed various estimation techniques based on the principles of 

entropy to tackle such problems. Zellner (1988) described the advantage of the entropy 

approach as satisfying the “information conservation principle”, by neither ignoring any 

relevant input information nor injecting any false information (Robinson et al. 2000). 

This principle is highly compatible with our triangulation approach.  

Specifically, the spatial allocation model uses a cross entropy (CE) approach that 

allows for the inclusion of prior knowledge about actual crop distribution or about factors 
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that influence such distribution. Using this methodology to disaggregate crop production 

statistics within any particular SRU, it is straightforward to apply constraints that ensure 

that allocated crop areas are non-negative and that they sum up to the total area reported 

for each crop for the entire SRU. The approach is also flexible in supporting the inclusion 

of additional equality or non–equality constraints that reflect the distribution of factors 

influencing the spatial patterns of crop production.  

INFORMATION ENTROPY 

The cross entropy formulation is based upon the entropy concept in information 

theory originated by Shannon (1948). For a given probability distribution { p1, p2, …, 

pk}, Shannon’s information entropy (amount of information) is defined as 

(1)   ∑
=

−=
k

i
iik pppppH

1
21 ln),,,( K  

where ln0=0 by convention, which means zero probability yields zero information.  
 
Jaynes (1957) proposed a principle of maximum entropy to identify an unknown 

distribution of probability from given moment constraints. Kullback (1959), Good (1963) 

introduced the notion of cross-entropy, CE, which is a measure of the discrepancy 

between the two probability distributions, say pi and qi. 
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The cross entropy minimization approach provides a model formulation in which 

the discrepancies between p and its prior, q, are minimized subject to certain constraints.  
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SPATIAL ALLOCATION MODEL 

Here we define our spatial crop allocation problem in a cross entropy framework. 

We first convert the reported harvested area, HarvestedAreaj for each crop, j, into an 

equivalent physically cropped area, CropAreaj., using an estimated average cropping 

intensity, Cropping Intensityj. 

(3a)  jjj tensityCroppingInaHarvestAreCropArea /=  

To capture some measure of the heterogeneity of production we distinguish 

amongst different types of production systems. Different farmers might produce crops 

using quite different levels and mixes of production inputs, and these differences have 

important consequences for crop performance. In the current model, we allow for each 

crop to be disaggregated  into three distinctive production systems , namely; irrigated, 

high-input rainfed, and low-input rainfed (e.g. total  rice production is split into irrigated 

rice, high-input rainfed rice and low-input rainfed rice shares). These three types of 

production system were selected so as to correspond with the assumptions used to derive 

the three crop suitability surfaces described above. Let sijl be the share of the cropped area 

of crop j in production system, l, allocated to pixel i, and since CropAreaj is the total 

physical area for crop j, the area allocated to pixel i for crop j, Aijl, is 

(3b)    ijljljijl sShareCropAreaA ××=  
 
where Sharejl is the share of total physical area for crop j in production system  l . 

 
In general we have some prior knowledge or intuition about crop-specific area 

distributions. Let πijl represent our prior assessment of the area shares pixel i and crop j in 

production system  l. The prior can be based upon an examination of existing crop 

distribution maps, on expert judgement, or any other information deemed relevant. For 
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example, one could generate a crop distribution a priori using the biophysical and social-

economic attributes of each location. The minimum cross entropy formulation seeks to a 

derive a set of area shares sijl , such that 

(4)  ∑ ∑∑∑∑∑ −=
i i j l

ijlijl
j l

ijlijlijlijls
ssssCEMIN

ijl

ππ lnln),(
}{

 

subject to: 
(5)   ljs

i
ijl ∀∀=∑ 1  

(6)   iAvailsShareCropArea i
j l

ijljlj ∀≤××∑∑  

(7)   ljiSuitablesShareCropArea ijlijljlj ∀∀∀≤××  
(8)   ljisijl ,,01 ∀≥≥  
where: 
 i : i = 1, 2, 3, …, are the pixel identifiers within the SRU,  
 
j: j = 1, 2, 3, …, are the crop identifiers,  

l: l = irrigated, rainfed-high input, rainfed-low input, are the specific production system 

conditions under which each crop might be produced. 

Availi: total cropland in pixel i, as estimated from land cover data described in the 

previous section.  

Suitableijl: the suitable area for crop j at input level l in pixel i, extracted from the 

FAO/IIASA global crop suitability surfaces described in the previous section. 

The objective function for the spatial allocation model is defined so as to 

minimize the cross entropy measure between the estimated area shares, sijl, and our prior 

estimates, πijl . Equation (5) is simply the “adding-up” constraint that ensures we allocate 

exactly the amount of crop area reported for the SRU. Equation (6) is the land cover 

constraint whereby the actual cropland area share of pixel i derived from the land cover 

data is set as the upper limit for the area to be allocated for crop production within each 

pixel. Equation (7) is the constraint ensuring that the area allocated for production of a 
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specific crop within a pixel cannot exceed the area deemed as suitable for such 

production within the pixel. The last equation, equation (8) simply establishes the feasible 

range for the value of individual crop area shares. As we can see, the essence of this 

classic CE approach is to use any and all credible sources of information to make our best 

prior assessment of where crops are actually being grown. The criterion for choosing the 

solution (out of many possible solutions because the problem is under-determined) is to 

minimize the entropy-based divergence from the prior.  

Obviously, an informative prior distribution for each crop is quite important for 

the success of the model. If such information already exists, e.g. dot maps of the actual 

distribution of specific crops, these can be incorporated. However, this is a luxury we are 

seldom afforded, and we must make do with only partial information (in terms of both 

crop and geographic coverage). In most cases, however, we use other simple approaches. 

The most commonly used short-cut methods of portraying production data spatially are to 

uniformly distribute production across the total land area or across only the cropland area. 

Since, however, we believe that individual commodities are more likely to be cultivated 

in areas in which they have some comparative advantage, we can also draw on results 

from analyses of the spatial variability of crop production potential. We use the 

FAO/IIASA surfaces described above because they provide assessments not only of the 

suitable area by crop and production system (as used in equation 7), but also of the 

associated potential yields.  

Our strategy to develop priors involved several elements. The first was to 

partition total production in each SRU amongst the three possible production systems 

(irrigated, rainfed-high input, and rainfed-low input). For each system, the total 



 

 

12

production was allocated amongst pixels falling within the cropland extent in proportion 

to their relative potential yield4 and population density. Weighting by population density 

acknowledges that many areas potentially suitable for crop production are not actually 

exploited for a range of reasons. Particularly for the type of subsistence agriculture 

practiced in many developing countries, however, production is likely to be greater (and 

more intensive) where local demand and labor (rural population densities) are higher. To 

reduce incentives for production to be allocated into urban areas the population density 

map was truncated to zero at levels typically associated with settlement and urbanized 

areas.5 Thus, we derived our prior crop distribution shares, πijl , using normalized 

potential yields for crop j at input level l and pixel i, Suitabilityijl, and normalized, 

truncated population density in pixel i, Popdensi, as follows: 

(9)  lij
PopdensySuitabilit

PopdensySuitabilit

i
iijl

iijl
ijl ∀∀∀

×

×
=
∑

π  

For the case of purely subsistence production systems, crop distribution priors 

might also be determined using only the relativities of rural population density within the 

extent of cropland.  

4.  MODEL APPLICATION 

We apply the above model to Brazil, a very large and diverse country with a total 

land area over 8.5 million square kilometers. Brazil is rich in natural resources and 

biodiversity and heterogeneous in agroecological and socio-economic conditions, with 

quite different types of farming systems being found within its boundaries.  While, on the 

                                                 
4  Recalling that individual potential productivity maps were available for each crop and production system 
combination 
5 Although land cover classification systems differentiate between urban and cropland areas, in practice 
only the larger and more built-up urban areas are systematically assigned to the urban class. We thus need 
to exclude from areas delineated as croplands those areas where population density is so high that 
production options for most crops are limited. 
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average, only 6 percent of the land area is cropland, there are vast tracts of forest and 

savannas with little or no agriculture, as well as areas such as the central “cerrados” and 

the south where landscapes are almost entirely agricultural. This wide range of 

agricultural systems and spatial intensity of production is valuable for the purposes of 

testing the spatial allocation approach. 

Brazil’s first level administrative units are “states”, and at the third level 

“municipios”. Though there are only 27 states, there are over 4,490 municipios in Brazil, 

averaging over 160 municipios per state. The spatial resolution of the land cover pixels 

used in the application is 5 by 5 arc minutes, and each pixel of this resolution represents 

just over 9km by 9km (around 8,500 hectares) at the equator. Brazil comprises over 

100,000 pixels of that size. Figure 2 shows maps of some of the key spatial datasets used 

for the analysis. Cropland is expressed as the proportion of each pixel occupied by 

cropland, as shown in Figure 2(a). This dataset is derived from the 30 arc second 

(approximately 1-km) resolution global land cover database developed by the EROS 

DATA Center of the U.S. Geological Survey using methods described by Wood, 

Sebastian and Scherr (2000) and Ramankutty and Foley (1998). We calculate the actual 

cropland area in each pixel by taking account of the change of physical pixel size with 

latitude. Figure 2(b) is the population density map. We set average population density 

limits of 5 persons/km2 and 500 persons/km2 (within a cropland pixel extent of around 81 

km2) as defining those areas in which crop production would be allocated. As pointed out 

in Section 2, FAO/IIASA’s newly developed crop suitability surfaces are rich sources of 

information on both potential yields and suitable areas for each commodity under 

different management/input assumptions. FAO/IIASA suitability surfaces are defined for 



 

 

14

five production system types for each crop: rainfed - high input, rainfed – intermediate 

input, rainfed – low input, irrigated – high input and irrigated – intermediate input. In 

accordance with our model specification, we omitted the two intermediate input classes 

and represent production conditions by just three possible production systems classes: 

high-input rainfed, low-input rainfed and high-input irrigated (referred to henceforth as 

irrigated). We defined suitable areas within each pixel as the sum of the following four 

suitability classes in the original FAO/IIASA suitability database: very suitable, suitable, 

moderate suitable and marginal suitable. Accordingly the mean potential yield across the 

suitable area of each pixel is calculated as the area-weighted average of the potential 

yields estimated for the above four suitability classes. As an example, Figure 2(c) shows 

the suitable areas of low-input rainfed maize and Figure 2(d) the potential yield 

distribution of low-input rainfed maize.  
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Figure 2  Cropland, population density and suitability maps for maize 

 
 

The following eight crops are included in the spatial allocation model for Brazil: 

rice, wheat, maize, cassava, potato, beans and soybean. Collectively, these eight crops 

account for nearly one quarter of the value of Brazilian agricultural output in 2000, and 

nearly half of all crop output (Alston et al. 2000). The reference year of the spatial 

allocation is 1994, the year in which the satellite land cover imagery was collected. We  

derive 1994 production statistics by taking a mean of the annual values for 1993-95. The 
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allocation units (the SRUs) are the 27 states in Brazil. Starting with the tabular 

production statistics by state (see Table 1 for the harvested areas), we first disaggregate 

into the three production systems based on the area shares given in Table 2. These shares 

were compiled from a mixture of statistical data, other secondary data sources and expert 

opinion. Table 2 shows the percentages of irrigated and high-input rainfed areas for all 

eight crops in the 27 states of Brazil,  the percentage of low-input rainfed area being the 

residual.  The next step is to convert harvested areas into physical land areas using crop 

and production system specific cropping intensities. Some crops, in particular irrigated 

crops such as rice, are multiple-cropped in many regions. In such cases the physical crop 

area is calculated by dividing the harvested area by its corresponding cropping intensity 

(Equation (1)). As with production system shares, cropping intensity estimates by crop 

and production system were compiled from available data sources, relying heavily on 

expert knowledge of specific cropping patterns practiced across Brazil.  

 From a modeling perspective, the disaggregation into irrigated, high-input rainfed 

and low-input rainfed production systems resulted in 24 distinct production systems (3 

systems * 8 crops) being submitted to the spatial allocation process.6  

                                                 
6 In order to inject the necessary level of competition for land amongst crops, we aggregated the area of all 
other crops in the state level statistics into a single notional “Other crop”, to which we assigned the generic 
suitability qualities of low-input rainfed maize. This additional crop was also part of the allocation process 
such that the total area of crops allocated (across the 8 specific crops and the “Other” crop) was equal to the 
total amount of cropland in the state. 
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Table 1--Harvested areas by states of Brazil: 1993-95 
State Wheat Rice Maize Sorghum Potato Cassava Bean Soybean 
    (Hectare)     
Brazil 1,267,967 4,403,820 13,191,061 138,991 169,681 1,868,646 4,783,341 11,268,031
Acre  34,051 36,402   22,270 15,256  
Alagoas  7,335 70,578   30,534 110,775  
Amapa  586    2,559   
Amazonas  3,223 4,423   34,930 2,672  
Bahia  57,089 428,296 17,929 1,433 249,724 583,680 428,119
Ceara  67,045 507,781 365 11 116,276 548,077  
District Federal 778 2,058 20,253 81 462 495 5,598 46,149
Espiritu Santo  26,576 100,869  646 20,621 67,139  
Goias 3,093 289,420 842,786 31,019 276 17,759 142,947 1,070,754
Maranhao  759,309 602,078   261,855 116,897 64,778
Mato Grosso  461,965 404,532 18,281  24,315 39,646 2,005,885
Mato Grosso do Su 48,360 99,552 410,283 1,042 11 27,570 35,778 1,069,634
Minas Gerais 4,110 375,871 1,487,266 9,417 30,773 77,313 531,982 580,839
Para  204,696 245,100   266,333 81,067  
Paraiba  7,180 173,552 24 957 41,987 192,298  
Parana 646,682 108,955 2,647,208 164 43,050 147,792 559,837 2,142,562
Pernambuco  5,284 232,759 962 249 85,630 261,661  
Piaui  269,344 401,136 12  94,623 288,078 7,286
Rio Grande do Nor  1,758 97,821 3,417  47,691 127,176  
Rio Grande do Sul 471,334 983,221 1,782,287 28,660 45,792 107,934 208,633 3,086,668
Rio de Janeiro  17,043 26,812  175 13,781 11,913  
Rondonia  143,690 193,290   38,175 147,854 4,861
Roraima  8,783 6,479   2,655 1,578  
Santa Catarina 58,227 149,866 1,040,708  18,947 53,200 354,897 213,873
Sao Paulo 35,382 146,696 1,300,673 27,618 26,842 31,996 279,462 524,341
Sergipe  6,466 56,828  57 40,754 59,541  
Tocantins   166,758 70,860     9,875 8,897 22,283
Source: IFPRI (2001), and EMBRAPA 
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Table 2—Share of crop area under different farming system in Brazil: 1993-95 (percent) 
State       Irrigated Area*               High-input Rainfed Area*     
 Wheat Rice Maize Sorghum Potato Cassava Bean Soybean  Wheat Rice Maize Sorghum Potato Cassava Bean Soybean 
    (%)         (%)     
Acre            89   63   
Alagoas            26 100  16   
Amapa            86   63   
Amazonas            40   35   
Bahia  2 10 0 100     100  50 85  41 10 95
Ceara  16          40 89  40 0  
District Federal 100    70  23    100 98   54 15 100
Espiritu Santo     30       71   76 10  
Goias 60 2   70  29   40 20 98 100  87 14 99
Maranhao  1         99 39 100  20 0 97
Mato Grosso       20    70 97 100  74 0 99
Mato Grosso do Su  65        98 7 97   74 10 99
Minas Gerais 100 39   40  11    49 84 98 36 66 9 95
Para          80  86   63   
Paraiba            48 99  19   
Parana  19   80  5   90 24 71 91  53 19 97
Pernambuco     5       41 97  21 0  
Piaui  4         10 45 99  45 0 95
Rio Grande do Nor  76   50      24 76 99  36 10  
Rio Grande do Sul  79          59 98  43 0  
Rio de Janeiro  99   50     85  64 95  41 10 95
Rondonia          100  73 99  76   
Roraima  57          95 100  81   
Santa Catarina  92   60     78 2 58 90  42 20 90
Sao Paulo     70  24   96 100 91 99  65 15 97
Sergipe  70   100      30 56 98  12   
Tocantins   34                  96 100   93   98
 Source: compiled by authors from a variety of statistical sources and expert opinions 
*Note: Balance of production shares from each state are included in “low input rainfed” system
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All the spatial allocation input data components for each state were assembled in 

the above manner and submitted for optimization on a state-by-state basis. Each 

optimization run attempts to simultaneously allocate all 24 production system (plus the 

“other crop” category that accounts for the balance of cropland use) into pixels across the 

entire state subject to the defined constraints, using the prior distribution as its starting 

point. GAMS (GAMS 2002) is used to solve the optimization problem7. The output is the 

area in hectares of each production system in each pixel in the state (including pixels 

where no production was assigned). Figure 3 shows the pixel level spatial allocation of 

the eight crops for Brazil, compiled from the individual state level, production system 

results. 

The intent of the spatial allocation model is not to try to match the real world 

pixel by pixel, but rather to derive a substantially more informative picture of the likely 

distribution of the production of individual crops than the state levels statistics alone can 

reveal (e.g the maps are an attempt to “spatialize” Table 1). We can see from Figure 3 

that the allocation approach generates quite diverse patterns of crop distribution among 

and within the states. As well as providing richer insights into the distribution of 

production within very large geopolitical units, the pixel-level results can be aggregated 

into any other geography of interest, e,g, watershed or agro-ecological zone, for further 

analysis.  

                                                 
7 The size of optimization problem is very large due to large number of pixels within many states, and a 
high-performance solver is needed. In the current optimization, we use GAMS newly-developed 
PATHNLP solver. 

Deleted:  states
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Figure 3—Predicted spatial patterns of crop production 
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Figure 3—Predicted spatial patterns of crop production (continued) 

 

 

5.  MODEL VALIDATION AND COMPARISON 

To assess how well the approach performs, we aggregate the over 100,000 pixel 

level results into the 4490 municipios of Brazil for which we have a separate database 

which includes data on six of the allocated crops: maize, rice, wheat, beans, cassava and 

soybean. We compare these synthetic municipal area estimates with the actual municipal 
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production area statistics8. Figure 3 shows the graphical results of this comparison, in 

which the horizontal axis is the actual municipal statistics while the vertical axis are the 

estimates derived by aggregating the pixel level allocation of state statistics. The spatial 

allocations for wheat, maize and bean match the municipal statistics well, with R2 values 

all greater than 0.50 (0.65, 0.54. and 0.53, respectively).  For these three crops, the points 

clearly cluster around the 45 degree line of perfect correspondence. For the other three 

crops, however, the data points are more dispersed. The R2 values for cassava, rice and 

soybean are 0.47, 0.43, 0.40, respectively.  

 There are several factors that help account for the differences between 

observed and predicted municipal crop areas. Perhaps the most fundamental is the 

simplicity of the method used to assign the crop area priors relative to the complex web 

of factors involved in farmers’ choices of crops, crop mixes and the type and scale of 

production methods. But there are also many data issues. As the data for each state was 

compiled, inconsistencies amongst data layers surfaced. A logical set of assumptions 

embedded in the methodology is that the physical area required to produce the reported 

harvested amount of crops is less than or equal to the extent of cropland, and that within 

the cropland area sufficient, non-overlapping suitable areas could be found for each crop. 

In a significant number of cases this logic was belied by the available data. There are at 

least four sources of mismatch amongst data sources: unreliable estimates of cropland 

extent; cropping intensity estimates that do not fully capture the land-saving benefits of 

multi-cropping strategies, particularly within a single growing season; biophysical 

suitability interpretations that do not match location specific conditions, nor the reality 

                                                 
8  Before this comparison was made, the area values of each municipio were scaled by a fixed factor, the 
ratio of the reported state crop area to the sum of the reported municipal crop areas. This was done to 
eliminate discrepancies between the state and municipal statistics as a source of error. 
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that production may be economically viable and important for food security, even at 

relatively low levels of biophysical suitability and, finally but significantly, the reliability 

of the production statistics themselves. Where data inconsistencies lead to infeasible 

conditions, a set of rules was devised to progressively relax the constraints until the 

allocation could be completed successfully.9 

From a methodological perspective a key issue is the very heavy dependence on 

generating good initial priors of actual crop distribution, after which the constraints 

imposed in the optimization are largely to ensure proper accounting of the various area 

components, and to resolve competition amongst crops for available, suitable land. This 

feature of the CE approach provides some useful flexibility, for example, to include less 

rigorous sources of input data such as dot maps of crop location or expert knowledge 

about where specific crops are grown, but that flexibility comes at the cost of requiring a 

significant amount of data to be compiled and interpreted at the pre-optimization phase. 

As described in section 3 the algorithm used for assigning the prior relies on 

potential yields (taken from the crop suitability database) and population density. While 

this has the advantage of pragmatism in terms of available data and some theoretical 

underpinnings, it falls short of an ideal approach. One characteristic of this ideal would 

be to include a more explicit economic focus, but this would involve another level of data 

discovery and compilation challenges. We have examined including crop prices in the 

algorithm and generating priors on the basis of nominal gross revenues (potential yield x 

                                                 
9 For example (1) if insufficient suitable area can be found within the cropland extent, the share of suitable 
area in each pixel in the extent is increased in steps, up to a maximum of the share of cropland in each 
pixel, and (2) if there is insufficient land within the cropland extent for the total crop area to be allocated, 
the cropland area is expanded incrementally into adjacent suitable areas. These rules were developed in 
applying an earlier prototype of the approach to spatial allocation of the same eight crops for the LAC 
region (Sebastian and Wood 2000).  
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price). But this approach only proves effective if the priors are computed by considering 

potential competition amongst crops at the pixel level. While this is perhaps more 

realistic from the perspective of a commercial farming environment, weights other than 

prices might be more appropriate for other production goals, e.g. nutrition content for 

goals of food security. Empirical observation of subsistence farmer crop selection 

practices suggest that production of preferred basic food staples often takes place with 

little regard to biophysical suitability. But assembling information on household 

production goals and strategies, and local dietary preferences was beyond the scope of 

this pilot work. Since our own interests lie in developing a framework that can be applied 

in a regional and even global context, we seek to develop methods that minimize reliance 

on data that is fragmentary and expensive to compile. Nevertheless, there certainly 

appears scope as we develop this approach to add further layers of sophistication into the 

process of assigning priors.  

As things now stand, the potential suitability data (both suitable area and potential 

yields) are the most significant driving force in determining the spatial variability of 

production within the cropland extent, since they are used both in the priors (potential 

yields) and in the optimization constraints (suitable areas).  
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Figure 4--Correlation of municipal production statistics and predictions made from 
the spatial allocation model: Brazil 1993-95 
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Table 3--Comparison of the effectiveness of alternative spatial allocation methods 
 
Allocation Methods   Explained Variance 
  wheat rice maize cassava bean soybean 
        
Land Area Shares   0.26 0.31 0.47 0.38 0.40 0.27 
Suitable Area Shares        
       Low Input  0.17 0.31 0.22 0.32 0.26 0.11 
       High Input  0.37 0.34 0.37 0.37 0.35 0.08 
       Irrigated  0.0 0.32 0.01 0.45 0.13 0.0 
       Mixed (weighted)   0.15 0.38 0.17 0.39 0.28 0.04 
Cropland Shares   0.38 0.31 0.44 0.38 0.25 0.37 
Cross Entropy   0.65 0.44 0.54 0.47 0.53 0.40 
 
 
 

Despite the seemingly promising results, the question remains whether the 

elaborate procedures described here produce estimates of the spatial distribution of crops 

that are better than other approaches used at this scale of analysis. We examined three 

possible short-cut methods for assigning state level crop areas into municipios: (1) in 

proportion to the total land area of the municipios, (2) in proportion to the cropland area 

of each municipio, and (3) in proportion to the amount of (biophysically) suitable land for 

the production of each crop in each municipio. This last approach has several options 

since suitability surfaces are generated for specific production systems. We thus made 

four allocations of state level crop area into municipios: (a) in proportion to the area 

suitable for low-input rainfed production, (b) in proportion to the area suitable for high 

input production, (c) in proportion to the areas suitable for irrigation in each municipio, 

and (d) in proportion to the (weighted) area suitable for low-input, high-input and 

irrigated production in each municipio. Table 3 shows the variance in municipio crop 

areas explained by each of the approaches, including the CE approach.  For all crops, the 

CE approach was most successful in predicting municipio crop areas – and in the cases of 
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wheat and beans, by quite a large margin. The simplest procedure, distributing the crop 

production in proportion to municipio total areas, was the second best method for maize 

and beans, whose broad geographic production base reflects the ubiquitous demand for 

these primary food (and in the case of maize, feed) commodities in Brazil. This approach 

is least successful in predicting the production distribution of wheat, rice and soybeans, 

all of which have more restricted agroecological ranges (wheat and rice), or are 

predominantly grown by large-scale commercial enterprises in the “cerrados” region 

(wheat and soybean). Conversely, apportioning crop production uniformly across the 

cropland extent, was the second best predictor for wheat and soybean, likely because both 

crops are grown commercially in extensive tracts of land that are easily detected as 

cropland by satellite sensors. The cropland proportion was least successful for beans, 

perhaps because it is often a home-garden crop or grown in other complex cropping 

systems that are much more difficult for satellite sensors to discriminate as cropland. 

Predictions based on the high-input or “mixed” suitability data were better than those 

based on the low-input and irrigated suitability data. The four suitability surfaces were 

second best predictors only twice, once for rice and once for cassava.  

 

6.  FINAL REMARKS 

We have proposed a spatial allocation model for crop production statistics based 

on a cross-entropy approach (CE). The approach utilizes various information sources 

such as satellite imagery, biophysical crop suitability assessments, and population 

density, in order to generate plausible, disaggregated estimates of the distribution of crop 

production on a pixel basis. In the application of the spatial allocation model to Brazil, a 
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comparison of actual municipio production statistics with synthetic municipio estimates - 

generated from pixel level disaggregating of state level statistics - yielded R2 values 

between 0.4 and 0.65. For each crop the CE model approach performed better than other 

commonly used short-cut methods for disaggregating production statistics. 

Amongst other things, the encouraging results suggest that remote sensing and 

image processing data and tools could be used more extensively in helping to explore the 

spatial heterogeneity of agricultural production, although improved discrimination of 

subsistence farming and smaller, mixed production plots is needed. On the other hand, 

working at a spatial scale of individual pixels creates many data management and 

computational challenges. Some of these challenges need to be met through improved 

numerical methods and mathematical optimization tools.  

Although the current model provides promising results, more work is underway to 

improve its performance. The first-best solution is to compile more, and more spatially 

disaggregated production data, especially linked to information on specific production 

technologies. National household or agricultural survey data (particularly geocoded data) 

on the location and quantity of crop production provide direct observations of the crop 

distribution surfaces. But compiling such data is expensive in an international context. 

Other means of improving the crop distribution priors include improved representation of 

existing variables (such as cropland extent and crop suitability), addition of other 

conditioning variables, and improved algorithms to transform these data layers into 

priors. Such options include using higher-resolution, and better ground-truthed land cover 

data for delineating cropland, particularly in extensive, low intensity systems and in more 

humid tropical areas where seasonal vegetation changes are less pronounced. We can 
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likely do more to improve the utilization of data on population, slope and physiography, 

and transportation networks in helping predict crop production patterns. 

One interpretation of our results is that rules for generating the prior distributions 

should be crop specific. While the crop suitability surfaces are, by definition, crop 

specific, they contain no behavioral information about the likelihood that a crop will 

actually be grown in a particular location. Clearly, factors such as local food security, 

farmgate prices, transportation costs (affected by the bulk density and perishability of 

individual commodities) and the spatial configuration of key markets, also shape the 

commodity production decisions of farmers. Better information on (multi-)cropping 

patterns would allow us to, say, allocate maize and beans together in the same location 

and to apply the proper cropping intensities if we know that maize followed by beans in a 

single season is the predominant mode of cultivation. Developing and testing commodity-

specific decision rules and collecting data on major cropping patterns so as to enrich the 

generation of priors are likely cost-effective next steps, as is the examination of better 

ways of capturing expert and local knowledge about production patterns.
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